JP5226592B2 - Limit load prediction method for resin molded parts with stress concentration - Google Patents

Limit load prediction method for resin molded parts with stress concentration Download PDF

Info

Publication number
JP5226592B2
JP5226592B2 JP2009095963A JP2009095963A JP5226592B2 JP 5226592 B2 JP5226592 B2 JP 5226592B2 JP 2009095963 A JP2009095963 A JP 2009095963A JP 2009095963 A JP2009095963 A JP 2009095963A JP 5226592 B2 JP5226592 B2 JP 5226592B2
Authority
JP
Japan
Prior art keywords
stress
resin
load
correction coefficient
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009095963A
Other languages
Japanese (ja)
Other versions
JP2010249523A (en
Inventor
容史 藤田
了 奥泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2009095963A priority Critical patent/JP5226592B2/en
Priority to CN201010142042.0A priority patent/CN101858798B/en
Publication of JP2010249523A publication Critical patent/JP2010249523A/en
Application granted granted Critical
Publication of JP5226592B2 publication Critical patent/JP5226592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は形状的な応力集中部を備える樹脂成形品が破壊する荷重を加えた場合の該樹脂成形品の応力集中部に発生する発生応力を予測し、予測された発生応力をもとに限界荷重を予測する方法に関する。   The present invention predicts the generated stress generated in the stress concentration part of the resin molded product when a load that breaks the resin molded product having a shape stress concentration part is applied, and limits it based on the predicted generated stress. The present invention relates to a method for predicting a load.

樹脂材料には、熱的性質、力学的性質に優れるものも多く、軽量である等の利点から様々な分野に利用されている。また、近年では材料の物性を向上させる改良も盛んに行われている。その結果、樹脂材料は、様々な環境下で使用されるようになっている。   Many resin materials are excellent in thermal properties and mechanical properties, and are used in various fields because of their advantages such as light weight. In recent years, improvements to improve the physical properties of materials have been actively performed. As a result, resin materials are used in various environments.

上記の通り樹脂材料からなる樹脂成形品は、様々な場面で使用され、使用される場面によっては、非常に高い機械的強度を求められる場合もある。このような要求に応えるために、例えば、特許文献1に記載の熱可塑性樹脂等、多くの機械的強度に優れた樹脂成形品を得るための樹脂組成物が開示されている。   As described above, a resin molded product made of a resin material is used in various scenes, and depending on the scene where it is used, a very high mechanical strength may be required. In order to meet such a requirement, for example, a resin composition for obtaining a resin molded article having excellent mechanical strength such as a thermoplastic resin described in Patent Document 1 is disclosed.

上記のように樹脂材料を改良し、樹脂成形品の機械的強度を改善することも重要であるが、樹脂材料の改良や選択の際には、所定の樹脂材料を実際に樹脂部品に適用した場合に、樹脂部品が、どのような方向の、どの程度の荷重まで耐えられるかについて予測することができれば、樹脂材料の改良が行いやすくなり、樹脂材料の選択も容易になる。   It is also important to improve the resin material and improve the mechanical strength of the resin molded product as described above, but when improving or selecting the resin material, the specified resin material was actually applied to the resin part. In this case, if it is possible to predict in what direction and how much load the resin part can withstand, it becomes easy to improve the resin material, and it becomes easy to select the resin material.

特開2008−1744号公報JP 2008-1744 A

しかしながら、樹脂部品は複雑な形状をしたものが多く、樹脂部品に所定の荷重を加えた場合、応力が優先的に集中して厚みや幅が大きく破損しやすくなっている部分を備える場合が多い。荷重を加えた際に上記のように応力が集中してしまい厚みや幅が大きく変形する部分を応力集中部という。応力集中部を備える樹脂成形品に対して荷重を加えた場合、上記応力集中部にどの程度の応力が発生するかを予測することが極めて困難である。このため、応力集中部を備える樹脂成形品が、どのような荷重まで耐えられるかを正確に予測する方法は、開示されていない。   However, many resin parts have complicated shapes, and when a predetermined load is applied to the resin parts, there are many cases where stress is concentrated preferentially and the thickness and width are easily damaged. . A portion where stress concentrates as described above when a load is applied and the thickness and width are greatly deformed is referred to as a stress concentration portion. When a load is applied to a resin molded product having a stress concentration portion, it is extremely difficult to predict how much stress is generated in the stress concentration portion. For this reason, there is no disclosure of a method for accurately predicting up to what load a resin molded product having a stress concentration portion can withstand.

本発明は以上のような課題を解決するためになされたものであり、その目的は、形状的な応力集中部を備える樹脂成形品に荷重が加えられ、樹脂成形品が破壊する場合、樹脂成形品は応力集中部が破壊するが、この応力集中部に発生する応力をより正確に予測し、限界荷重予測方法を提供することにある。   The present invention has been made in order to solve the above-described problems. The purpose of the present invention is to form a resin molding when a load is applied to a resin molded product having a shape stress concentration portion and the resin molded product breaks down. In the product, the stress concentration portion is broken, but the stress generated in the stress concentration portion is predicted more accurately, and a limit load prediction method is provided.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、形状的な応力集中部を備えない所定の周囲環境の応力測定樹脂試験片に対して、荷重を加えた際の上記応力測定樹脂試験片の限界応力と、形状的な応力集中部を備える樹脂成形品に荷重を加えた場合に解析により求まる応力集中部に発生する解析応力と、から算出される予測限界荷重を、実測により求めた実測限界荷重で除することにより得られる補正係数と、応力集中部を備えない所定の温度のひずみ測定樹脂試験片に対して、ひずみ測定樹脂試験片に引っ張り方向に荷重を加えた際の破断ひずみと、の間に相関関係があることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the stress measurement resin test piece of the stress measurement resin test piece when a load is applied to the stress measurement resin test piece of a predetermined ambient environment that does not have the shape stress concentration part, and the shape stress concentration part A correction coefficient obtained by dividing the predicted limit load calculated from the analytical stress generated in the stress concentration part obtained by analysis when a load is applied to the resin molded product provided by the actual measured limit load obtained by actual measurement, and In addition, for a strain measurement resin test piece at a predetermined temperature that does not have a stress concentration portion, it is found that there is a correlation between the strain at break when a load is applied in the tensile direction to the strain measurement resin test piece, The present invention has been completed. More specifically, the present invention provides the following.

(1) 形状的な応力集中部を備える樹脂成形品が破壊する荷重を加えた場合の該樹脂成形品の応力集中部に発生する発生応力を予測し、応力集中部を有する樹脂成形品の限界荷重予測方法であって、形状的な応力集中部を備えない所定の周囲環境の応力測定樹脂試験片に対して、荷重を加えた際の前記応力測定樹脂試験片の限界応力を導出する限界応力導出工程と、応力集中部を備えない所定の温度のひずみ測定樹脂試験片に対して、前記ひずみ測定樹脂試験片に引っ張り方向に荷重を加えた際の破断ひずみを導出する破断ひずみ導出工程と、所定の曲率半径を有する応力集中部を備える応力集中樹脂試験片に対して、所定の荷重を加えた際に、前記応力集中部に発生する解析応力を解析により導出する解析応力導出工程と、前記解析応力から算出される単位荷重当たりの解析応力を用いて前記限界応力を除することにより予測限界荷重を算出する予測限界荷重算出工程と、前記応力集中樹脂試験片における、前記応力集中樹脂試験片が破壊する際の実測限界荷重を導出する実測限界荷重導出工程と、前記実測限界荷重を用いて前記予測限界荷重を除することにより補正係数を求める補正係数導出工程と、樹脂材料の種類及び/又は前記所定の周囲環境を変更し、補正係数導出工程と同様にして、補正係数を求める工程を少なくとも一回行い、破断歪みと補正係数との相関関係を所定の形式の関数で導出する相関関係導出工程と、前記破断歪みと補正係数との相関関係を元に推定補正係数を決定する推定補正係数決定工程と、を備えることを特徴とする限界荷重予測方法。   (1) Predict the stress generated in the stress concentration part of the resin molded product when a load that breaks the resin molded product having a shape stress concentration part is applied, and limit the resin molded product having the stress concentration part A stress prediction method for deriving a critical stress of a stress measurement resin test piece when a load is applied to a stress measurement resin test piece in a predetermined surrounding environment that does not have a shape stress concentration portion. A derivation step, and a rupture strain derivation step for deriving a rupture strain when a load is applied in the tensile direction to the strain measurement resin test piece with respect to a strain measurement resin test piece of a predetermined temperature not provided with a stress concentration portion; An analysis stress deriving step of deriving analytical stress generated in the stress concentration portion by analysis when a predetermined load is applied to a stress concentration resin test piece having a stress concentration portion having a predetermined radius of curvature; Analytical stress A predicted limit load calculation step of calculating a predicted limit load by dividing the limit stress using the analytical stress per unit load calculated from the above, and the stress concentration resin test piece in the stress concentration resin test piece is broken An actual measurement limit load deriving step for deriving an actual measurement limit load, a correction coefficient deriving step for obtaining a correction coefficient by dividing the predicted limit load using the actual measurement limit load, the type of resin material and / or the Correlation deriving step of changing the predetermined ambient environment and performing the step of obtaining the correction factor at least once in the same manner as the correction factor deriving step and deriving the correlation between the fracture strain and the correction factor by a function of a predetermined form And an estimated correction coefficient determination step of determining an estimated correction coefficient based on the correlation between the fracture strain and the correction coefficient.

(2) 前記所定の形式の関数が下記式(I)を満たすことを特徴とする(1)に記載の限界荷重予測方法。

Figure 0005226592
(式(I)中のyは補正係数、xは破断歪み、aは係数、nは定数を表す。) (2) The limit load prediction method according to (1), wherein the function of the predetermined format satisfies the following formula (I).
Figure 0005226592
(In formula (I), y represents a correction coefficient, x represents a breaking strain, a represents a coefficient, and n represents a constant.)

