JP3668837B2 - Strength analysis method for products made by vibration welding resin molded products reinforced with fibers - Google Patents

Strength analysis method for products made by vibration welding resin molded products reinforced with fibers Download PDF

Info

Publication number
JP3668837B2
JP3668837B2 JP2000195124A JP2000195124A JP3668837B2 JP 3668837 B2 JP3668837 B2 JP 3668837B2 JP 2000195124 A JP2000195124 A JP 2000195124A JP 2000195124 A JP2000195124 A JP 2000195124A JP 3668837 B2 JP3668837 B2 JP 3668837B2
Authority
JP
Japan
Prior art keywords
resin
stress
strain
resin molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195124A
Other languages
Japanese (ja)
Other versions
JP2002014021A (en
Inventor
英利 四方田
功 更谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000195124A priority Critical patent/JP3668837B2/en
Publication of JP2002014021A publication Critical patent/JP2002014021A/en
Application granted granted Critical
Publication of JP3668837B2 publication Critical patent/JP3668837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス繊維等の繊維で強化されている樹脂成形品同士を振動溶着して得られる樹脂製品の強度解析方法に関する。
【0002】
【従来の技術】
樹脂成形品に用いる樹脂、成形技術、強化のための繊維、樹脂成形品同士を溶着する技術の進展に伴い、樹脂製品の適用範囲が拡大している。例えば、エンジンの吸気管を樹脂製品とすることが可能となっている。
樹脂製品の適用範囲が拡大するにつれ、樹脂製品の強度を解析する必要が高まっている。例えばエンジンの吸気管を樹脂製品としたときに、バックファイヤが発生しても樹脂製の吸気管が耐えられるか否かを事前に解析することが求められる。
構造体の強度解析のために有限要素法が有用なことはすでに広く検証されている。しかるに繊維で強化した樹脂成形品同士を振動溶着した樹脂製品に対して有限要素法を適用しても、実測値とかけ離れた計算結果しか得られず、およそ信頼できない。現時点では、繊維で強化した樹脂成形品同士を振動溶着した樹脂製品の強度を信頼に足りる程度に解析できる方法がなく、専ら実測に頼っている。
【0003】
【発明が解決しようとする課題】
そこで本発明では、繊維で強化した樹脂成形品同士を振動溶着した樹脂製品の強度を、信頼にたりる程度に解析できる方法を提案する。
この目的の為に、本発明者らは現状の問題点を研究した。その結果、信頼できる結果が得られない原因が下記にあることを確認した。
(1)樹脂製品が耐えられるか否かを解析するような場合、材料が弾性範囲内で変形するという仮定を置くことができない。即ち、材料の「応力―歪み」の関係が非線形となることを前提としなければならない。現在のレベルでは、「応力―歪み」の関係が非線形となることを許す場合、材料が等方性であることを前提としなければならない。即ち、材料が異方性であり、しかも、「応力―歪み」の関係が非線形であることを予定した有限要素法が実用化されていない。これでは、繊維で強化した樹脂成形品の強度を信頼できる程度に解析することはできない。
(2)「樹脂流動と繊維配向」モデルを樹脂成形品に適用し、繊維主配向方向の樹脂成形品内分布を算出し、繊維主配向方向とそれに直交する方向でのヤング率の樹脂成形品内分布を計算することが可能となっている。この結果を用いれば、樹脂成形品の異方性をモデル内に取込むことが容易に実現できるように思われる。しかしながら、「樹脂流動と繊維配向」モデルで計算可能な値はヤング率であり、これでは「応力―歪み」の関係が非線形であることに対応できない。
(3)繊維で強化した樹脂成形品同士を振動溶着すると、溶着部では繊維主配向方向が変化すると予想されるのに、現状ではこの問題を織り込んだ計算をすることができない。
本発明者らは上記問題意識の基で研究を進め、ついに信頼のできる解析結果が得られる解析方法を得るに至った。
【0004】
【課題を解決する為の手段と作用と効果】
この発明の方法では、図1に示されるように、下記の各工程を実行する。
S1:繊維2で強化した樹脂成形品のテストピース4を用いて、繊維主配向方向に対する代表的角度θ1、θ2・・・・ごとに「応力―歪み」の実測線図情報6を得る。
S2:「樹脂流動と繊維配向」モデルを各樹脂成形品8に適用して繊維主配向方向10の樹脂成形品8内分布を算出し、繊維主配向方向10とそれに直交する方向でのヤング率E1,E2の樹脂成形品8内分布を計算する。通常は、樹脂成形品8を細かな格子状に区画し、区画ごとにヤング率E1,E2を計算する。
S3:ヤング率分布計算工程S2で得られたヤング率E1,E2と、代表的角度ごとに得られている「応力―歪み」の実測線図情報6から、樹脂成形品内の部位ごとの「応力―歪み」の推定線図情報12、14を得る。この工程では、ヤング率が計算されている区画ごとに、推定線図情報12、14を得る。
S4:振動溶着部16での「応力―歪み」の実測線図情報18、20を得る。
S5:以上によって樹脂製品の材料に関するモデルが得られるので、樹脂製品22に加えられる外力情報と、工程S3で樹脂成形品内の部位ごとに推定された「応力―歪み」の線図情報と、工程S4で得られた振動溶着部16での「応力―歪み」の実測線図情報を用いて、有限要素法を実行する。
実測した結果、振動溶着部における振動方向とそれに直交する方向での「応力―歪み」の線図情報20、18は、工程S1で実測された繊維主配向方向とそれに直交する方向での「応力―歪み」の実測線図情報に近似していることが確認できたので、この近似を活用することもできる。この近似を利用する方法が請求項2に記載されている。請求項2の発明では、振動溶着部での繊維主配向方向を、振動に沿った方向と推定する。このために、請求項2の方法では、工程S1において、繊維主配向方向とそれに直交する方向を含む代表的角度で「応力―歪み」の実測線図情報を得ておく。工程S3では、上記のように推定された繊維主配向方向と、工程1で実測されている「応力―歪み」の実測線図情報6とから、振動溶着部での「応力―歪み」線図情報を得る。その他の部位については、請求項1の方法の場合と同様な手法で「応力―歪み」線図情報を推定する。
【0005】
これらの方法によると、(1)樹脂成形品の中では繊維が特定方向に配向し、等方位には配向していないこと、(2)したがって樹脂成形品を構成する材料は等方性でなく異方性材料として扱わなければならないこと、(3)樹脂成形品を構成する材料は弾性限界を超えて変形し、「応力―歪み」の関係を非線形と扱わなければ近似できないこと、(4)溶着部では樹脂成形品の他所とは別に扱わなければならないことの全部を盛り込んだ解析が可能となり、はじめて信頼のできる解析結果を得ることができた。