(3) 前記曲率半径を変更し、前記相関関係導出工程と同様にして、前記相関関係を前記所定の形式の関数で導出する工程を少なくとも一回行う複数相関関係導出工程を、前記相関関係導出工程後にさらに備えることを特徴とする(1)又は(2)に記載の限界荷重予測方法。   (3) The correlation derivation step is performed by changing the radius of curvature and performing the step of deriving the correlation with the function of the predetermined format at least once in the same manner as the correlation derivation step. The limit load prediction method according to (1) or (2), further comprising a step after the step.

(4) 前記所定の形式の関数における定数と曲率半径との関係を導出する関係式導出工程をさらに備えることを特徴とする(1)から(3)のいずれかに記載の限界荷重予測方法。   (4) The limit load prediction method according to any one of (1) to (3), further including a relational expression deriving step for deriving a relation between a constant and a radius of curvature in the function of the predetermined format.

(5) 前記所定の形式の関数における定数と曲率半径との関係が、下記式(II−a)、(II−b)を満たすことを特徴とする(4)に記載の限界荷重予測方法。

Figure 0005226592
(式(II−a)中のaは係数、Rは曲率半径、c、dは定数を表す。)
Figure 0005226592
(式(II−b)中のnは定数、Rは曲率半径、c、dは定数を表す。) (5) The limit load prediction method according to (4), wherein the relationship between the constant and the radius of curvature in the function of the predetermined format satisfies the following formulas (II-a) and (II-b).
Figure 0005226592
(In formula (II-a), a is a coefficient, R is a radius of curvature, and c 1 and d 1 are constants.)
Figure 0005226592
(In formula (II-b), n is a constant, R is a radius of curvature, and c 2 and d 2 are constants.)

(6) 前記応力測定樹脂試験片が前記ひずみ測定樹脂試験片と同じであり、前記限界応力導出工程において、引っ張り方向に荷重を加えることにより限界応力を導出することを特徴とする(1)から(5)のいずれかに記載の限界荷重予測方法。   (6) The stress measurement resin test piece is the same as the strain measurement resin test piece, and in the limit stress deriving step, the limit stress is derived by applying a load in the tensile direction. The limit load prediction method according to any one of (5).

(7) 前記解析が線形解析であることを特徴とする、(1)から(6)のいずれかに記載の限界荷重予測方法。   (7) The limit load prediction method according to any one of (1) to (6), wherein the analysis is a linear analysis.

(8) 前記推定補正係数決定工程が、(4)又は(5)に記載の方法で導出した関係式を用いて、破断ひずみと曲率半径を元に推定補正係数を算出する工程であり、前記樹脂成形品に所望の荷重を加えた際の解析応力に前記推定補正係数を乗じる事による、形状的な応力集中部を備える樹脂成形品の応力集中部に発生する発生応力を予測する発生応力予測工程と、をさらに備えることを特徴とする限界荷重予測方法。   (8) The estimated correction coefficient determination step is a step of calculating an estimated correction coefficient based on the fracture strain and the radius of curvature using the relational expression derived by the method described in (4) or (5), Generated stress prediction that predicts the generated stress in the stress concentration part of the resin molded product with a geometric stress concentration part by multiplying the estimated correction coefficient by the analytical stress when a desired load is applied to the resin molded product And a step of predicting a limit load.

(9) (8)に記載された方法で予測した発生応力で前記限界応力を除し、前記所望の荷重を乗ずる事により、前記樹脂成形品の限界荷重を算出することを特徴とする限界荷重予測方法。   (9) The limit load characterized by calculating the limit load of the resin molded product by dividing the limit stress by the generated stress predicted by the method described in (8) and multiplying by the desired load. Prediction method.

本発明によれば、形状的な応力集中部を備える樹脂成形品に荷重を加えられ、樹脂成形品が破壊する場合、樹脂成形品は応力集中部が破壊するが、この応力集中部に発生する応力をより正確に予測することができ、さらに上記予測で求められた発生応力をもとに限界荷重もより正確に予測することができる。   According to the present invention, when a load is applied to a resin molded product having a shape stress concentration portion, and the resin molded product breaks, the resin molded product breaks the stress concentration portion, but the stress concentration portion is generated. The stress can be predicted more accurately, and the limit load can also be predicted more accurately based on the generated stress obtained by the above prediction.

両側に切り欠きのある形状的な応力集中部を備える樹脂試験片を示す図である。It is a figure which shows the resin test piece provided with the shape stress concentration part which has a notch on both sides. 形状的な応力集中部を備えない樹脂試験片を示す図である。It is a figure which shows the resin test piece which is not provided with a shape stress concentration part. 片側に切り欠きのある形状的な応力集中部を備える樹脂試験片を示す図である。It is a figure which shows the resin test piece provided with the shape stress concentration part with a notch on one side. 応力集中部を備えるL字の樹脂試験片を示す図である。It is a figure which shows the L-shaped resin test piece provided with a stress concentration part. 補正係数と破断歪みとの関係を表すべき乗近似関数(y=ax−n)を示す図である。It is a figure which shows the power approximation function (y = ax- n ) which should represent the relationship between a correction coefficient and a fracture | rupture distortion. 補正係数と破断歪みとの相関関係を複数示す図である。It is a figure which shows multiple correlation with a correction coefficient and a fracture | rupture distortion. 所定の形式の関数の係数(a、a)、定数(n、n)と曲率半径(R)との関係を示す図である。Coefficient of a predetermined format function (a 1, a 2), a diagram showing the relationship between constants (n 1, n 2) and the radius of curvature (R). それぞれの破壊形態での曲率半径と補正係数との関係を示す図である。It is a figure which shows the relationship between the curvature radius and correction coefficient in each destruction mode. 実施例で用いた樹脂試験片を示す図である。It is a figure which shows the resin test piece used in the Example. 実施例の限界応力の測定方法を示す図である。It is a figure which shows the measuring method of the critical stress of an Example. 実施例で用いた樹脂成形品を示す図である。It is a figure which shows the resin molded product used in the Example.

以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, an embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiment, and may be implemented with appropriate modifications within the scope of the object of the present invention. it can.

<限界荷重予測方法>
本発明は、形状的な応力集中部を備える樹脂成形品が破壊する荷重を加えた場合の該樹脂成形品の応力集中部に発生する発生応力を予測し、該樹脂成形品の限界荷重を予測する方法である。本発明の限界荷重予測方法は、形状的な応力集中部を備えない所定の周囲環境の応力測定樹脂試験片に対して、荷重を加えた際の前記応力測定樹脂試験片の限界応力を導出する限界応力導出工程と、応力集中部を備えない所定の温度のひずみ測定樹脂試験片に対して、上記ひずみ測定樹脂試験片に引っ張り方向に荷重を加えた際の破断ひずみを導出する破断ひずみ導出工程と、所定の曲率半径を有する応力集中部を備える応力集中樹脂試験片に対して、所定の荷重を加えた際に、上記応力集中部に発生する解析応力を解析により導出する解析応力導出工程と、上記解析応力から算出される単位荷重当たりの解析応力を用いて上記限界応力を除することにより予測限界荷重を算出する予測限界荷重算出工程と、上記応力集中樹脂試験片における、上記応力集中樹脂試験片が破壊する際の実測限界荷重を導出する実測限界荷重導出工程と、上記実測限界荷重を用いて上記予測限界荷重を除することにより補正係数を求める補正係数導出工程と、樹脂材料の種類及び/又は上記所定の周囲環境を変更し、補正係数導出工程と同様にして、補正係数を求める工程を少なくとも一回行い、破断歪みと補正係数との相関関係を所定の形式の関数で導出する相関関係導出工程と、上記破断歪みと補正係数との相関関係を元に推定補正係数を決定する推定補正係数決定工程と、を備えることを特徴とする。上記推定補正係数の決定後、例えば、上記樹脂成形品に所望の荷重を加えた際の解析応力に上記推定補正係数を乗じる事による、形状的な応力集中部を備える樹脂成形品の応力集中部に発生する発生応力を予測する発生応力予測工程と、上記発生応力で前記限界応力を除し、前記所望の荷重を乗ずる事により、前記樹脂成形品の限界荷重を算出する限界荷重予測工程とを行うことで限界荷重を予測することができる。以下、本発明の限界荷重予測方法の一例について説明する。
<Limit load prediction method>
The present invention predicts the generated stress generated in the stress concentration portion of the resin molded product when a load that causes the resin molded product having a geometric stress concentration portion to break is applied, and predicts the limit load of the resin molded product It is a method to do. The limit load prediction method of the present invention derives the limit stress of the stress measurement resin test piece when a load is applied to a stress measurement resin test piece of a predetermined ambient environment that does not have a shape stress concentration portion. Limit stress derivation step and rupture strain derivation step for deriving the rupture strain when a load is applied to the strain measurement resin test piece in the pulling direction for a strain measurement resin test piece having a predetermined temperature without a stress concentration portion. And an analytical stress deriving step of deriving analytical stress generated in the stress concentration portion by analysis when a predetermined load is applied to a stress concentration resin test piece having a stress concentration portion having a predetermined radius of curvature. A predictive limit load calculating step of calculating a predictive limit load by dividing the limit stress using the analytical stress per unit load calculated from the analytical stress, and the stress concentration resin test piece An actual limit load deriving step for deriving an actual limit load when the stress-concentrated resin specimen breaks, and a correction coefficient deriving step for obtaining a correction coefficient by dividing the predicted limit load using the actual limit load, Change the type of the resin material and / or the predetermined surrounding environment, and perform the step of obtaining the correction coefficient at least once in the same manner as the correction coefficient derivation step, and the correlation between the fracture strain and the correction coefficient in a predetermined format. A correlation deriving step derived by a function; and an estimated correction coefficient determining step of determining an estimated correction coefficient based on the correlation between the fracture strain and the correction coefficient. After determining the estimated correction coefficient, for example, by multiplying the analytical stress when a desired load is applied to the resin molded product by the estimated correction coefficient, the stress concentrated part of the resin molded product having a shape stress concentration part A generated stress prediction step for predicting the generated stress generated in the step, and a limit load prediction step for calculating the limit load of the resin molded product by dividing the limit stress by the generated stress and multiplying by the desired load. By doing so, the limit load can be predicted. Hereinafter, an example of the limit load prediction method of the present invention will be described.