【0006】
この方法を樹脂製の吸気管に適用し、その吸気管の内部に静水圧が加えられる場合を解析した。ここで、静水圧を増大させながら繰り返し有限要素法を実行したときに、静水圧を増加させても有限要素法で計算される応力値が増加しなくなる現象が得られることが確認された。このときの静水圧を吸気管の耐圧とすることができる。
【0007】
上記方法によると、静水圧の増加に伴って樹脂製気管が大きく変形し始めるとき(大きく変形し始めることは樹脂製吸気管の使用限界に至ったことに相当するともに、大きく変形するためにそれ以上には応力が増大しないことに対応する)の静水圧が計算される。これを実測値と比較したところ、実測値と計算値が10%以内の誤差で一致した。
樹脂製吸気管の形状を大きく変えることなく、例えば、補強用リブを追加する等の方法で、耐圧を10%程度高めることは可能である。したがってこの方法で計算した耐圧が要求を満たすことができるものであれば、その解析を信頼して樹脂製吸気管の成形型の作成に着手できる。誤差が10%以内であれば、最悪の場合でも型の修正で対応でき、型が無駄となることはない。
【0008】
【発明の実施の形態】
最初に、以下に説明する実施例の主要な特徴を列記する。
(形態1) 薄板状の直角四辺形のキャビティに、左右対象の位置に配置されているゲートから、繊維を混合した樹脂を射出して「応力―歪み」の実測線図情報を得るテストピースを作成する。このテストピースによると、容易に、繊維主配向方向に対する角度ごとに「応力―歪み」の実測線図情報を得ることができる。
(形態2) 振動溶着部の側面に微小歪みゲージを貼り付けて、振動溶着部での「応力―歪み」の実測線図情報を得る。この方法によると、通常は200ミクロン程度の極めて薄い溶着部での「応力―歪み」の実測線図情報を得ることができる。
(形態3) 請求項2の解析方法で、応力値がそれ以上は増加しない最大応力値となった部位を表示する。これによると、耐圧の上限となっている部位、即ち、改良を要する部位が直ちに判明する。
【0009】
【実施例】
次に実施例を説明する。
【0010】
(解析した樹脂製品)
解析した樹脂製品は、繊維で強化した樹脂成形品同士を振動溶着して作成した吸気管である。図2は、有限要素法で用いた樹脂製吸気管のメッシュモデルを示す。図中30は樹脂成形品同士の溶着部を示す。樹脂成形品の樹脂、強化用の繊維、溶着技術の詳細は、特開平10−274115号公報に記載されている。
【0011】
(繊維で強化した樹脂成形品のテストピース)
繊維が混在した樹脂を厚み3mmの正方形キャビティに注入してテストピースを作成した。材料と成形条件は、吸気管の成形時のそれと同じである。図3に示されているように、ゲート位置とゲート方向を左右対称とし、テストピースの中央部では、繊維32が図3の上下方向に主配向するようにした。
【0012】
(繊維主配向方向に対する代表的角度ごとの「応力―歪み」の線図情報の実測)
図4に示すように、テストピースの左右対称軸42に対する角度を変えながら、1軸引張り試験用の試験片44を切り出した。(B)から(E)に示される4つの試験片を得た。試験片中の繊維主配向方向はそれぞれ異なる。ここでは、繊維主配向方向に対する代表的角度として、0度、30度、60度、90度を採用した。
この試験片を1軸引張り試験機にセットし、「応力―歪み」の線図情報を実測した。得られた実測線図を図5に示す。縦軸は応力(MPa)で横軸は歪み(%)である。予想通り、繊維主配向方向には歪みにくく、その直角方向には歪み易いことが確認された。
【0013】
(樹脂流動と繊維配向モデルの適用)
樹脂流動と繊維配向をモデル化したソフトウエアが市販されており、ここでは「MOLDFLOW」というソフトウエアを使用した。この他、「C―MOLD」や「PLANETS」等の、この分野で良く普及している種々のソフトウエアがこの計算機能を持っている。使用するソフトウエアの種類に特段の制約はない。
これらのソフトウエアによって、図2に示した樹脂成形品を立体的に細かく区画した微小領域ごとに、繊維の主配向方向と配向率が計算される。図6(A)(C)は、樹脂成形品内の2箇所での計算結果を示し、θAとθCは、繊維主配向方向を示す。図中のf軸は配向率を示し、値が大きいほど良く配向していることを示す。(B)と(D)は、計算した箇所の写真を示し、主配向方向と配向率の双方において、信頼できる値が計算されることを裏付けている。
【0014】
前記したソフトウエアは、いずれも、図6に例示した繊維主配向方向と配向率の計算結果から、さらに、繊維主配向方向とそれに直交する方向でのヤング率を計算する機能を有している。この機能によって、繊維主配向方向とそれに直交する方向でのヤング率の樹脂成形品内分布が計算される。
【0015】
(ヤング率と「応力―歪み」の実測線図情報から、「応力―歪み」を推定する)
前記したように、樹脂流動と繊維配向をモデル化したソフトウエアによって、繊維主配向方向とそれに直交する方向でのヤング率の樹脂成形品内分布を計算することができる。しかしながら、有限要素法で樹脂製品の強度解析をするためには、材料が弾性限界内で変形するという仮定をおくと信頼できる結果が得られない。信頼できる解析結果を得るためには、材料が弾性限界を超えて変形する場合を計算に取り込まなければならない。
図7の破線は、図5に示した「応力―歪み」の実測線図情報である。直線72は、ヤング率が歪みの程度によらないで有効としたときの線図である。明らかに線図72を採用することはできない。ここでは、歪みの小さな範囲では大きなヤング率を持っていても、歪みが大きくなると水平に近づく実測線図を参考にしてヤング率がEである材料の「応力―歪み」線図を推定する。
最も簡単な推定方法は、図8に示すように、計算されたヤング率Eを挟む実測線図(破線)から2つのヤング率Eθ1、Eθ2を求め、計算されたヤング率Eの両者Eθ1、Eθ2に対する比例配分の比率(a:b)を求め、この求められた配分比で二つの実測線図間に推定線図(実線)を得る方法である。この他の種々の数学的手法を用いて推定線図を得ることができる。本発明は、特定の推定方法に縛られない。
【0016】
前記したように、樹脂成形品を立体的に細かく区画した微小領域ごとに、繊維主配向方向と、その方向のヤング率と、それに直交する方向でのヤング率が計算されていることから、上記の推定手法を用いることで、樹脂成形品を立体的に細かく区画した微小領域ごとに、繊維主配向方向とそれに直交する方向での「応力―歪み」の推定線図が計算できる。いま、繊維主配向方向にZ軸を取ったとする。すると樹脂成形品を立体的に細かく区画した微小領域ごとに、Z軸の方位が計算される。また、Z軸方向のヤング率が計算される。さらに、Z軸に直交するX軸とY軸方向のヤング率も計算される。ここで、X軸とY軸方向には等方性であるとすることができる。
【0017】
(振動溶着部での「応力―歪み」の実測線図情報)
図9の(A)は、樹脂成形品92に対して樹脂成形品91を水平方向に振動させながら垂直方向に加圧して両樹脂成形品を振動溶着する様子を示している。図9の(B)は、溶着部93を拡大して示しており、溶着部93は約200ミクロンの厚みであることがわかった、そして、強化用繊維は溶着部93の全体において、振動方向に強く配向しなおすことが確認された。明らかに、溶着部外の樹脂成形品での主配向方向と相違する。したがって、溶着部93での応力と歪みの関係は、他の部位と大きく異なることが予想される。
そこで、溶着部93を含む試料を切り出し、溶着部に微小な歪みゲージ94を貼り付けた。用いた微小ゲージ94は共和電業製のKFR−015−120−D19−23N10C2であり、長さは150ミクロンである。貼り付け作業はキーエンス社製のマイクロスコープで観測しながら実施し、溶着部93内に貼り付けることができた。この試料を1軸引張り試験機にかけて応力と歪みの線図を得た。
【0018】
得られた線図100を図10に示す。図10には、図5のθ=90度での線図を重ねて表示している。この測定によって、溶着部93を振動と直交方向に引っ張ると、繊維主配向方向に直交して引っ張るときとほぼ同じ線図となり、わずかに歪み易いことが確認された。
なお、溶着部93の振動方向に沿った「応力―歪み」線図は、図10から明らかに、繊維主配向方向に沿って引っ張るときとほぼ同じ線図となると推定できることもわかった。そこで、この実施例では、溶着部93の振動方向に沿った「応力―歪み」線図は、繊維主配向方向に沿って引っ張るときと同じ線図であるとした。グラフ100がθ=90度でのグラフよりもわずかに歪みやすいことを反映し、溶着部93の振動方向に沿った方向での「応力―歪み」線図は、図5でのθ=0度でのグラフよりもわずかに歪みにくいグラフに近似させてもよい。あるいは、溶着部93で振動方向に沿って「応力―歪み」線図を実測してもよい。
溶着部では、振動と直交方向で実測された「応力―歪み」線図、または、繊維主配向方向に直交して引っ張って実測された「応力―歪み」線図が、等方的に適用されると仮定してもよい。溶着部では、こじりによる曲げが主要因となって破断することが多いために、異方性が大きな影響を与えないと予想される。
【0019】
以上によって、繊維で強化した樹脂成形品同士を振動溶着した樹脂製品の部位ごとの「応力―歪み」線図が得られた。そこで、次に、有限要素法を実行した。ここでは、「ABAQUS」という有限要素法のソフトウエアを用いた。この他、「NASTRAN」を用いることもでき、用いる有限要素法のソフトウエアに特に制約はない。ここでは、樹脂製品に加えられる外力として、中空の樹脂製品に内部から静水圧が掛かるものとした。各微小領域は、樹脂成形品内の部位ごとに推定された「応力―歪み」の線図情報と、振動溶着部での「応力―歪み」の実測線図情報にしたがってひずむものとして計算した。
有限要素法の実行段階では、静水圧を上げながら繰り返し有限要素法を実行した。図11は、横軸に静水圧をとり、縦軸に、樹脂製品に現れた最大応力を取っている。明らかに、静水圧がPのところで最大主応力は飽和し、それ以上には増大しない結果が得られた。
このことは、静水圧がP以上となると、樹脂製品は急に大きく変形し始め、結果として最大応力が飽和してそれ以上には増大しないことを示す。そこで、このときの静水圧を耐圧とした。
【0020】
このようにして計算した耐圧を、実測値と比較したところ、実測値の平均が1.0MPaであるのに対し、計算された値は1.1MPaであり、その差は10%であった。
また、大きくひずむ部位を比較したところ、計算された部位と実際に大きくひずむ部位は良く一致した。この実施例の方法によって実際の現象に良く近似する計算ができることを確認した。
【0021】
等方性とした従来の考えで有限要素法を実行すると、計算される耐圧は実測値から59%も相違してしまい、到底信頼することができない。これに対して本実施例の方法では10%の誤差に押さえられており、これならば信頼することができる。
【図面の簡単な説明】
【図1】 本発明の方法を模式的に示す概念図。
【図2】 有限要素法で用いたメッシュモデルを示す図。
【図3】 テストピースの成形方法を説明する図。
【図4】 テストピースから引張り試験用試料を調整する様子を示す図。
【図5】 図4の試料を実測して得られた応力―歪み線図
【図6】 計算される繊維主配向方向と配向率と実際の配向の様子を示す図。
【図7】 実測された応力―歪み線図と推定された応力―歪み線図を示す図。
【図8】 実測された応力―歪み線図から推定された応力―歪み線図を得る過程を示す図。
【図9】 振動溶着部の特性を説明する図。
【図10】 振動溶着部で実測された応力―歪み線図。
【図11】 有限要素法で計算された最大応力と、加えた静水圧の関係を示す図。
【符号の説明】
S1:繊維2で強化した樹脂成形品のテストピース4を用いて、「応力―歪み」の実測線図情報6を得る工程。
S2:「樹脂流動と繊維配向」モデルを各樹脂成形品8に適用して繊維主配向方向10の樹脂成形品8内分布を算出し、繊維主配向方向10とそれに直交する方向でのヤング率E1,E2の樹脂成形品8内分布を計算する工程。
S3:ヤング率分布計算工程S2で得られたヤング率E1,E2と、代表的角度ごとに得られている「応力―歪み」の実測線図情報6から、樹脂成形品内の部位ごとの「応力―歪み」の推定線図情報12、14を得る工程。
S4:振動溶着部16での「応力―歪み」の実測線図情報18、20を得る工程。
S5:樹脂製品22に加えられる外力情報と、工程S3で推定された「応力―歪み」の線図情報と、工程S4で得られた「応力―歪み」の実測線図情報を用いて有限要素法を実行する工程。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a strength analysis method for resin products obtained by vibration welding of resin molded products reinforced with fibers such as glass fibers.
[0002]
[Prior art]
With the progress of resins used for resin molded products, molding technology, reinforcing fibers, and technologies for welding resin molded products together, the application range of resin products is expanding. For example, an engine intake pipe can be a resin product.
As the application range of resin products expands, the need to analyze the strength of resin products is increasing. For example, when the engine intake pipe is made of a resin product, it is required to analyze in advance whether the resin intake pipe can withstand even if backfire occurs.
The usefulness of the finite element method for strength analysis of structures has already been widely verified. However, even if the finite element method is applied to resin products in which resin molded products reinforced with fibers are vibration-welded, only a calculation result that is far from the actual measurement value is obtained, which is almost unreliable. At the present time, there is no method that can analyze the strength of resin products obtained by vibration welding of resin molded products reinforced with fibers, and relies solely on actual measurement.