[樹脂材料の決定]
本発明は、全ての樹脂材料を対象とすることができる。また、複数の樹脂材料をブレンドした樹脂混合物も上記樹脂材料に含まれる。さらに、樹脂に対して核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加して、所望の特性を付与した樹脂組成物も上記樹脂材料に含まれる。したがって、所望の樹脂成形品の原料となる樹脂材料が樹脂試験片又は樹脂材料となる。
[Determination of resin material]
The present invention can be applied to all resin materials. A resin mixture obtained by blending a plurality of resin materials is also included in the resin material. In addition, additives such as nucleating agent, carbon black, pigments such as inorganic fired pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and flame retardants are added to the resin to achieve desired characteristics. The applied resin composition is also included in the resin material. Therefore, the resin material used as the raw material of a desired resin molded product becomes a resin test piece or a resin material.

[樹脂材料の成形]
樹脂材料を選択した後、樹脂材料を成形する。成形方法は特に限定されないが、圧縮成形、トランスファー成形、射出成形、押出成形、ブロー成形等種々の成形方法を挙げることができる。このように成形された樹脂材料は、樹脂試験片となる。
[Molding of resin material]
After selecting the resin material, the resin material is molded. The molding method is not particularly limited, and examples thereof include various molding methods such as compression molding, transfer molding, injection molding, extrusion molding, and blow molding. The resin material thus molded becomes a resin test piece.

[限界応力導出工程]
限界応力導出工程とは、形状的な応力集中部を備えない所定の周囲環境の応力測定樹脂試験片に対して、荷重を加えた際に上記応力測定樹脂試験片の破壊箇所に発生する限界応力を導出する工程である。限界応力とは、脆性破壊形態を示す樹脂材料においては破壊応力、延性破壊形態を示す樹脂材料においては降伏応力のことを指し、樹脂材料における強度的な使用限界の応力のことを意味する。
[Limit stress derivation process]
The critical stress derivation process is the critical stress generated at the fracture location of the stress measurement resin test piece when a load is applied to the stress measurement resin test piece in a predetermined ambient environment that does not have a shape stress concentration part. Is a process of deriving. The critical stress refers to a fracture stress in a resin material that exhibits a brittle fracture mode, and a yield stress in a resin material that exhibits a ductile fracture mode, and means a stress that is a strong usage limit in the resin material.

限界応力の測定方法は特に限定されず、従来公知の方法で測定することができる。例えば、樹脂試験片を曲げることにより限界応力を測定する場合には、一般的な曲げ試験機を用いて測定することができ、樹脂試験片を引っ張り方向に引っ張ることにより限界応力を測定する場合には、一般的な引張試験機を用いて限界応力を測定することができる。   The method for measuring the limit stress is not particularly limited, and can be measured by a conventionally known method. For example, when the critical stress is measured by bending a resin test piece, it can be measured using a general bending tester, and when the critical stress is measured by pulling the resin test piece in the pulling direction. The critical stress can be measured using a general tensile testing machine.

「応力集中部」とは、荷重が樹脂試験片に加わった際に、他の部分よりも応力が優先的に集中して破損しやすくなっている部分であり、応力集中部は、荷重を加えた場合に、樹脂試験片内の他の部分と比較して肉厚や幅が大きく変化する部分である。「形状的な応力集中部」とは、凹み、溝、薄肉部等が設けられた樹脂試験片を指す。例えば、図1(a)に示すような樹脂試験片が挙げられる。図1(a)の樹脂試験片を図1(b)に示すように引っ張り方向(白抜き矢印の方向)に引っ張ると、図1(b)に示すように、応力集中部に応力が集中し応力が矢印方向にかかる。   A “stress concentration part” is a part where stress is preferentially concentrated over other parts when a load is applied to the resin test piece, and is easily damaged. In this case, the thickness and width of the resin test piece are greatly changed as compared with other portions in the resin test piece. The “formal stress concentration part” refers to a resin test piece provided with a dent, a groove, a thin part, and the like. For example, a resin test piece as shown in FIG. When the resin test piece of FIG. 1 (a) is pulled in the pulling direction (in the direction of the white arrow) as shown in FIG. 1 (b), stress is concentrated in the stress concentration portion as shown in FIG. 1 (b). Stress is applied in the direction of the arrow.

また、「形状的な応力集中部を備えない樹脂試験片」とは、例えば、図2(a)に示すような樹脂試験片が挙げられる。図2(a)の樹脂試験片を図2(b)に示すように引っ張り方向(白抜き矢印の方向)に引っ張ると、図2(b)に示すように、破壊箇所には応力が矢印方向に均一にかかる。   In addition, the “resin test piece not including a shape stress concentration portion” includes, for example, a resin test piece as shown in FIG. When the resin test piece of FIG. 2 (a) is pulled in the pulling direction (in the direction of the white arrow) as shown in FIG. 2 (b), the stress is applied in the direction of the arrow as shown in FIG. 2 (b). It takes evenly.

形状的な応力集中部を備えない樹脂試験片を用いることで、樹脂試験片に荷重を加えた場合に、樹脂試験片の破壊箇所にかかる応力をより正確に測定することができる。その結果、樹脂材料の限界応力をより正確に導出することができる。なお。上記の通り、形状的な応力集中部を備えない樹脂試験片を用いる理由は、より正確に限界応力を求めることにある。   By using a resin test piece that does not have a shape stress concentration part, when a load is applied to the resin test piece, the stress applied to the broken portion of the resin test piece can be measured more accurately. As a result, the critical stress of the resin material can be derived more accurately. Note that. As described above, the reason for using the resin test piece that does not include the shape stress concentration portion is to obtain the limit stress more accurately.

「周囲環境」とは、温度、雰囲気(大気中、水中、燃料中等)のことを指す。周囲環境が異なると導出される限界応力の値も異なる。したがって、周囲環境を所定の周囲環境に決めて、同様の周囲環境で後述する解析応力の導出等を行わなければ正確に樹脂成形品の性質を予測することができない。ただし、所定の周囲環境には、上記本発明の効果を害さない程度に周囲環境の異なる条件のものまで含まれる。   “Ambient environment” refers to temperature and atmosphere (air, water, fuel, etc.). The value of the critical stress derived when the surrounding environment is different also differs. Therefore, the property of the resin molded product cannot be accurately predicted unless the ambient environment is determined as a predetermined ambient environment and analysis stress described later is not performed in the similar ambient environment. However, the predetermined ambient environment includes those having different conditions in the ambient environment to such an extent that the effects of the present invention are not impaired.

[破断歪み導出工程]
破断歪み導出工程とは、形状的な応力集中部を備えない所定の温度のひずみ測定樹脂試験片に対して、上記ひずみ測定樹脂試験片に引っ張り方向に荷重を加えた際の破断ひずみを導出する工程である。歪み測定樹脂試験片に対して引っ張り方向に荷重を加えた場合の樹脂試験片の歪み量は、樹脂試験片の温度が異なると変動してしまうため、所定の温度で歪み量を測定する必要がある。また、所定の温度とは、上記所定の周囲環境に含まれる温度と同じ条件である。
[Breaking strain derivation process]
The breaking strain deriving step derives the breaking strain when a load is applied to the strain measuring resin test piece in a tensile direction with respect to the strain measuring resin test piece having a predetermined temperature that does not have a shape stress concentration portion. It is a process. Strain measurement The amount of strain of the resin test piece when a load is applied in the tensile direction to the resin test piece will vary if the temperature of the resin test piece differs, so it is necessary to measure the strain at a predetermined temperature. is there. The predetermined temperature is the same condition as the temperature included in the predetermined ambient environment.

破断歪みとは、樹脂試験片に上記荷重を加えた際に破断するまでの歪み量を指す。樹脂試験片の破断歪みは従来公知の引っ張り試験機を用いて、樹脂試験片が破断するまでの伸び(%)で表すことができる。   Breaking strain refers to the amount of strain until breakage occurs when the above load is applied to a resin test piece. The breaking strain of the resin test piece can be expressed by elongation (%) until the resin test piece breaks using a conventionally known tensile tester.

破断歪み測定試験片は、応力測定樹脂試験片と同様に形状的な応力集中部を備えない樹脂試験片である。このため、引っ張り試験機を用いる限界応力の測定方法であれば、同時に破断歪みを測定することができる。これらを同時に測定することで、後述する補正係数と破断歪みとの関係を容易に導出することができる。   The breakage strain measurement test piece is a resin test piece that does not have a shape stress concentration portion like the stress measurement resin test piece. For this reason, if it is the measuring method of the limit stress using a tensile testing machine, a fracture | rupture distortion can be measured simultaneously. By measuring these simultaneously, it is possible to easily derive a relationship between a correction coefficient and a fracture strain described later.

[解析応力導出工程]
解析応力導出工程とは、所定の曲率半径を有する応力集中部を備える応力集中樹脂試験片に対して、所定の荷重を加えた際に、上記応力集中部に発生する応力を解析により導出する工程である。
[Analysis stress derivation process]
The analysis stress deriving step is a step of deriving by analysis the stress generated in the stress concentration portion when a predetermined load is applied to a stress concentration resin test piece having a stress concentration portion having a predetermined radius of curvature. It is.

「所定の曲率半径を有する応力集中部を備える応力集中樹脂試験片」とは、例えば、図1(a)に示すような両側に切り欠きがある樹脂試験片、図3(a)に示すような片側のみに切り欠きがある樹脂試験片、図4(a)に示すようなL字型の試験片が挙げられる。これらの試験片は、切り欠きの先端部分やL字のコーナー部で応力が集中し、これらの部分には所定の曲率半径がある。   “Stress concentration resin test piece having a stress concentration portion having a predetermined radius of curvature” means, for example, a resin test piece having notches on both sides as shown in FIG. 1A, as shown in FIG. 3A. A resin test piece having a notch on only one side, and an L-shaped test piece as shown in FIG. In these test pieces, stress is concentrated at the front end portion of the notch or the L-shaped corner portion, and these portions have a predetermined radius of curvature.