[0003]
[Problems to be solved by the invention]
Therefore, the present invention proposes a method capable of analyzing the strength of resin products obtained by vibration welding of resin molded products reinforced with fibers to a reliable level.
For this purpose, the present inventors studied current problems. As a result, it was confirmed that there are the following reasons why reliable results cannot be obtained.
(1) When analyzing whether a resin product can withstand, it cannot be assumed that the material is deformed within the elastic range. That is, it must be premised that the “stress-strain” relationship of the material is non-linear. At the current level, if the “stress-strain” relationship is allowed to be non-linear, it must be assumed that the material is isotropic. In other words, a finite element method in which the material is anisotropic and the “stress-strain” relationship is non-linear has not been put into practical use. Thus, the strength of the resin molded product reinforced with fibers cannot be analyzed to a reliable level.
(2) Applying the “resin flow and fiber orientation” model to resin molded products, calculating the distribution within the resin molded product in the fiber main orientation direction, and molding the resin with Young's modulus in the fiber main orientation direction and the direction perpendicular thereto It is possible to calculate the internal distribution. Using this result, it seems that the anisotropy of the resin molded product can be easily realized in the model. However, the value that can be calculated by the “resin flow and fiber orientation” model is Young's modulus, and this cannot cope with the nonlinear relationship of “stress-strain”.
(3) If resin molded products reinforced with fibers are vibration welded together, the fiber main orientation direction is expected to change at the welded portion, but at present, calculations that incorporate this problem cannot be made.
The present inventors proceeded with research based on the above awareness of the problem, and finally came to obtain an analysis method capable of obtaining a reliable analysis result.
[0004]
[Means, actions and effects for solving problems]
In the method of the present invention, as shown in FIG. 1, the following steps are executed.
S1: Using the test piece 4 of the resin molded product reinforced with the fiber 2, the measured stress diagram information 6 of “stress-strain” is obtained for each of the representative angles θ1, θ2,.
S2: The “resin flow and fiber orientation” model is applied to each resin molded product 8 to calculate the distribution in the resin molded product 8 in the fiber main orientation direction 10, and the Young's modulus in the fiber main orientation direction 10 and the direction perpendicular thereto. The distribution in the resin molded product 8 of E1 and E2 is calculated. Usually, the resin molded product 8 is partitioned into a fine lattice shape, and Young's modulus E1, E2 is calculated for each partition.
S3: From the Young's moduli E1 and E2 obtained in the Young's modulus distribution calculation step S2 and the measured diagram information 6 of “stress-strain” obtained for each representative angle, “ Estimated diagram information 12 and 14 of “stress-strain” is obtained. In this step, estimated diagram information 12 and 14 is obtained for each section for which the Young's modulus is calculated.