図1(a)に示すような両側に切り欠きがある応力集中樹脂試験片に対して、図1(b)に示すように引っ張り方向(白抜き矢印の方向)に荷重を加えると、応力集中部には、上述の通り矢印の方向に応力が加わる。図3(a)に示すような片側に切り欠きがある応力集中試験片に対して、図3(b)に示すように引っ張り方向(白抜き矢印方向)に荷重を加えると、応力集中部には図3(b)の矢印方向に応力がかかる。また、図3(c)に示すように、図3(a)に示す応力集中樹脂試験片を三点曲げすると、応力集中部には、矢印方向に応力がかかる。図4(a)に示すようなL型の応力集中樹脂試験片に対して、図4(b)中の白抜き矢印の方向に荷重を加えると、応力集中部には矢印に示す方向に応力がかかる。このように所定の荷重の加え方によって応力集中部に発生する応力が異なる。また、上記の通り、応力集中部を備える応力集中樹脂試験片に対して荷重を加えると、応力集中部に大きな応力が発生する。   When stress is applied to the stress-concentrated resin test piece having notches on both sides as shown in FIG. 1 (a), as shown in FIG. Stress is applied to the part in the direction of the arrow as described above. When a stress is applied in the pulling direction (in the direction of the white arrow) as shown in FIG. 3B to a stress concentration test piece having a notch on one side as shown in FIG. Is stressed in the direction of the arrow in FIG. Further, as shown in FIG. 3C, when the stress concentration resin test piece shown in FIG. 3A is bent at three points, stress is applied to the stress concentration portion in the direction of the arrow. When a load is applied to the L-shaped stress-concentrated resin test piece as shown in FIG. 4A in the direction of the white arrow in FIG. 4B, the stress is concentrated in the direction indicated by the arrow. It takes. As described above, the stress generated in the stress concentration portion varies depending on how the predetermined load is applied. Further, as described above, when a load is applied to the stress concentration resin test piece having the stress concentration portion, a large stress is generated in the stress concentration portion.

上記の通り、応力集中樹脂試験片の種類、荷重の加え方によって、応力集中部に発生する応力が異なる。したがって、後述する通り、複数の応力集中樹脂試験片、複数の破壊形態で後述する補正係数、関係式等を導出することが好ましい。形状的な応力集中部を備える様々な樹脂成形品についても予測をすることができるからである。   As described above, the stress generated in the stress concentration portion varies depending on the type of the stress concentration resin test piece and how to apply the load. Therefore, as will be described later, it is preferable to derive correction coefficients, relational expressions, and the like described later with a plurality of stress-concentrated resin test pieces and a plurality of fracture modes. This is because various resin molded products having a shape stress concentration portion can also be predicted.

また、上記の図1、3、4に示すような応力集中樹脂試験片、及び破壊形態を考慮することで、ほとんどの形状の樹脂試験片に対して予測を行うことができる。   In addition, by considering the stress-concentrated resin test piece as shown in FIGS. 1, 3, and 4 and the fracture mode, it is possible to predict the resin test piece of almost any shape.

解析の方法は、特に限定されず線形解析であってもよいし、非線形解析であってもよい。しかし、本発明は線形解析のような簡単な解析により得られた値を補正することで実測値に極めて近い値を予測できることに特徴がある。したがって、本工程の解析は、より簡易な線形解析であることが好ましい。   The analysis method is not particularly limited, and may be linear analysis or non-linear analysis. However, the present invention is characterized in that a value extremely close to an actual measurement value can be predicted by correcting a value obtained by a simple analysis such as a linear analysis. Therefore, the analysis in this step is preferably a simpler linear analysis.

[予測限界荷重算出工程]
予測限界荷重算出工程とは、上記解析応力から算出される単位荷重当たりの解析応力を用いて限界応力を除することにより予測限界荷重を算出する工程である。ここでの予測破壊荷重は、実際の破壊荷重とは差がある。本発明の限界荷重予測方法を用いれば、より実測に近い限界荷重を予測することができる。本発明はこの段階で予測される限界荷重よりもさらに精度の高い予測を行うことを目的としている。なお「限界荷重」とは、脆性破壊形態を示す樹脂材料においては破壊荷重、延性破壊形態を示す樹脂材料においては降伏荷重のことを指し、樹脂材料における強度的な使用限界の荷重のことを意味する。
[Predictive limit load calculation process]
The predicted limit load calculation step is a step of calculating the predicted limit load by dividing the limit stress using the analysis stress per unit load calculated from the analysis stress. The predicted breaking load here is different from the actual breaking load. If the limit load prediction method of the present invention is used, a limit load closer to actual measurement can be predicted. The object of the present invention is to perform prediction with higher accuracy than the limit load predicted at this stage. The "limit load" refers to the fracture load in the resin material that exhibits the brittle fracture mode, and the yield load in the resin material that exhibits the ductile fracture mode, and means the load at the strength limit of use in the resin material. To do.

[実測限界荷重導出工程]
実測限界荷重導出工程とは、応力集中樹脂試験片が実際に破壊する際の応力集中樹脂試験片の実測限界荷重を導出する工程である。上記解析応力導出工程で非線形解析を用いた場合の予測限界荷重と実測限界荷重との差は、線形解析を用いた場合よりも小さい。しかしながら非線形解析は、線形解析よりも手間がかかる。上記の通り本発明は、上記解析工程で線形解析を用いても、最終的に実測値に近づけるために予測値を補正することができる点が特徴の一つである。
[Measurement limit load derivation process]
The actual measurement limit load deriving step is a step of deriving the actual measurement limit load of the stress concentration resin test piece when the stress concentration resin test piece actually breaks. The difference between the predicted limit load and the measured limit load when nonlinear analysis is used in the analysis stress deriving step is smaller than when linear analysis is used. However, nonlinear analysis takes more time than linear analysis. As described above, one of the features of the present invention is that even if linear analysis is used in the analysis step, the predicted value can be corrected so that it finally approaches the actual measurement value.

[補正係数導出工程]
補正係数導出工程とは、上記実測限界荷重導出工程で得られた実測限界荷重を用いて、上記予測限界荷重算出工程で得られた予測限界荷重を除することにより補正係数を求める工程である。補正係数は、解析応力に乗ずることで解析値を実測値にする値又は解析値を実測値に近づけるための値である。
[Correction coefficient derivation process]
The correction coefficient deriving step is a step of obtaining a correction coefficient by dividing the predicted limit load obtained in the predicted limit load calculating step using the actually measured limit load obtained in the measured limit load deriving step. The correction coefficient is a value for making the analysis value an actual measurement value by multiplying the analysis stress or a value for bringing the analysis value close to the actual measurement value.

[相関関係導出工程]
相関関係導出工程とは、樹脂材料の種類及び/又は上記所定の周囲環境を変更し、上記補正係数導出工程と同様にして、補正係数を求める工程を少なくとも一回行い、破断ひずみと補正係数との相関関係を所定の形式の関数で導出する工程である。本発明の特徴の一つは、破断歪みと補正係数との間に相関関係があり、所定の形式の関数で導出できることを見出した点である。
[Correlation derivation process]
The correlation derivation step is to change the type of the resin material and / or the predetermined surrounding environment, and perform the step of obtaining the correction factor at least once in the same manner as the correction factor derivation step. Is a step of deriving the correlation between the two by a function of a predetermined format. One of the features of the present invention is that it has been found that there is a correlation between the breaking strain and the correction coefficient, which can be derived by a function of a predetermined format.

「補正係数導出工程と同様にして」とは、上記樹脂材料の種類等の条件を変更して、上述の限界応力導出工程から補正係数導出工程までを行うことを指す。   “Similar to the correction coefficient deriving step” refers to changing the conditions such as the type of the resin material and performing the process from the above-described limit stress deriving step to the correction coefficient deriving step.

図5には、破断歪みと補正係数との関係を示した。縦軸が補正係数、横軸が破断歪みである。点Aは、上記補正係数導出工程で得られた補正係数と上記破断歪み導出工程で得られた破断歪みとの関係を示す点である。点Bは、樹脂材料又は上記所定の周囲環境を変更して、上述の限界応力導出工程から補正係数導出工程までを行うことで得られた補正係数と破断歪みとの関係を示す点である。   FIG. 5 shows the relationship between the breaking strain and the correction coefficient. The vertical axis is the correction coefficient, and the horizontal axis is the breaking strain. Point A is a point showing the relationship between the correction coefficient obtained in the correction coefficient deriving step and the breaking strain obtained in the breaking strain deriving step. Point B is a point indicating the relationship between the correction coefficient and the fracture strain obtained by changing the resin material or the predetermined ambient environment and performing the above-described critical stress derivation process to the correction coefficient derivation process.

上記の通り条件を変更して、補正係数と破断歪みとの関係が二種類導出できれば、破断歪みと補正係数との間の相関関係を所定の形式の関数で表すことができる。したがって、破断歪みと補正係数との相関関係を求めるためには、樹脂材料の種類及び/又は所定の周囲環境を変更して少なくとも一回補正係数を求める必要がある。   If the conditions are changed as described above and two types of relationship between the correction coefficient and the breaking strain can be derived, the correlation between the breaking strain and the correction coefficient can be expressed by a function of a predetermined format. Therefore, in order to obtain the correlation between the fracture strain and the correction coefficient, it is necessary to obtain the correction coefficient at least once by changing the type of the resin material and / or a predetermined ambient environment.

図5に示す点A、点Bに対して所定の形式の関数のフィッティングを行うことによって所定の形式の近似関数を求める。近似関数の形式としては特に限定されないが、べき乗近似、対数近似、線形近似、多項式近似、指数近似等が挙げられる。補正係数と破断歪みとの関係を適切に表すためにはべき乗近似が好ましい。図5には、補正係数と破断歪みとの関係を表すべき乗近似関数(y=ax−n(yは補正係数。xは破断歪み、aは係数、nは定数を表す))を示した。関数をy=a−n1とする(yが補正係数、xが破断歪み、aが係数、n1が定数を表す)。 An approximate function of a predetermined format is obtained by fitting a function of a predetermined format to the points A and B shown in FIG. The form of the approximation function is not particularly limited, and examples include power approximation, logarithmic approximation, linear approximation, polynomial approximation, and exponential approximation. In order to appropriately represent the relationship between the correction coefficient and the breaking strain, power approximation is preferable. FIG. 5 shows a power approximation function (y = ax− n (y is a correction coefficient, x is a fracture strain, a is a coefficient, and n is a constant)) that represents the relationship between the correction coefficient and the fracture strain. The function is y = a 1 x −n1 (y is a correction coefficient, x is a breaking strain, a 1 is a coefficient, and n1 is a constant).

また、破断歪みと補正係数との関係をより適切な所定の形式の関数で表すためには、補正係数をより多く求めることが好ましい。具体的には補正係数を七点以上求めておけば、より適切な関数を導出することができる。   In order to express the relationship between the breaking strain and the correction coefficient by a more appropriate function of a predetermined format, it is preferable to obtain more correction coefficients. Specifically, if seven or more correction coefficients are obtained, a more appropriate function can be derived.

[複数相関関係導出工程]
複数相関関係導出工程とは、上記曲率半径を変更し、上記相関関係導出工程と同様にして、上記相関関係を上記所定の形式の関数で導出する工程を少なくとも一回行う工程である。本工程は必須の工程ではないが、補正係数と破断歪みとの関係をさらに多く求めることで、より正確に推定補正係数を決定することができ、予測の精度がさらに向上する。
[Multiple correlation derivation process]
The multiple correlation deriving step is a step of changing the curvature radius and performing the step of deriving the correlation with the function of the predetermined format at least once in the same manner as the correlation deriving step. Although this step is not an essential step, the estimated correction factor can be determined more accurately by obtaining more relationships between the correction factor and the fracture strain, and the prediction accuracy is further improved.

[関係式導出工程]
関係式導出工程とは、上記所定の形式の関数における定数と曲率半径との関係を導出する工程である。導出方法は特に限定されないが、より多くの上記相関関係をもとに求める方法が好ましい。なお、関係式導出工程は必須の工程ではないが、本工程により導出される関係式を用いることで、後述する通り、予測の精度が高まる。
[Relationship derivation process]
The relational expression deriving step is a step of deriving a relationship between a constant and a radius of curvature in the function of the predetermined format. The derivation method is not particularly limited, but a method of obtaining based on more correlations is preferable. Note that the relational expression derivation step is not an essential process, but using the relational expression derived in this step increases the accuracy of prediction as will be described later.

曲率半径を変更し、限界応力導出工程から相関関係導出工程までを行い、補正係数と破断歪みとの相関関係を導出する。図6に示すように上記y=a−n1に加えて、さらにy=a−n2(yが補正係数、xが破断歪み、aが係数、n2が定数を表す)が導出される。ここで補正係数と破断歪みとの相関関係は、上記相関関係導出工程で導出した近似関数と同じ形式にする必要がある。本工程では、所定の形式の関数の係数(a、a)、定数(n、n)と曲率半径(R)との関係を求めるために、関数の形式をそろえる必要があるからである。 The curvature radius is changed, and the process from the critical stress derivation process to the correlation derivation process is performed to derive the correlation between the correction coefficient and the fracture strain. In addition to the above y = a 1 x -n1 6, further y = a 2 x -n2 (y correction coefficient, x is from breaking strain, a 2 is the coefficient representing the n2 is constant) derived Is done. Here, the correlation between the correction coefficient and the breaking strain needs to be in the same form as the approximate function derived in the correlation deriving step. In this step, it is necessary to prepare the functions in order to obtain the relationship between the coefficients (a 1 , a 2 ), constants (n 1 , n 2 ) and the radius of curvature (R) of the function in a predetermined format. It is.

図7(a)には、係数aと曲率半径(R)との関係を示した。所定の形式の関数に近似することで本工程の目的の関係式が導出される。所定の形式は、上記の相関関係導出工程の場合と同様に特に限定されないが、べき乗関数に近似することが好ましい。より適切な関係を導出することができるからである。導出した関数をa=cd1(Rは曲率半径、c、dは定数)とする。 FIG. 7A shows the relationship between the coefficient a and the radius of curvature (R). The target relational expression of this process is derived by approximating a function of a predetermined form. The predetermined format is not particularly limited as in the case of the above correlation derivation step, but it is preferable to approximate the power function. This is because a more appropriate relationship can be derived. Let the derived function be a = c 1 R d1 (R is a radius of curvature, and c 1 and d 1 are constants).

図7(b)には、定数nと曲率半径との関係を示した。所定の形式の関数に近似することで本工程の目的の関係式が導出される。上記係数aと曲率半径との関係の場合と同様にべき乗関数に近似することが好ましい。導出した関数をn=c−d2(Rは曲率半径、c、dは定数)とする。 FIG. 7B shows the relationship between the constant n and the radius of curvature. The target relational expression of this process is derived by approximating a function of a predetermined form. It is preferable to approximate a power function as in the case of the relationship between the coefficient a and the radius of curvature. Let the derived function be n = c 2 R −d2 (R is a radius of curvature, and c 2 and d 2 are constants).

上記のように所定の形式の関数の定数と曲率半径との関係をより正確に求めるためには、補正係数と破断歪みとの関係を表す所定の形式の関数を三つ以上導出することが好ましい。   As described above, in order to more accurately determine the relationship between the constant of a function of a predetermined format and the radius of curvature, it is preferable to derive three or more functions of a predetermined format representing the relationship between the correction coefficient and the fracture strain. .

[推定補正係数決定工程]
推定補正係数決定工程とは、破断ひずみと曲率半径を元に、補正係数と破断歪みとの相関関係を用いて推定補正係数を決定する工程である。本工程では先ず、対象となる応力集中部を備えた樹脂成形品の応力集中部の曲率半径を測定する。測定は従来公知の方法により行うことができる。測定後、補正係数と破断歪みとの相関関係から推定補正係数を決定する。この際、複数の相関関係を求めておけばより精度の高い推定補正係数の決定を行うことができる。なお、破断歪みは樹脂材料と温度が決まれば定まるものであり、破断歪みを従来公知の方法で実測してもよいし、カタログ等で得ることができる場合にはその値を用いることができる。
[Estimated correction coefficient determination process]
The estimated correction coefficient determination step is a step of determining an estimated correction coefficient using the correlation between the correction coefficient and the fracture strain based on the fracture strain and the radius of curvature. In this step, first, the radius of curvature of the stress concentration portion of the resin molded product having the stress concentration portion as a target is measured. The measurement can be performed by a conventionally known method. After the measurement, the estimated correction coefficient is determined from the correlation between the correction coefficient and the fracture strain. At this time, if a plurality of correlations are obtained, it is possible to determine an estimated correction coefficient with higher accuracy. The breaking strain is determined when the resin material and temperature are determined. The breaking strain may be measured by a conventionally known method, or the value can be used when it can be obtained from a catalog or the like.

所定の形式の関数の定数と曲率半径との関係を求めている場合には、関係式a=cd1に曲率半径を代入し係数aを求める。次いで、n=c−d2に曲率半径を代入し係数nを求める。そして、破断歪みと補正係数との関係を求める。最後に、破断歪みの値を破断歪みと補正係数との間の関係式に代入し、補正係数を推定する。このように推定補正係数を決定することで、推定される補正係数がより正確になり、予測の精度が高まる。 When the relationship between a constant of a function of a predetermined format and the radius of curvature is obtained, the coefficient a is obtained by substituting the radius of curvature into the relational expression a = c 1 R d1 . Next, the coefficient n is obtained by substituting the radius of curvature into n = c 2 R −d2 . Then, the relationship between the breaking strain and the correction coefficient is obtained. Finally, the value of the breaking strain is substituted into the relational expression between the breaking strain and the correction coefficient, and the correction coefficient is estimated. By determining the estimated correction coefficient in this way, the estimated correction coefficient becomes more accurate and the accuracy of prediction increases.

[発生応力予測工程]
発生応力予測工程とは、形状的な応力集中部を備える樹脂成形品に所望の荷重を加えた際の解析応力に上記推定補正係数を乗じる事による、形状的な応力集中部を備える樹脂成形品の応力集中部に発生する応力を予測する工程である。応力集中部の曲率半径は、樹脂成形品に対して荷重を引っ張り方向に加え、破断するまでの間に変動する。しかし、線形解析では、曲率半径の変化を考慮できないため、実際より大きな応力値を発生応力として予測してしまう。本発明で予測することができる発生応力は、所望の荷重を加えてから破壊まで応力集中部を変形させたと仮定した場合の応力集中部に発生する応力である。
[Generating stress prediction process]
The generated stress prediction step is a resin molded product having a shape stress concentration portion by multiplying the estimated stress by the analysis stress when a desired load is applied to the resin molded product having a shape stress concentration portion. This is a step of predicting the stress generated in the stress concentration part. The radius of curvature of the stress-concentrated portion varies until a load is applied to the resin molded product in the pulling direction and the resin is bent. However, in the linear analysis, since a change in the radius of curvature cannot be considered, a stress value larger than the actual stress value is predicted as the generated stress. The generated stress that can be predicted in the present invention is a stress generated in the stress concentration portion when it is assumed that the stress concentration portion is deformed from application of a desired load to fracture.

従来は、樹脂成形品に対して荷重が加えられてから破壊するまでの間に、応力集中部の曲率半径の大きさが変化する点を考慮できなかったために、解析応力による予測では実測値と大きく異なる予測しかできなかった。しかしながら、本発明では解析応力に補正係数を乗じることで実測に近づけることができ、非常に正確に応力集中部に発生する応力を予測することができる。   Conventionally, since the point of change in the radius of curvature of the stress-concentrated portion between the time when a load was applied to the resin molded product and failure could not be taken into account, the prediction based on the analytical stress is Only very different predictions could be made. However, in the present invention, it is possible to approximate the actual measurement by multiplying the analytical stress by the correction coefficient, and it is possible to predict the stress generated in the stress concentration portion very accurately.