S4: Measured diagram information 18 and 20 of “stress-strain” at the vibration weld 16 is obtained.
S5: Since a model related to the material of the resin product is obtained as described above, external force information applied to the resin product 22, diagram information of “stress-strain” estimated for each part in the resin molded product in step S3, The finite element method is executed using the measured diagram information of “stress-strain” at the vibration welded part 16 obtained in step S4.
As a result of the actual measurement, the diagram information 20 and 18 of the “stress-strain” in the vibration direction and the direction orthogonal to the vibration direction in the vibration welded portion are the “stress in the fiber main orientation direction measured in step S1 and the direction orthogonal thereto. Since it was confirmed that it was approximated to the measured line information of “distortion”, this approximation can also be utilized. A method using this approximation is described in claim 2. In the invention of claim 2, the main fiber orientation direction at the vibration welded portion is estimated as the direction along the vibration. For this reason, in the method of claim 2, in step S <b> 1, actual measurement diagram information of “stress-strain” is obtained at a representative angle including the main fiber orientation direction and the direction orthogonal thereto. In step S3, the “stress-strain” diagram at the vibration welded portion is obtained from the fiber main orientation direction estimated as described above and the “stress-strain” measured diagram information 6 measured in step 1. get information. For other parts, “stress-strain” diagram information is estimated by the same method as in the method of claim 1.
[0005]
According to these methods, (1) in the resin molded product, the fibers are oriented in a specific direction and are not oriented in the same direction. (2) Therefore, the material constituting the resin molded product is not isotropic. It must be treated as an anisotropic material, (3) The material constituting the resin molded product is deformed beyond the elastic limit, and it cannot be approximated unless the "stress-strain" relationship is treated as non-linear, (4) In the welded part, it was possible to perform an analysis that included everything that must be handled separately from other parts of the resin molded product, and a reliable analysis result could be obtained for the first time.
[0006]
This method was applied to a plastic intake pipe, and the case where a hydrostatic pressure was applied to the inside of the intake pipe was analyzed. Here, it has been confirmed that when the finite element method is repeatedly executed while increasing the hydrostatic pressure, the stress value calculated by the finite element method does not increase even if the hydrostatic pressure is increased. The hydrostatic pressure at this time can be the pressure resistance of the intake pipe.
[0007]
According to the above method, when the plastic air pipe begins to deform greatly as the hydrostatic pressure increases (starting to deform greatly corresponds to reaching the use limit of the resin air intake pipe, The hydrostatic pressure (corresponding to the fact that the stress does not increase above) is calculated. When this was compared with the actual measurement value, the actual measurement value and the calculated value agreed with an error within 10%.
Without greatly changing the shape of the resin intake pipe, it is possible to increase the pressure resistance by about 10%, for example, by adding a reinforcing rib. Therefore, if the pressure resistance calculated by this method can satisfy the requirements, the analysis can be relied upon to start making a mold for the resin intake pipe. If the error is within 10%, the mold can be corrected even in the worst case, and the mold is not wasted.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
First, the main features of the embodiments described below are listed.
(Embodiment 1) A test piece is obtained by injecting a resin mixed with fibers into a thin plate-like right-sided quadrilateral cavity from gates arranged at the left and right target positions to obtain measured stress-strain diagram information. create. According to this test piece, it is possible to easily obtain actual measurement diagram information of “stress-strain” for each angle with respect to the main fiber orientation direction.
(Mode 2) A micro-strain gauge is attached to the side surface of the vibration welded portion to obtain measured diagram information of “stress-strain” at the vibration welded portion. According to this method, it is possible to obtain actual measurement diagram information of “stress-strain” at an extremely thin welded portion, usually about 200 microns.
(Mode 3) In the analysis method according to claim 2, the portion where the stress value becomes the maximum stress value that does not increase any more is displayed. According to this, the part that is the upper limit of the pressure resistance, that is, the part that needs improvement is immediately identified.
[0009]
【Example】
Next, examples will be described.
[0010]
(Analyzed resin products)
The analyzed resin product is an intake pipe made by vibration welding resin molded products reinforced with fibers. FIG. 2 shows a mesh model of a resin intake pipe used in the finite element method. In the figure, reference numeral 30 denotes a welded portion between the resin molded products. Details of the resin of the resin molded product, the reinforcing fiber, and the welding technique are described in JP-A-10-274115.
[0011]
(Test piece of resin molded product reinforced with fiber)
A test piece was prepared by injecting a resin mixed with fibers into a 3 mm thick square cavity. The material and molding conditions are the same as those when molding the intake pipe. As shown in FIG. 3, the gate position and the gate direction are symmetrical, and the fibers 32 are mainly oriented in the vertical direction in FIG. 3 at the center of the test piece.
[0012]
(Measurement of “stress-strain” diagram information for each representative angle with respect to the fiber orientation direction)
As shown in FIG. 4, a test piece 44 for a uniaxial tensile test was cut out while changing the angle of the test piece with respect to the left-right symmetric axis 42. Four test pieces shown in (B) to (E) were obtained. The main fiber orientation directions in the test pieces are different. Here, 0 degrees, 30 degrees, 60 degrees, and 90 degrees were adopted as representative angles with respect to the fiber main orientation direction.
This test piece was set in a uniaxial tensile tester, and the “stress-strain” diagram information was actually measured. The obtained actual measurement diagram is shown in FIG. The vertical axis represents stress (MPa) and the horizontal axis represents strain (%). As expected, it was confirmed that the fiber was not easily distorted in the main fiber orientation direction and was easily distorted in the perpendicular direction.
[0013]
(Application of resin flow and fiber orientation model)
Software that models resin flow and fiber orientation is commercially available, and software called “MOLDFLOW” was used here. In addition, various kinds of software such as “C-MOLD” and “PLANETS” that are widely used in this field have this calculation function. There are no particular restrictions on the type of software used.