応力集中樹脂試験片の種類、荷重の加え方によって、応力集中部に発生する応力が異なる。したがって、幅広く様々な樹脂成形品に対して適用するためには、応力集中部の種類毎に相関関係を求める必要がある。形状的な応力集中部を備える様々な樹脂成形品に対応するためには、図1(a)に示すような両側に切り欠きを設けた応力集中樹脂試験片、図3(a)に示すような片側に切り欠きを設けた応力集中樹脂試験片、図4(a)に示すようなL型の応力集中樹脂試験片を用い、図1(b)、図3(b)、(c)、図4(b)に示すような破壊形態毎に相関関係を導出する必要がある。上記のような応力集中樹脂試験片及び破壊形態を考慮しておけば、形状的な応力集中部を備える様々な樹脂成形品に対応することができる。   The stress generated in the stress concentration portion differs depending on the type of stress concentration resin test piece and how to apply the load. Therefore, in order to apply to a wide variety of resin molded products, it is necessary to obtain a correlation for each type of stress concentration portion. In order to cope with various resin molded products having a shape stress concentration portion, as shown in FIG. 3A, a stress concentration resin test piece provided with notches on both sides as shown in FIG. 1 (b), FIG. 3 (b), (c), a stress concentration resin test piece provided with a notch on one side, and an L-type stress concentration resin test piece as shown in FIG. It is necessary to derive a correlation for each destruction mode as shown in FIG. Considering the stress concentration resin test piece and the fracture mode as described above, various resin molded products having a shape stress concentration portion can be handled.

具体的には、図8に示すように、それぞれの破壊形態での曲率半径と補正係数との関係を表すことができる。曲率半径が同じであれば、L字の応力集中試験片を用いた図4(b)に示す破壊形態の場合の補正係数が最も高くなり、次に高いのは図3(c)に示すような三点曲げであり、三番目に大きいのは両側に切り欠きのある試験片を引っ張ることで破壊する図1(b)に示すような破壊形態であり、最も補正係数が小さくなるのは図3(b)に示すような片側にのみ切り欠きのある応力集中樹脂試験片を引っ張り方向に破壊する形態である。上記の通り、破壊形態によって補正係数は異なるため、破壊形態毎に破断歪みと補正係数との相関関係を導出し、最終的な関係式を導出する必要がある。   Specifically, as shown in FIG. 8, the relationship between the radius of curvature and the correction coefficient in each destruction mode can be expressed. If the curvature radii are the same, the correction coefficient in the case of the fracture mode shown in FIG. 4B using an L-shaped stress concentration test piece is the highest, and the next highest is as shown in FIG. 3C. This is a three-point bending, and the third largest is a fracture mode as shown in FIG. 1 (b) in which a test piece with notches on both sides is pulled, and the correction coefficient is the smallest. This is a mode in which a stress-concentrated resin test piece having a notch only on one side as shown in FIG. As described above, since the correction coefficient differs depending on the fracture mode, it is necessary to derive a correlation between the fracture strain and the correction coefficient for each fracture mode and to derive a final relational expression.

[限界荷重予測工程]
限界荷重予測工程は、上記発生応力予測工程で予測した発生応力で上記限界応力を除し、上記所望の荷重を乗ずる事により、樹脂成形品の限界荷重を算出する工程である。上述の通り従来は樹脂成形品に対して荷重が加えられてから破壊するまでの間に、応力集中部の曲率半径の大きさが変化する点を考慮できなかったために、実際の限界破壊荷重と大きな差がある予測になる場合があった。しかしながら、本発明は上述の曲率半径の変化も考慮に入れて予測するため、より実測に近い値を予測することができる。
[Limit load prediction process]
The limit load prediction step is a step of calculating the limit load of the resin molded product by dividing the limit stress by the generated stress predicted in the generated stress prediction step and multiplying by the desired load. As described above, since the point that the radius of curvature of the stress concentration part changes between the time when a load is applied to the resin molded product and the failure has not been considered in the past, In some cases, there was a big difference in prediction. However, since the present invention predicts taking into account the above-described change in the radius of curvature, a value closer to actual measurement can be predicted.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<樹脂材料>
ポリアセタール樹脂1:ジュラコンM90(ポリプラスチックス社製)
ポリアセタール樹脂2:ジュラコンGH−25(ポリプラスチックス社製)
ポリブチレンテレフタレート樹脂1:ジュラネックス2002(ウィンテックポリマー社製)
ポリブチレンテレフタレート樹脂2:ジュラネックス3300(ウィンテックポリマー社製)
ポリフェニレンサルファイド樹脂1:フォートロン0220A9(ポリプラスチックス社製)
ポリフェニレンサルファイド樹脂2:フォートロン1140A1(ポリプラスチックス社製)
液晶性樹脂1:ベクトラA950(ポリプラスチックス社製)
液晶性樹脂2:ベクトラA130(ポリプラスチックス社製)
<Resin material>
Polyacetal resin 1: Duracon M90 (manufactured by Polyplastics)
Polyacetal resin 2: Duracon GH-25 (manufactured by Polyplastics)
Polybutylene terephthalate resin 1: DURANEX 2002 (manufactured by Wintech Polymer)
Polybutylene terephthalate resin 2: DURANEX 3300 (manufactured by Wintech Polymer)
Polyphenylene sulfide resin 1: Fortron 0220A9 (manufactured by Polyplastics)
Polyphenylene sulfide resin 2: Fortron 1140A1 (manufactured by Polyplastics)
Liquid crystalline resin 1: Vectra A950 (manufactured by Polyplastics)
Liquid crystalline resin 2: Vectra A130 (manufactured by Polyplastics)

<樹脂材料の成形>
樹脂材料毎に成形条件を適宜調整し、それぞれの樹脂材料毎に成形条件を適宜調整し図9(a)に示すような応力集中部を備えない応力測定樹脂試験片を射出成形により成形した。また、図9(b)に示すようなL字型の樹脂成形品を得た。コーナー部の曲率半径(R)が3.0mm、1.0mm、0.5mmの三種類の応力集中樹脂試験片を射出成形により成形した。
<Molding of resin material>
The molding conditions were appropriately adjusted for each resin material, the molding conditions were appropriately adjusted for each resin material, and a stress measurement resin test piece without a stress concentration portion as shown in FIG. 9A was molded by injection molding. Further, an L-shaped resin molded product as shown in FIG. 9B was obtained. Three types of stress-concentrated resin test pieces having a corner radius of curvature (R) of 3.0 mm, 1.0 mm, and 0.5 mm were molded by injection molding.

<限界応力導出工程>
ポリアセタール樹脂1を用いて成形した図9(c)に示す応力測定樹脂試験片(厚み4mm、その他の寸法は図9(c)中に記載)を用いて、限界応力の導出を行った。具体的には、周囲環境が大気中、23℃の条件で、図10に示すように64mmのスパンで支え、中間位置に上方から荷重Pをかける方法で、試験機(「テンシロンRTA−250」、ORIENTEC社製)を用いて、3点曲げによる限界応力を測定した(支点間距離64mm)。限界荷重が150Nであり、限界応力(曲げ強さ)が90MPaであった。
<Limit stress derivation process>
The critical stress was derived using a stress measurement resin test piece (thickness 4 mm, other dimensions described in FIG. 9C) shown in FIG. 9C molded using the polyacetal resin 1. Specifically, the tester (“Tensilon RTA-250”) was supported by a method in which the ambient environment was 23 ° C. in the atmosphere and supported by a span of 64 mm as shown in FIG. , Manufactured by ORIENTEC Co., Ltd.), the critical stress due to three-point bending was measured (64 mm distance between fulcrums). The limit load was 150 N, and the limit stress (bending strength) was 90 MPa.

<破断歪み導出工程>
ポリアセタール樹脂1を用いて成形した図9(a)に示す応力測定樹脂試験片を用いて、破断歪みの導出を行った。具体的には、周囲環境が大気中、23℃の条件で、ひずみ測定樹脂試験片の両端をそれぞれ、図9中の点線部分までチャックで固定し(チャック間の距離が115mm)、引張試験機(「テンシロンRTC−1325」、ORIENTEC社製)を用いて引張試験を行った。その結果、チャック間での伸びが40.2mmになり、破断歪みは35%であった。
<Breaking strain derivation process>
Breaking strain was derived using a stress measurement resin test piece shown in FIG. 9A formed using the polyacetal resin 1. Specifically, both ends of the strain measurement resin test piece were fixed with a chuck to the dotted line portion in FIG. 9 under the condition that the ambient environment was in the atmosphere at 23 ° C. (the distance between chucks was 115 mm), and a tensile tester ("Tensilon RTC-1325", manufactured by ORIENTEC) was used to conduct a tensile test. As a result, the elongation between chucks was 40.2 mm, and the breaking strain was 35%.

<解析応力導出工程>
ポリアセタール樹脂1を用いて成形した図9(b)に示す応力集中試験片(R=0.5)に対して、図4(b)に示す白抜き矢印で示す方向に1Nの荷重を加える場合について、応力集中部(L字試験片のコーナー部)に発生する応力を、線形解析ソフト(「I−DEAS」、EDS社製)を用いて解析し、解析応力を導出した。解析応力の値は3.79MPaであった。
<Analysis stress derivation process>
When applying a load of 1 N to the stress concentration test piece (R = 0.5) shown in FIG. 9B molded using the polyacetal resin 1 in the direction indicated by the white arrow shown in FIG. The stress generated in the stress concentration portion (the corner portion of the L-shaped test piece) was analyzed using linear analysis software (“I-DEAS”, manufactured by EDS) to derive the analytical stress. The analytical stress value was 3.79 MPa.

<予測限界荷重算出工程>
限界応力90MPaを単位荷重当たりの解析応力3.79MPaを用いて除することにより、予測限界荷重が得られた。予測限界荷重は23.7Nであった。
<Predicted limit load calculation process>
By dividing the limit stress of 90 MPa by the analytical stress of 3.79 MPa per unit load, a predicted limit load was obtained. The predicted limit load was 23.7N.

<実測限界荷重導出工程>
ポリアセタール樹脂1を用いて成形した図9(b)に示す応力集中試験片(R=0.5mm、厚み3mm、その他の寸法は図9(b)中に記載)に対して、図4(b)の白抜き矢印で示す方向に試験機(「テンシロンRTA−250」、ORIENTEC社製)を用いて荷重を加えて上記応力集中樹脂試験片が破壊する際の荷重を実測した。限界荷重の測定結果は、55.6Nであった。
<Measurement limit load derivation process>
FIG. 4B shows a stress concentration test piece (R = 0.5 mm, thickness 3 mm, other dimensions are shown in FIG. 9B) shown in FIG. 9B molded using the polyacetal resin 1. ) Using a tester (“Tensilon RTA-250”, manufactured by ORIENTEC Co., Ltd.) in the direction indicated by the white arrow, the load when the stress-concentrated resin specimen was broken was measured. The measurement result of the limit load was 55.6N.

<補正係数導出工程>
実測限界荷重55.6Nを用いて予測限界荷重23.7Nを除することにより補正係数を得た補正係数は0.427であった。
<Correction coefficient derivation process>
The correction coefficient obtained by dividing the predicted limit load 23.7N by using the actually measured limit load 55.6N was 0.427.

<相関関係導出工程>
測定の際の所定の温度又は樹脂材料の種類を表1の2列目以降に示す各条件に変更した以外は、上記補正係数の導出と同様にして、各条件での補正係数を求めた。補正係数と破断歪みとの相関関係を表す近似式y=A−n1(yが補正係数、xが破断歪み、aは係数、n1は定数を表す)が得られた。近似式は計算ソフトを用いて求めた。
<Correlation derivation process>
A correction coefficient under each condition was obtained in the same manner as in the derivation of the correction coefficient except that the predetermined temperature at the time of measurement or the type of the resin material was changed to each condition shown in the second and subsequent columns of Table 1. An approximate expression y = A 1 x −n1 representing the correlation between the correction coefficient and the breaking strain (y is the correction coefficient, x is the breaking strain, a 1 is the coefficient, and n 1 is a constant) was obtained. The approximate expression was obtained using calculation software.

<複数相関関係導出工程・関係式導出工程>
曲率半径が1.0mmの試験片を用いた以外は、上記の相関関係の導出と同様の方法で、曲率半径が1.0の応力集中試験片を用いた場合の相関関係を得た。使用した樹脂材料の種類、所定の温度については、表1に示した。また、得られた近似式は、y=A−n2(yが補正係数、xが破断歪み、aは係数、n2は定数を表す)であった。
<Multiple correlation derivation process / relational expression derivation process>
A correlation was obtained when a stress concentration test piece having a curvature radius of 1.0 was used in the same manner as the derivation of the above correlation except that a test piece having a curvature radius of 1.0 mm was used. Table 1 shows the types of resin materials used and the predetermined temperatures. Moreover, the obtained approximate expression was y = A 2 x −n2 (y is a correction coefficient, x is a breaking strain, a 2 is a coefficient, and n 2 is a constant).

曲率半径が3.0mmの試験片を用いた以外は、上記の相関関係の導出と同様の方法で、曲率半径が3.0mmの応力集中試験片を用いた場合の相関関係を得た。使用した樹脂材料の種類、所定の温度については、表1に示した。また、得られた近似式は、y=A−n3(yが補正係数、xが破断歪み、aは係数、n3は定数を表す)であった。 A correlation was obtained when a stress concentration test piece having a curvature radius of 3.0 mm was used in the same manner as the derivation of the above correlation except that a test piece having a curvature radius of 3.0 mm was used. Table 1 shows the types of resin materials used and the predetermined temperatures. Moreover, the obtained approximate expression was y = A 3 x− n3 (y is a correction coefficient, x is a breaking strain, a 3 is a coefficient, and n 3 is a constant).

Figure 0005226592
Figure 0005226592

Rとaとの関係を表す近似関数(関数の形式は、a=cd1(Rは曲率半径、c、dは定数))と、Rとnとの関係を表す近似関数(関数の形式は、n=c−d2(Rは曲率半径、c、dは定数))を求めた。なお、近似式は、計算ソフトを用いて求めた。 Approximate function representing the relationship between R and a (the form of the function is a = c 1 R d1 (R is the radius of curvature, c 1 and d 1 are constants)) and the approximate function representing the relationship between R and n ( The function format was determined as n = c 2 R −d2 (R is a radius of curvature, and c 2 and d 2 are constants). The approximate expression was obtained using calculation software.

<推定補正係数決定工程>
ポリアセタール樹脂1を成形してなる、図11に示すような応力集中部を備える樹脂成形品(図11中の寸法の単位はmm)の応力集中部の曲率半径を測定した。曲率半径は1.0mmであった。この曲率半径を上記近似関数(a=cd1、n=c−d2)に代入し、aとnを求めた。その結果、曲率半径1.0mmでの補正係数と破断歪みとの相関関係を表す近似式が得られた。上記破断歪み導出工程と同様の方法で、大気中、23℃の状態の成形品の破断歪みを測定した。破断歪みは35%であった。この破断歪みを補正係数と破断歪みとの相関関係を表す近似式に代入し補正係数を推定した。決定された推定補正係数は0.51であった。
<Estimated correction coefficient determination process>
The curvature radius of the stress-concentrated portion of a resin-molded product having a stress-concentrated portion as shown in FIG. 11 formed by molding the polyacetal resin 1 (the unit of dimensions in FIG. 11 is mm) was measured. The curvature radius was 1.0 mm. This curvature radius was substituted into the above approximate function (a = c 1 R d1 , n = c 2 R −d2 ), and a and n were obtained. As a result, an approximate expression representing the correlation between the correction coefficient at the curvature radius of 1.0 mm and the fracture strain was obtained. The fracture strain of the molded product at 23 ° C. in the atmosphere was measured by the same method as in the fracture strain deriving step. The breaking strain was 35%. The correction coefficient was estimated by substituting the breaking strain into an approximate expression representing the correlation between the correction coefficient and the breaking strain. The estimated correction coefficient determined was 0.51.

<発生応力予測工程>
上記樹脂成形品に対して、図11中の矢印で示す方向に1Nの荷重を加える場合について、応力集中部(L字試験片のコーナー部)に発生する応力を、解析ソフト(「I−DEAS」)を用いて線形静解析し、解析応力を導出した。解析応力の値は1.36MPaであった。この解析応力に補正係数0.51を乗じることで、応力集中部に発生する発生応力を予測した。予測した発生応力の値は0.69MPaであった。
<Generating stress prediction process>
In the case where a load of 1 N is applied to the resin molded product in the direction indicated by the arrow in FIG. 11, the stress generated in the stress concentration portion (the corner portion of the L-shaped test piece) )) Was used to perform a linear static analysis and the analytical stress was derived. The value of analytical stress was 1.36 MPa. By multiplying this analytical stress by a correction factor of 0.51, the stress generated in the stress concentration portion was predicted. The predicted value of the generated stress was 0.69 MPa.

<限界荷重予測工程>
限界応力90MPaを単位荷重当たりの予測発生応力0.69MPaを用いて除することにより、予測限界荷重が得られた。予測限界荷重は130.4Nであった。限界荷重を実測したところ、得られた実測限界荷重は120Nであった。したがって、本発明によれば、限界荷重の予測の精度が高いことが確認された。
<Limit load prediction process>
The predicted critical load was obtained by dividing the critical stress of 90 MPa by the predicted generated stress per unit load of 0.69 MPa. The predicted limit load was 130.4N. When the limit load was measured, the obtained limit load was 120N. Therefore, according to the present invention, it was confirmed that the accuracy of predicting the limit load is high.

Claims (9)