With these software, the main orientation direction and orientation ratio of the fiber are calculated for each minute region obtained by finely dividing the resin molded product shown in FIG. 6A and 6C show the calculation results at two locations in the resin molded product, and θA and θC indicate the fiber main orientation directions. The f-axis in the figure indicates the orientation rate, and the larger the value, the better the orientation. (B) and (D) show photographs of the calculated locations, and confirm that reliable values are calculated in both the main orientation direction and the orientation ratio.
[0014]
Each of the software described above has a function of further calculating the Young's modulus in the fiber main orientation direction and the direction orthogonal thereto, from the calculation results of the fiber main orientation direction and the orientation rate exemplified in FIG. . By this function, the Young's modulus distribution in the resin molded product in the fiber main orientation direction and the direction orthogonal thereto is calculated.
[0015]
("Stress-strain" is estimated from the Young's modulus and the measured diagram information of "stress-strain")
As described above, the distribution of the Young's modulus in the resin molded product in the fiber main orientation direction and the direction orthogonal thereto can be calculated by software modeling the resin flow and fiber orientation. However, in order to analyze the strength of a resin product by the finite element method, a reliable result cannot be obtained if it is assumed that the material is deformed within the elastic limit. In order to obtain reliable analysis results, the case where the material deforms beyond the elastic limit must be taken into account.
The broken line in FIG. 7 is actual measurement diagram information of “stress-strain” shown in FIG. A straight line 72 is a diagram when the Young's modulus is valid regardless of the degree of distortion. Obviously, the diagram 72 cannot be adopted. Here, even if the strain has a large Young's modulus in a small range, a “stress-strain” diagram of a material having a Young's modulus of E is estimated with reference to an actual measurement diagram that approaches the horizontal when the strain increases.
As shown in FIG. 8, the simplest estimation method is to obtain two Young's moduli Eθ1 and Eθ2 from an actual measurement diagram (broken line) sandwiching the calculated Young's modulus E, and both of the calculated Young's moduli E Eθ1 and Eθ2 The ratio (a: b) of the proportional distribution with respect to is obtained, and an estimated diagram (solid line) is obtained between the two actually measured diagrams with the obtained distribution ratio. An estimated diagram can be obtained using various other mathematical techniques. The present invention is not tied to a specific estimation method.
[0016]
As described above, the fiber main orientation direction, the Young's modulus in that direction, and the Young's modulus in the direction perpendicular to the direction are calculated for each minute region in which the resin molded product is finely divided in three dimensions. By using this estimation method, it is possible to calculate an estimated diagram of “stress-strain” in the main fiber orientation direction and the direction orthogonal thereto for each minute region in which the resin molded product is finely divided in three dimensions. Suppose that the Z axis is taken in the fiber main orientation direction. Then, the Z-axis azimuth is calculated for each minute region in which the resin molded product is finely divided in three dimensions. Also, the Young's modulus in the Z-axis direction is calculated. Furthermore, the Young's modulus in the X-axis and Y-axis directions orthogonal to the Z-axis is also calculated. Here, it can be assumed that the X-axis and Y-axis directions are isotropic.
[0017]
(Measured diagram information of “stress-strain” at the vibration weld)
9A shows a state in which the resin molded product 91 is vibrated and welded to the resin molded product 92 by applying pressure in the vertical direction while vibrating the resin molded product 91 in the horizontal direction. FIG. 9B shows the welded portion 93 in an enlarged manner, and it has been found that the welded portion 93 has a thickness of about 200 microns, and the reinforcing fiber has a vibration direction in the entire welded portion 93. It was confirmed to reorientate strongly. Apparently, it is different from the main orientation direction in the resin molded product outside the welded portion. Therefore, it is expected that the relationship between the stress and strain at the welded portion 93 is greatly different from other portions.
Therefore, a sample including the welded portion 93 was cut out and a minute strain gauge 94 was attached to the welded portion. The micro gauge 94 used is KFR-015-120-D19-23N10C2 manufactured by Kyowa Denki, and the length is 150 microns. The pasting work was carried out while observing with a microscope manufactured by Keyence Co., Ltd., and could be pasted in the welded portion 93. This sample was subjected to a uniaxial tensile tester to obtain a stress and strain diagram.
[0018]
The resulting diagram 100 is shown in FIG. In FIG. 10, the diagrams at θ = 90 degrees in FIG. 5 are superimposed and displayed. From this measurement, it was confirmed that when the welded portion 93 was pulled in the direction orthogonal to the vibration, the line drawing was almost the same as that pulled in the direction orthogonal to the fiber main orientation direction, and was slightly distorted.
It has also been found that the “stress-strain” diagram along the vibration direction of the welded portion 93 can be estimated from FIG. 10 to be almost the same diagram as when pulled along the fiber main orientation direction. Therefore, in this example, the “stress-strain” diagram along the vibration direction of the welded portion 93 is the same diagram as that when pulling along the fiber main orientation direction. Reflecting that the graph 100 is slightly more distorted than the graph at θ = 90 degrees, the “stress-strain” diagram in the direction along the vibration direction of the welded portion 93 is θ = 0 degrees in FIG. It may be approximated to a graph that is slightly less distorted than the graph in FIG. Alternatively, a “stress-strain” diagram may be measured along the vibration direction at the welded portion 93.
At the weld, the “stress-strain” diagram measured in the direction orthogonal to the vibration or the “stress-strain” diagram measured by pulling perpendicular to the fiber main orientation direction is applied isotropically. You may assume that. In the welded portion, bending due to bending is often the main factor causing fracture, so the anisotropy is not expected to have a significant effect.