形状的な応力集中部を備える樹脂成形品が破壊する荷重を加えた場合の該樹脂成形品の応力集中部に発生する発生応力を予測し、応力集中部を有する樹脂成形品の限界荷重予測方法であって、
形状的な応力集中部を備えない所定の周囲環境の応力測定樹脂試験片に対して、荷重を加えた際の前記応力測定樹脂試験片の限界応力を導出する限界応力導出工程と、
応力集中部を備えない所定の温度のひずみ測定樹脂試験片に対して、前記ひずみ測定樹脂試験片に引っ張り方向に荷重を加えた際の破断ひずみを導出する破断ひずみ導出工程と、
所定の曲率半径を有する応力集中部を備える応力集中樹脂試験片に対して、所定の荷重を加えた際に、前記応力集中部に発生する解析応力を解析により導出する解析応力導出工程と、
前記解析応力から算出される単位荷重当たりの解析応力を用いて前記限界応力を除することにより予測限界荷重を算出する予測限界荷重算出工程と、
前記応力集中樹脂試験片における、前記応力集中樹脂試験片が破壊する際の実測限界荷重を導出する実測限界荷重導出工程と、
前記実測限界荷重を用いて前記予測限界荷重を除することにより補正係数を求める補正係数導出工程と、
樹脂材料の種類及び/又は前記所定の周囲環境を変更し、前記補正係数導出工程と同様にして、補正係数を求める工程を少なくとも一回行い、破断歪みと補正係数との相関関係を所定の形式の関数で導出する相関関係導出工程と、
前記破断歪みと補正係数との相関関係を元に推定補正係数を決定する推定補正係数決定工程と、を備えることを特徴とする限界荷重予測方法。
A method for predicting a generated stress in a stress-concentrated portion of a resin molded product when a load that breaks the resin-molded product having a shape stress-concentrated portion is applied, and predicting a limit load of the resin molded product having the stress-concentrated portion Because
A limit stress deriving step of deriving a limit stress of the stress measurement resin test piece when a load is applied to a stress measurement resin test piece of a predetermined ambient environment not including a shape stress concentration portion;
Breaking strain derivation step for deriving a breaking strain when a load is applied to the strain measuring resin test piece in a tensile direction with respect to the strain measuring resin test piece at a predetermined temperature not including a stress concentration portion,
An analytical stress deriving step for deriving analytical stress generated in the stress concentration portion by analysis when a predetermined load is applied to a stress concentration resin test piece having a stress concentration portion having a predetermined radius of curvature;
A predictive limit load calculating step of calculating a predictive limit load by dividing the limit stress using the analytical stress per unit load calculated from the analytical stress;
In the stress concentration resin test piece, an actual measurement limit load derivation step for deriving an actual measurement limit load when the stress concentration resin test piece breaks;
A correction coefficient derivation step for obtaining a correction coefficient by dividing the predicted limit load using the measured limit load;
Change the type of the resin material and / or the predetermined ambient environment, and perform the step of obtaining the correction coefficient at least once in the same manner as the correction coefficient derivation step, and the correlation between the fracture strain and the correction coefficient is in a predetermined format. A correlation derivation step derived by a function of
An estimated correction coefficient determining step for determining an estimated correction coefficient based on the correlation between the breaking strain and the correction coefficient, and a limit load prediction method comprising:
前記所定の形式の関数が下記式(I)を満たすことを特徴とする請求項1に記載の限界荷重予測方法。
Figure 0005226592
(式(I)中のyは補正係数、xは破断歪み、aは係数、nは定数を表す。)
The limit load prediction method according to claim 1, wherein the function of the predetermined format satisfies the following formula (I).
Figure 0005226592
(In formula (I), y represents a correction coefficient, x represents a breaking strain, a represents a coefficient, and n represents a constant.)
前記曲率半径を変更し、前記相関関係導出工程と同様にして、前記相関関係を前記所定の形式の関数で導出する工程を少なくとも一回行う複数相関関係導出工程を、前記相関関係導出工程後にさらに備えることを特徴とする請求項1又は2に記載の限界荷重予測方法。   A plurality of correlation deriving steps for changing the radius of curvature and performing the step of deriving the correlation with the function of the predetermined format at least once in the same manner as the correlation deriving step, after the correlation deriving step The limit load prediction method according to claim 1, further comprising a limit load prediction method. 前記所定の形式の関数における定数と曲率半径との関係を導出する関係式導出工程をさらに備えることを特徴とする請求項1から3のいずれかに記載の限界荷重予測方法。   The limit load prediction method according to any one of claims 1 to 3, further comprising a relational expression deriving step for deriving a relation between a constant and a radius of curvature in the function of the predetermined format. 前記所定の形式の関数における定数と曲率半径との関係が、下記式(II−a)、(II−b)を満たすことを特徴とする請求項4に記載の限界荷重予測方法。
Figure 0005226592
(式(II−a)中のaは係数、Rは曲率半径、c、dは定数を表す。)
Figure 0005226592
(式(II−b)中のnは定数、Rは曲率半径、c、dは定数を表す。)
The limit load prediction method according to claim 4, wherein a relationship between a constant and a radius of curvature in the function of the predetermined format satisfies the following formulas (II-a) and (II-b).
Figure 0005226592
(In formula (II-a), a is a coefficient, R is a radius of curvature, and c 1 and d 1 are constants.)
Figure 0005226592
(In formula (II-b), n is a constant, R is a radius of curvature, and c 2 and d 2 are constants.)
前記応力測定樹脂試験片が前記ひずみ測定樹脂試験片と同じであり、前記限界応力導出工程において、引っ張り方向に荷重を加えることにより限界応力を導出することを特徴とする請求項1から5のいずれかに記載の限界荷重予測方法。   6. The stress measurement resin test piece is the same as the strain measurement resin test piece, and the limit stress is derived by applying a load in a tensile direction in the limit stress deriving step. The limit load prediction method described in Crab. 前記解析が線形解析であることを特徴とする、請求項1から6のいずれかに記載の限界荷重予測方法。   The limit load prediction method according to claim 1, wherein the analysis is a linear analysis. 前記推定補正係数決定工程が、請求項4又は5に記載の方法で導出した関係式を用いて、破断ひずみと曲率半径を元に推定補正係数を算出する工程であり、
前記樹脂成形品に所望の荷重を加えた際の解析応力に前記推定補正係数を乗じる事による、形状的な応力集中部を備える樹脂成形品の応力集中部に発生する発生応力を予測する発生応力予測工程と、をさらに備えることを特徴とする限界荷重予測方法。
The estimated correction coefficient determination step is a step of calculating an estimated correction coefficient based on the fracture strain and the radius of curvature using the relational expression derived by the method according to claim 4 or 5.
Generated stress that predicts the generated stress generated in the stress concentration part of the resin molded product having a geometric stress concentration part by multiplying the estimated stress by the analytical stress when a desired load is applied to the resin molded product A limit load prediction method, further comprising: a prediction step.
請求項8に記載された方法で予測した発生応力で前記限界応力を除し、前記所望の荷重を乗ずる事により、前記樹脂成形品の限界荷重を算出することを特徴とする限界荷重予測方法。   A limit load prediction method, wherein the limit load of the resin molded product is calculated by dividing the limit stress by the generated stress predicted by the method according to claim 8 and multiplying by the desired load.
JP2009095963A 2009-04-10 2009-04-10 Limit load prediction method for resin molded parts with stress concentration Active JP5226592B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009095963A JP5226592B2 (en) 2009-04-10 2009-04-10 Limit load prediction method for resin molded parts with stress concentration
CN201010142042.0A CN101858798B (en) 2009-04-10 2010-04-06 Method for predicting critical load of resin shaping product with stress centralizing part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095963A JP5226592B2 (en) 2009-04-10 2009-04-10 Limit load prediction method for resin molded parts with stress concentration

Publications (2)

Publication Number Publication Date
JP2010249523A JP2010249523A (en) 2010-11-04
JP5226592B2 true JP5226592B2 (en) 2013-07-03

Family

ID=42944832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009095963A Active JP5226592B2 (en) 2009-04-10 2009-04-10 Limit load prediction method for resin molded parts with stress concentration

Country Status (2)

Country Link
JP (1) JP5226592B2 (en)
CN (1) CN101858798B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185883A1 (en) 2021-03-03 2022-09-09 株式会社クラレ Breakage prediction program and breakage prediction method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU879379A1 (en) * 1980-02-22 1981-11-07 Предприятие П/Я В-2572 Material physical mechanical characteristics variation determination method
JPH04152120A (en) * 1990-10-17 1992-05-26 Hitachi Ltd Process simulation method of injection molding process and its device
FR2715731B1 (en) * 1994-01-31 1996-04-26 Aerospatiale Method for predictive determination of the breaking load of a structure.
JP2001030455A (en) * 1999-07-23 2001-02-06 Dainippon Printing Co Ltd Decorative sheet and decorative material
JP3668837B2 (en) * 2000-06-28 2005-07-06 トヨタ自動車株式会社 Strength analysis method for products made by vibration welding resin molded products reinforced with fibers
JP4927263B2 (en) * 2001-03-30 2012-05-09 住友化学株式会社 Impact analysis method and design method for resin molded products
US6547040B2 (en) * 2001-04-02 2003-04-15 Ncr Corporation Self-service checkout system with RFID capability
JP4133956B2 (en) * 2003-10-22 2008-08-13 新日本製鐵株式会社 Method for estimating the fracture limit load of spot welds
JP2005343987A (en) * 2004-06-02 2005-12-15 Sekisui Plastics Co Ltd Solidified powdery particle, structural member with high resistance to flexural strength, and method for producing the same
JP2008001744A (en) * 2006-06-20 2008-01-10 Sumitomo Bakelite Co Ltd Thermoplastic resin composition and molding using the same
JP5156516B2 (en) * 2008-07-16 2013-03-06 住友化学株式会社 Material property estimation method and material property estimation program

Also Published As

Publication number Publication date
CN101858798B (en) 2014-04-09
JP2010249523A (en) 2010-11-04
CN101858798A (en) 2010-10-13

Similar Documents

Publication Publication Date Title
KR100948035B1 (en) Method of Acquisition of True Stress-Strain Curves over Large Strain by the Tensile Test and its Finite Element Analysis, and Tensile Test Device using it
Kirane et al. Size effect in Paris law and fatigue lifetimes for quasibrittle materials: Modified theory, experiments and micro-modeling
Motra et al. Assessment of strain measurement techniques to characterise mechanical properties of structural steel
CN110274835B (en) Method for improving Burgers rock shear creep model
CN108256179B (en) Method for predicting material creep curve
US8204699B2 (en) Analyzing apparatus, analyzing method, and computer-readable recording medium storing an analyzing program
Nagode et al. A time-dependent damage operator approach to thermo-mechanical fatigue of Ni-resist D-5S
JP5732291B2 (en) Creep curve and creep life prediction method
Liljedahl et al. Modelling the environmental degradation of the interface in adhesively bonded joints using a cohesive zone approach
Peters et al. A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments
JP5809135B2 (en) Manufacturing process of laminated glazing unit
JP5226592B2 (en) Limit load prediction method for resin molded parts with stress concentration
JP2011169745A (en) Method for measuring brittle crack stopping fracture toughness
CN110837675A (en) Method, device and system for predicting fracture of differential thick plate by optimized fracture criterion
JP5226593B2 (en) Method for predicting stress generated in stress concentration portion and method for predicting creep rupture life in resin molded product having stress concentration portion
CN115186523A (en) Constitutive model establishing method of high-strength steel post-welding heat affected zone based on simulation
Zhang et al. New formula relating the yield stress-strain with the strength coefficient and the strain-hardening exponent
CN108548720A (en) The method that I type crackle elastic plastic theory formula obtain ductile material J resistance curves
Sun et al. Uniaxial fatigue behavior of Cu-Nb micro-composite conductor, Part II: Modeling and simulation
Wang et al. A study on the mechanical properties and deformation behavior of injection molded PMMA-TSP laminated composite
JP2011196884A (en) Simulation device of creep deformation characteristic
JP2011115805A (en) Friction correction method in hot working of columnar sample
JP4963288B2 (en) Poisson&#39;s ratio measurement method for materials
Lee et al. Analysis of excessive deformation behavior of a PMMA-touch screen panel laminated material in a high temperature condition
CN109187189A (en) The method for determining clamped straight-bar small sample bending creep small deformation critical displacement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5226592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250