[0019]
As described above, a “stress-strain” diagram for each part of the resin product obtained by vibration welding the resin molded products reinforced with fibers was obtained. Then, the finite element method was executed next. Here, software of a finite element method called “ABAQUS” was used. In addition, “NASTRAN” can be used, and the finite element method software to be used is not particularly limited. Here, as an external force applied to the resin product, a hydrostatic pressure is applied to the hollow resin product from the inside. Each micro area was calculated as distorted according to the “stress-strain” diagram information estimated for each part in the resin molded product and the “stress-strain” measured diagram information at the vibration weld.
In the execution stage of the finite element method, the finite element method was repeatedly executed while increasing the hydrostatic pressure. In FIG. 11, the horizontal axis represents the hydrostatic pressure, and the vertical axis represents the maximum stress appearing on the resin product. Apparently, the maximum principal stress was saturated when the hydrostatic pressure was P, and the result did not increase any more.
This indicates that when the hydrostatic pressure exceeds P, the resin product suddenly begins to deform greatly, and as a result, the maximum stress is saturated and does not increase any more. Therefore, the hydrostatic pressure at this time was taken as the pressure resistance.
[0020]
When the breakdown voltage calculated in this way was compared with the actual measurement value, the average of the actual measurement value was 1.0 MPa, whereas the calculated value was 1.1 MPa, and the difference was 10%.
Further, when comparing the greatly distorted part, the calculated part and the actually distorted part agreed well. It was confirmed that a calculation that closely approximates the actual phenomenon can be performed by the method of this embodiment.
[0021]
When the finite element method is executed with the conventional concept of isotropicity, the calculated withstand voltage differs by 59% from the actual measurement value, and cannot be trusted at all. On the other hand, in the method of this embodiment, the error is suppressed to 10%, and this can be reliable.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram schematically showing the method of the present invention.
FIG. 2 is a diagram showing a mesh model used in the finite element method.
FIG. 3 is a view for explaining a method for forming a test piece.
FIG. 4 is a diagram showing a state in which a tensile test sample is adjusted from a test piece.
FIG. 5 is a stress-strain diagram obtained by actually measuring the sample of FIG. 4. FIG. 6 is a diagram showing the calculated fiber main orientation direction, orientation ratio, and actual orientation.
FIG. 7 is a diagram showing an actually measured stress-strain diagram and an estimated stress-strain diagram.
FIG. 8 is a diagram showing a process of obtaining a stress-strain diagram estimated from an actually measured stress-strain diagram.
FIG. 9 is a view for explaining characteristics of a vibration welded portion.
FIG. 10 is a stress-strain diagram measured at the vibration weld.
FIG. 11 is a diagram showing the relationship between the maximum stress calculated by the finite element method and the applied hydrostatic pressure.
[Explanation of symbols]
S1: A process of obtaining measured stress diagram information 6 of “stress-strain” using a test piece 4 of a resin molded product reinforced with fibers 2.
S2: Applying the “resin flow and fiber orientation” model to each resin molded product 8 to calculate the distribution in the resin molded product 8 in the fiber main orientation direction 10, and the Young's modulus in the fiber main orientation direction 10 and the direction perpendicular thereto A step of calculating the distribution in the resin molded product 8 of E1 and E2.
S3: From the Young's moduli E1 and E2 obtained in the Young's modulus distribution calculation step S2 and the measured diagram information 6 of “stress-strain” obtained for each representative angle, “ Step of obtaining estimated diagram information 12 and 14 of “stress-strain”.
S4: A step of obtaining actually measured diagram information 18 and 20 of “stress-strain” at the vibration welding portion 16.
S5: Finite element using external force information applied to resin product 22, "stress-strain" diagram information estimated in step S3, and "stress-strain" measured diagram information obtained in step S4 The process of performing the law.

Claims (3)

繊維で強化した樹脂成形品同士を振動溶着した樹脂製品の強度解析方法であり、
繊維で強化した樹脂成形品のテストピースを用いて、繊維主配向方向に対する代表的角度ごとに「応力―歪み」の実測線図情報を得る工程、
「樹脂流動と繊維配向」モデルを各樹脂成形品に適用して、繊維主配向方向の樹脂成形品内分布を算出し、繊維主配向方向とそれに直交する方向でのヤング率の樹脂成形品内分布を計算する工程、
前記ヤング率分布計算工程で得られたヤング率と、前記の代表的角度ごとに得られている「応力―歪み」の実測線図情報から、樹脂成形品内の部位ごとの「応力―歪み」の推定線図情報を得る工程、
振動溶着部での「応力―歪み」の実測線図情報を得る工程、
樹脂製品に加えられる外力情報と、樹脂成形品内の部位ごとに推定された「応力―歪み」の線図情報と、振動溶着部での「応力―歪み」の実測線図情報を用いて有限要素法を実行する工程、
を実行して樹脂製品の強度を解析する方法。
It is a strength analysis method for resin products in which resin molded products reinforced with fibers are vibration welded together.
Using a test piece of a resin-molded product reinforced with fibers to obtain measured diagram information of "stress-strain" for each representative angle with respect to the main fiber orientation direction,
Applying the "resin flow and fiber orientation" model to each resin molded product, calculating the distribution in the resin molded product in the fiber main orientation direction, and in the resin molded product of Young's modulus in the fiber main orientation direction and the direction perpendicular to it. Calculating the distribution,
Based on the Young's modulus obtained in the Young's modulus distribution calculation step and the measured diagram information of “stress-strain” obtained for each of the representative angles, “stress-strain” for each part in the resin molded product. Obtaining estimated diagram information of
A process for obtaining information on the actual measurement of "stress-strain" at the vibration weld,
Finite using external force information applied to resin products, "stress-strain" diagram information estimated for each part in the resin molded product, and "stress-strain" measured diagram information at vibration welds Performing the element method,
To analyze the strength of resin products.
繊維で強化した樹脂成形品同士を振動溶着した樹脂製品の強度解析方法であり、
繊維で強化した樹脂成形品のテストピースを用いて、繊維主配向方向に対する代表的角度(繊維主配向方向とそれに直交する方向を含む)ごとに「応力―歪み」の実測線図情報を得る工程、
「樹脂流動と繊維配向」モデルを各樹脂成形品に適用して、繊維主配向方向の樹脂成形品内分布を算出し、繊維主配向方向とそれに直交する方向でのヤング率の樹脂成形品内分布を計算する工程、
振動溶着部での繊維主配向方向を振動に沿った方向と推定する工程、
前記ヤング率分布計算工程で得られたヤング率と、前記の代表的角度ごとに得られている「応力―歪み」の実測線図情報から、樹脂成形品内の部位ごとの「応力―歪み」の推定線図情報を得る工程、
樹脂製品に加えられる外力情報と、樹脂成形品内の部位ごとに推定された「応力―歪み」の線図情報を用いて有限要素法を実行する工程、
を実行して樹脂製品の強度を解析する方法。
It is a strength analysis method for resin products in which resin molded products reinforced with fibers are vibration welded together.
Using a test piece of a resin-molded product reinforced with fibers to obtain measured stress-strain diagram information for each representative angle (including the main fiber orientation direction and the direction perpendicular thereto) with respect to the main fiber orientation direction ,
Applying the "resin flow and fiber orientation" model to each resin molded product, calculating the distribution in the resin molded product in the fiber main orientation direction, and in the resin molded product of Young's modulus in the fiber main orientation direction and the direction perpendicular to it. Calculating the distribution,
A step of estimating the fiber main orientation direction at the vibration welded portion as the direction along the vibration;
Based on the Young's modulus obtained in the Young's modulus distribution calculation step and the measured diagram information of “stress-strain” obtained for each of the representative angles, “stress-strain” for each part in the resin molded product. Obtaining estimated diagram information of
A step of executing a finite element method using external force information applied to a resin product and diagram information of “stress-strain” estimated for each part in the resin molded product,
To analyze the strength of resin products.
請求項1または2において、樹脂製品は吸気管であり、外力は吸気管内部に加えられる静水圧であり、その静水圧を増大させながら繰り返し有限要素法を実行するときに、静水圧の増加に抗して、有限要素法で計算される応力値が増加しなくなるときの静水圧を特定する吸気管の耐圧計算方法。3. The resin product according to claim 1, wherein the resin product is an intake pipe, and the external force is a hydrostatic pressure applied to the inside of the intake pipe, and when the finite element method is repeatedly executed while increasing the hydrostatic pressure, In contrast, a method of calculating the pressure resistance of the intake pipe that specifies the hydrostatic pressure when the stress value calculated by the finite element method does not increase.
JP2000195124A 2000-06-28 2000-06-28 Strength analysis method for products made by vibration welding resin molded products reinforced with fibers Expired - Fee Related JP3668837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195124A JP3668837B2 (en) 2000-06-28 2000-06-28 Strength analysis method for products made by vibration welding resin molded products reinforced with fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195124A JP3668837B2 (en) 2000-06-28 2000-06-28 Strength analysis method for products made by vibration welding resin molded products reinforced with fibers

Publications (2)

Publication Number Publication Date
JP2002014021A JP2002014021A (en) 2002-01-18
JP3668837B2 true JP3668837B2 (en) 2005-07-06

Family

ID=18693838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195124A Expired - Fee Related JP3668837B2 (en) 2000-06-28 2000-06-28 Strength analysis method for products made by vibration welding resin molded products reinforced with fibers

Country Status (1)

Country Link
JP (1) JP3668837B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381202B2 (en) * 2004-03-31 2009-12-09 株式会社マーレ フィルターシステムズ Analysis method of filler resin composition, analysis program, and recording medium recording analysis program
JP5226592B2 (en) * 2009-04-10 2013-07-03 ポリプラスチックス株式会社 Limit load prediction method for resin molded parts with stress concentration
CN108804852A (en) * 2018-06-28 2018-11-13 东汉新能源汽车技术有限公司 The prediction technique and device of fiber alignment

Also Published As

Publication number Publication date
JP2002014021A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
Rabczuk et al. A meshfree thin shell method for non‐linear dynamic fracture
Mellouli et al. Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method
Borst et al. Discrete vs smeared crack models for concrete fracture: bridging the gap
Krysl et al. The element free Galerkin method for dynamic propagation of arbitrary 3‐D cracks
Schjødt-Thomsen et al. The Mori–Tanaka stiffness tensor: diagonal symmetry, complex fibre orientations and non-dilute volume fractions
Perić et al. A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues
Papoulia et al. Time continuity in cohesive finite element modeling
Braun et al. Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates
JP2004069638A (en) Method for predicting crack development of elasto-plastic body and deformation predicting method
Park et al. Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element
JP3668837B2 (en) Strength analysis method for products made by vibration welding resin molded products reinforced with fibers
Başar et al. Constitutive model and finite element formulation for large strain elasto-plastic analysis of shells
Patni et al. Efficient modelling of beam-like structures with general non-prismatic, curved geometry
JP4271246B2 (en) Method and apparatus for predicting deformation due to shrinkage of molded product
TWI468030B (en) Point excitation placement in an audio transducer
JP2003090758A (en) Method and apparatus for simulating acoustic characteristic of molding
JP4574880B2 (en) Method and apparatus for structural strength simulation of injection molded product
JP2009020837A (en) Finite element analysis method for anisotropic member
Szuchács et al. Modeling and measuring the bonding strength of overmolded polymer parts
JP2019148869A (en) Structure analyzer and structure analysis program
Potukuchi Fracture analysis of carbon fiber/epoxy matrix interface through microbond and cruciform tests
JP4707216B2 (en) Structure analysis device
Willems et al. Prediction of the mechanical properties of long fiber reinforced thermoplastics
JP4760374B2 (en) CAE analysis apparatus and method
JP2004037397A (en) Plain weave membrane material analytical system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees