JP2000203841A - Dissolving extraction for alloy containing tantalum and/ or niobium - Google Patents

Dissolving extraction for alloy containing tantalum and/ or niobium

Info

Publication number
JP2000203841A
JP2000203841A JP10374615A JP37461598A JP2000203841A JP 2000203841 A JP2000203841 A JP 2000203841A JP 10374615 A JP10374615 A JP 10374615A JP 37461598 A JP37461598 A JP 37461598A JP 2000203841 A JP2000203841 A JP 2000203841A
Authority
JP
Japan
Prior art keywords
niobium
tantalum
acid
hydrofluoric acid
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10374615A
Other languages
Japanese (ja)
Other versions
JP3613443B2 (en
Inventor
Hiromichi Isaka
阪 浩 通 井
Masanori Kinoshita
下 正 典 木
Yoshio Sohama
浜 嘉 男 祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP37461598A priority Critical patent/JP3613443B2/en
Publication of JP2000203841A publication Critical patent/JP2000203841A/en
Application granted granted Critical
Publication of JP3613443B2 publication Critical patent/JP3613443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of highly productive dissolving extraction for alloys containing tantalum and/or niobium, improved in the recovery of tantalum and/or niobium with a small amount of hydrofluoric acid to be used. SOLUTION: This method of the dissolving extraction of tantalum and/or niobium from alloys containing the element(s) with hydrofluoric acid or its mixture with sulfuric acid comprises the following process: a specified amount of water in a reaction tank is charged with a necessary amount of pulverized alloys containing tantalum and/or niobium followed by treatment with sodium hydroxide, the resulting liquor thus treated is subjected to solid/liquid separation, the resultant insoluble product is then treated with a mineral acid other than hydrofluoric acid to dissolve impurity metals other than the tantalum and/or niobium in the mineral acid; subsequently, a solid/liquid separation is carried out, and the resultant remaining insoluble product is put to dissolving extraction with hydrofluoric acid or its mixture with sulfuric acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タンタルおよび/
またはニオブ含有合金からこれらの金属元素を経済的に
効率良く回収するための溶解抽出方法に関する。
[0001] The present invention relates to tantalum and / or tantalum.
Alternatively, the present invention relates to a dissolution extraction method for economically and efficiently recovering these metal elements from a niobium-containing alloy.

【0002】[0002]

【従来の技術】タンタルは、その用途が広く、耐食性、
耐熱性に優れているため化学工業用として蒸留塔、オー
トクレーブ、熱交換器、化学繊維用紡糸ノズルなど各種
化学装置に用いられている。また、一般にタンタル酸化
皮膜は、弁作用(電極が正極であれば誘電体に動作する
が、逆に電極が負極であると誘電体として動作しないと
いう特性、すなわち整流特性)と呼ばれる特性を有して
いるため電解コンデンサの電極材料として使用され、搬
送機器、電子機器、電子制御機器などに用いられてい
る。さらに炭化タンタルは超硬切削工具用材料として、
酸化タンタルは光学レンズの添加剤として利用されてお
り、タンタルの重要性は極めて大きく、その需要は増大
している。
2. Description of the Related Art Tantalum has a wide range of uses, corrosion resistance,
Because of its excellent heat resistance, it is used in various chemical devices such as distillation towers, autoclaves, heat exchangers, and spinning nozzles for chemical fibers for the chemical industry. In general, a tantalum oxide film has a characteristic called a valve action (a characteristic in which the electrode functions as a dielectric if the electrode is a positive electrode, but does not operate as a dielectric when the electrode is a negative electrode, that is, a rectifying characteristic). Therefore, it is used as an electrode material for electrolytic capacitors, and is used in transport equipment, electronic equipment, electronic control equipment, and the like. Furthermore, tantalum carbide is used as a material for carbide cutting tools.
Tantalum oxide is used as an additive for optical lenses, and tantalum is very important and its demand is increasing.

【0003】ニオブは、鋼中の炭素を安定化し、粒間腐
食を防ぐ効果があるので鉄鋼添加材として使用されてお
り、これが最大の用途である。また、高圧ナトリウムラ
ンプのランプ発光部に付随する導電管としてニオブ合金
が実用化されており、さらに超電導材料や超合金の添加
元素などに利用されている。
[0003] Niobium is used as a steel additive because it has the effect of stabilizing carbon in steel and preventing intergranular corrosion, and this is the largest use. In addition, a niobium alloy has been put to practical use as a conductive tube attached to a lamp light emitting portion of a high-pressure sodium lamp, and is used as a superconducting material or an additive element of a superalloy.

【0004】タンタルおよび/またはニオブ含有合金か
らタンタルやニオプの酸化物を製造する方法はいくつか
あるが、フッ化水素酸溶解−溶媒抽出法が一般的であ
る。
There are several methods for producing tantalum and / or niobium oxide from a tantalum and / or niobium-containing alloy, but a hydrofluoric acid dissolution-solvent extraction method is generally used.

【0005】タンタル含有合金またはニオブ含有合金の
フッ化水素酸あるいはこれと硫酸との混酸による溶解抽
出においては、下記の反応式(1)、(2)および
(3)に示すように、水素ガスが発生する。
In the dissolution and extraction of a tantalum-containing alloy or a niobium-containing alloy with hydrofluoric acid or a mixed acid thereof with sulfuric acid, hydrogen gas is used as shown in the following reaction formulas (1), (2) and (3). Occurs.

【0006】 M+5HF→M5++5F- +5/2H2 ↑ ……(1) ただし、Mは金属元素を表す。M + 5HF → M 5+ + 5F + 5 / 2H 2 … (1) Here, M represents a metal element.

【0007】水素ガスは、空気に対して7〜72%の極
めて広範囲の爆発組成を構成するためタンタルおよび/
またはニオブ含有合金をフッ化水素酸またはこれと硫酸
との混酸で直接溶解抽出する方法は危険であり、安全性
の点で問題があった。
[0007] Hydrogen gas constitutes a very wide explosion composition of 7-72% with respect to air, so tantalum and / or
Alternatively, a method of directly dissolving and extracting a niobium-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid is dangerous and has a problem in terms of safety.

【0008】これらの問題点を解消するため、従来方法
として特公平5−20490号公報および特願平10−
263288号に記載の方法が提案されている。特公平
5−20490号公報に記載されている方法は、溶解抽
出工程における水素の発生を無くして爆発の危険を解消
すると共に、ニオブの不働態化を阻止してニオブの回収
率を高めることを目的とし、ニオブ含有合金を燃焼酸化
した後、フッ化水素酸と硫酸との混酸を用いてニオブを
溶解抽出する方法である。
In order to solve these problems, a conventional method is disclosed in Japanese Patent Publication No. 5-20490 and Japanese Patent Application No.
No. 263288 has been proposed. The method described in Japanese Examined Patent Publication No. 5-249090 eliminates the risk of explosion by eliminating the generation of hydrogen in the dissolution extraction step, and also increases the recovery rate of niobium by preventing passivation of niobium. The purpose of this method is to dissolve and extract niobium using a mixed acid of hydrofluoric acid and sulfuric acid after burning and oxidizing a niobium-containing alloy.

【0009】また特願平10−263288号に記載の
方法は、タンタルおよび/またはニオブ含有合金を燃焼
酸化することなくフッ化水素酸またはこれと硫酸との混
酸で直接溶解抽出する際、発生する水素ガスを爆発組成
以下に抑制し、安全に操業できるようにすることを目的
とし、反応槽内の所定量の水中にタンタルおよび/また
はニオブ含有合金を所要量投入後、フッ化水素酸または
これと硫酸との混酸を継続的に添加し、発生する水素ガ
スを抑制しながら溶解する方法である。
The method described in Japanese Patent Application No. 10-263288 occurs when a tantalum and / or niobium-containing alloy is directly dissolved and extracted with hydrofluoric acid or a mixed acid thereof with sulfuric acid without burning and oxidation. The purpose is to suppress the hydrogen gas to below the explosion composition and to operate safely. After charging a required amount of tantalum and / or niobium-containing alloy into a predetermined amount of water in the reaction tank, This is a method in which a mixed acid of sulfur and sulfuric acid is continuously added and dissolved while suppressing the generated hydrogen gas.

【0010】これらの方法は、原料であるタンタルおよ
び/またはニオブ含有合金の合金構成金属を全て、処理
液中に溶解させるため多量のフッ化水素酸を必要とす
る。また溶媒抽出によりタンタルおよび/またはニオブ
を回収するに際しては、溶媒抽出工程で析出する恐れの
ある溶解している不純物金属特に鉄を沈殿、析出させ濾
過分離により残渣として除去する必要があるが、その際
不純物金属沈殿物側にタンタル、ニオブが一部移行する
のでタンタル、ニオブの回収率が低下する。さらに、残
渣を洗浄水で洗浄して洗浄水中にタンタル、ニオブを回
収すると、溶媒抽出工程に供する処理液量が増加し、溶
媒抽出工程での生産効率が低下するなどの課題がある。
These methods require a large amount of hydrofluoric acid in order to dissolve all the constituent metals of the alloy of the tantalum and / or niobium-containing alloy as the raw materials in the processing solution. When recovering tantalum and / or niobium by solvent extraction, it is necessary to precipitate and precipitate dissolved impurity metals, particularly iron, which may be precipitated in the solvent extraction step, and remove them as residues by filtration and separation. In this case, since tantalum and niobium partially migrate to the impurity metal precipitate side, the recovery rate of tantalum and niobium decreases. Furthermore, when the residue is washed with washing water to recover tantalum and niobium in the washing water, there are problems such as an increase in the amount of the treatment liquid to be subjected to the solvent extraction step, and a decrease in production efficiency in the solvent extraction step.

【0011】そこで、溶解抽出すべきタンタル、ニオブ
以外の不純物金属が多い場合、使用するフッ化水素酸の
使用量が少なく、ニオブ、タンタルの回収率が高く、生
産性が優れたニオブ、タンタルの溶解抽出法の出現が強
く求められている。
Therefore, when there are many impurity metals other than tantalum and niobium to be dissolved and extracted, the amount of hydrofluoric acid used is small, the recovery of niobium and tantalum is high, and the productivity of niobium and tantalum is excellent. The emergence of the dissolution extraction method is strongly demanded.

【0012】[0012]

【発明が解決しようとする課題】本発明は、フッ化水素
酸の使用量が少なく、タンタル、ニオブの回収率を向上
させた、生産性の高いタンタルおよび/またはニオブ含
有合金の溶解抽出方法を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a method for dissolving and extracting a tantalum and / or niobium-containing alloy with high productivity, which uses a small amount of hydrofluoric acid and improves the recovery of tantalum and niobium. To provide.

【0013】[0013]

【課題を解決するための手段】本発明は、下記の事項を
その特徴としている。タンタルおよび/またはニオブ含
有合金中のタンタルおよび/またはニオブをフッ化水素
酸またはこれと硫酸との混酸で溶解抽出する方法におい
て、反応槽内の所定量の水中に、粉砕したタンタルおよ
び/またはニオブ含有合金を所要量投入後、まず苛性ソ
ーダ(NaOH)で処理し、処理液を固液分離し、得ら
れた不溶解性生成物をフッ化水素酸以外の鉱酸で処理し
てタンタル、ニオブ以外の不純物金属を鉱酸中に溶出さ
せ、次いで固液分離を行い、得られた残存する不溶解性
生成物をフッ化水素酸またはこれと硫酸との混酸で溶解
抽出することを特徴とするタンタルおよび/またはニオ
ブ含有合金の溶解抽出方法。
The present invention has the following features. In a method of dissolving and extracting tantalum and / or niobium in a tantalum and / or niobium-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, pulverized tantalum and / or niobium are introduced into a predetermined amount of water in a reaction vessel. After charging the required amount of the alloy, first treat it with caustic soda (NaOH), separate the treatment liquid into solid and liquid, and treat the resulting insoluble product with a mineral acid other than hydrofluoric acid to remove tantalum and niobium. Eluted impurity metals in mineral acid, then perform solid-liquid separation, and dissolve and extract the remaining insoluble product obtained with hydrofluoric acid or a mixed acid thereof with sulfuric acid. And / or a method for dissolving and extracting a niobium-containing alloy.

【0014】以下に、本発明を詳細に説明する。まず、
従来のタンタルおよび/またはニオブ含有合金を出発原
料として酸化タンタルまたは酸化ニオブを製造する工程
を、図1に示す。図1に基づいてニオブ含有合金のうち
フェロニオブを原料として使用した一般的な例について
説明すると、まず、フェロニオブの溶解率を上げるため
にジョークラッシャー等の粗砕機で粗粉砕し、溶解槽に
入れて55%のフッ化水素酸(HF)で金属成分を溶解
する。次に硫酸(H2 SO4 )を加えて溶液の酸濃度を
調整し、これをフィルタープレスで濾過し、未溶解残渣
を濾過して清浄な溶液にして溶媒抽出にかける。次にこ
の酸濃度が高い水溶液を有機溶媒MIBK(メチルイソ
ブチルケトンの略称)と十分接触させると、ニオブはM
IBKに抽出され、不純物は抽残液に残る。次に、ニオ
ブを含むMIBKを希硫酸で逆抽出し、精製ニオブ水溶
液を得、次いでアンモニア水(NH4 OH)を加えて水
酸化物の沈殿にし、これを濾過、乾燥し、最後に炉でか
焼すれば酸化ニオブが得られる。
Hereinafter, the present invention will be described in detail. First,
FIG. 1 shows a process for producing tantalum oxide or niobium oxide using a conventional tantalum and / or niobium-containing alloy as a starting material. A general example using ferronium as a raw material among niobium-containing alloys will be described with reference to FIG. 1. First, in order to increase the dissolution rate of ferroniob, coarsely pulverized by a crusher such as a jaw crusher and put into a melting tank. Dissolve the metal component with 55% hydrofluoric acid (HF). Next, sulfuric acid (H 2 SO 4 ) is added to adjust the acid concentration of the solution, which is filtered with a filter press, and the undissolved residue is filtered to obtain a clean solution and subjected to solvent extraction. Next, when this aqueous solution having a high acid concentration is brought into sufficient contact with an organic solvent MIBK (abbreviation for methyl isobutyl ketone), niobium becomes M
Extracted into IBK, impurities remain in raffinate. Next, MIBK containing niobium is back-extracted with dilute sulfuric acid to obtain a purified aqueous solution of niobium. Then, aqueous ammonia (NH 4 OH) is added to precipitate hydroxide, which is filtered, dried, and finally placed in a furnace. Calcination gives niobium oxide.

【0015】本発明は、図1に示す従来工程における、
粉砕工程と液調整工程の間の溶解工程の改良に係るもの
であって、微細化したタンタルおよび/またはニオブ含
有合金を苛性ソーダで処理し、次いでフッ化水素酸以外
の鉱酸で処理することを特徴とする方法であって、これ
によって大部分の不純物成分を鉱酸に溶出させ、精製さ
れたタンタルまたはニオブの未溶解物を得ることができ
る。
The present invention relates to a conventional process shown in FIG.
The present invention relates to an improvement in a melting step between a pulverizing step and a liquid adjusting step, in which a finely divided tantalum and / or niobium-containing alloy is treated with caustic soda, and then treated with a mineral acid other than hydrofluoric acid. A method characterized by the fact that most of the impurity components can be eluted into the mineral acid to obtain purified tantalum or niobium insolubles.

【0016】本発明に係るタンタルおよび/またはニオ
ブ含有合金の溶解抽出方法の工程図を、図2に示す。タ
ンタルおよび/またはニオブ含有合金として鉄を30%
程度含む原料を使用した例について説明すると、まず出
発原料であるTa含有フェロニオブ(Fe−Ta/N
b)をジョークラッシャで粗砕し、さらに湿式ボールミ
ルで微粉砕し、得られた微細粉末合金を50〜100℃
の苛性ソーダ水溶液で処理する。苛性ソーダの濃度は好
ましくは100〜600g/l、より好ましくは300
〜500g/lが適当である。苛性ソーダ水溶液の苛性
ソーダ濃度が100g/l未満では反応に時間がかかり
すぎ経済性が悪くなる。一方濃度が600g/l超では
粘度が高く、取扱いが困難となる。苛性ソーダによる合
金粉末の処理は、合金構造を破壊し、タンタルおよび/
またはニオブは苛性ソーダおよびフッ化水素酸を除く鉱
酸に不溶解性の反応生成物となし、またFeは苛性ソー
ダに不溶解性で鉱酸可溶性の反応生成物とし後工程にお
けるFeのフッ化水素酸以外の鉱酸への溶解、すなわち
脱Feを可能とする。NaOHの一部は、Na2
3 、NaHCO3 で置き換えることができる。
FIG. 2 shows a process chart of a method for dissolving and extracting a tantalum and / or niobium-containing alloy according to the present invention. 30% iron as tantalum and / or niobium containing alloy
A description will be given of an example in which a raw material containing a certain amount is used. First, a Ta-containing ferroniobium (Fe-Ta / N
b) is coarsely crushed with a jaw crusher and further finely pulverized with a wet ball mill.
With an aqueous solution of caustic soda. The concentration of caustic soda is preferably 100-600 g / l, more preferably 300
~ 500 g / l is suitable. When the concentration of caustic soda in the aqueous caustic soda solution is less than 100 g / l, the reaction takes too much time, and the economical efficiency deteriorates. On the other hand, when the concentration is more than 600 g / l, the viscosity is high and handling becomes difficult. Treatment of the alloy powder with caustic soda destroys the alloy structure and causes tantalum and / or
Alternatively, niobium is a reaction product insoluble in mineral acids other than caustic soda and hydrofluoric acid, and Fe is a reaction product insoluble in caustic soda and soluble in mineral acids, and the hydrofluoric acid Dissolving in other mineral acids, that is, removing Fe. Part of NaOH is Na 2 C
It can be replaced by O 3 , NaHCO 3 .

【0017】次いで濾過して処理液を固液分離し、濾液
と不溶解性生成物に分ける。不溶解性生成物にはNaO
Hに溶解しないTa,Nb,Feなどの反応生成物が存
在する。この不溶解性生成物は塩酸や硫酸のフッ化水素
酸以外の鉱酸で処理し、大部分の不純物成分であるFe
などを鉱酸に溶出させる。この脱Fe工程ではFeは除
去されるが、Ta/Nbは未溶解のままである。
Next, the treated liquid is subjected to solid-liquid separation by filtration, and separated into a filtrate and an insoluble product. Insoluble products include NaO
There are reaction products such as Ta, Nb, and Fe that do not dissolve in H. This insoluble product is treated with a mineral acid other than hydrofluoric acid such as hydrochloric acid or sulfuric acid, and most of the impurity components Fe
Etc. are eluted in mineral acids. In this Fe removal step, Fe is removed, but Ta / Nb remains undissolved.

【0018】その後、この溶液を濾過してFeCl2
あるいはFeSO4 の濾過液とTa/Nbを含有する未
溶解物に分ける。FeCl2 液あるいはFeSO4 液は
中和され廃さいとなる。一方Ta/Nbを含む未溶解物
はフッ化水素酸で、Ta/Nbが溶解され、続いて濾過
で溶解残渣が除去され、高品位のTa/Nb液が得られ
る。このTa/Nb液は、図1に示す液調整工程を経て
溶媒抽出工程に移行される。
Thereafter, this solution is filtered to separate it into a FeCl 2 liquid or a FeSO 4 filtrate and an undissolved substance containing Ta / Nb. The FeCl 2 liquid or the FeSO 4 liquid is neutralized and wasted. On the other hand, the undissolved material containing Ta / Nb is hydrofluoric acid, in which Ta / Nb is dissolved, and then the dissolved residue is removed by filtration to obtain a high-quality Ta / Nb solution. This Ta / Nb liquid is transferred to a solvent extraction step through a liquid adjustment step shown in FIG.

【0019】[0019]

【実施例】以下に、本発明を実施例と比較例によりさら
に説明する。実施例1 Ta含有フェロニオブ(Fe−Ta/Nb)200g
(Fe29%、Ta4.5%、Nb41.2%)をジョ
ークラッシャーで粗粉砕し、次いで湿式ボールミルで微
粉砕してFe−Ta/Nbのスラリーを得た。このFe
−Ta/Nbスラリー(スラリー濃度1000g/l)
とNaOH水溶液200ml(濃度100g/l)とを
反応槽(容量1l)に入れ、攪拌混合しながら液温75
℃に加温した。
The present invention will be further described below with reference to examples and comparative examples. Example 1 Ta-containing ferroniobium (Fe-Ta / Nb) 200 g
(Fe 29%, Ta 4.5%, Nb 41.2%) was roughly pulverized with a jaw crusher and then finely pulverized with a wet ball mill to obtain a Fe-Ta / Nb slurry. This Fe
-Ta / Nb slurry (slurry concentration 1000 g / l)
And 200 ml of an aqueous NaOH solution (concentration: 100 g / l) were placed in a reaction vessel (volume: 1 liter), and the mixture was stirred at a liquid temperature of 75 ml.
Warmed to ° C.

【0020】次に反応槽に濃度735g/lのNaOH
210mlを160分かけて少量ずつ添加した結果、反
応槽内のNaOH換算濃度は425g/lに達した。N
aOH添加終了後も255分間液温75℃に保持しなが
ら、攪拌を継続後、全量をフィルタプレスで濾過分離し
た。得られた不溶解性生成物を反応槽(容量5l)に入
れ、次いで4NH2 SO4 2000mlを反応槽に添加
し、更にpH1になるようにH2 SO4 を添加し、pH
1に維持しながら、60分間攪拌を継続し、鉄を硫酸酸
性水溶液中に溶解させた。反応終了液をフィルタプレス
へ送液し濾過分離して濾液(FeSO4 水溶液)300
0ml(Fe18.8g/l)と未溶解物(脱Feケー
キ)湿量352.8g(Dry212.0g)を得た。
Next, 735 g / l of NaOH was added to the reaction vessel.
As a result of adding 210 ml little by little over 160 minutes, the concentration in terms of NaOH in the reaction tank reached 425 g / l. N
The stirring was continued while maintaining the liquid temperature at 75 ° C. for 255 minutes after the completion of the aOH addition, and the whole amount was separated by filtration with a filter press. The obtained insoluble product was put into a reaction vessel (volume: 5 l), then 2,000 ml of 4NH 2 SO 4 was added to the reaction vessel, and H 2 SO 4 was further added to pH 1, and
While maintaining at 1, stirring was continued for 60 minutes to dissolve iron in the aqueous sulfuric acid solution. The reaction-terminated liquid is sent to a filter press, separated by filtration, and filtrated (FeSO 4 aqueous solution) 300
0 ml (18.8 g / l of Fe) and 352.8 g (212.0 g of Dry) of undissolved matter (de-Fe cake) were obtained.

【0021】このようにして得られた脱Feケーキ21
2.0g(Dryベース)を水0.1lを張り込んだ反応
槽(容量0.5l)に入れ、攪拌しながら、濃度80%
のHF0.14lを少量ずつ添加し、60℃に加温、温
度保持しながら60分間攪拌を継続し、Ta/NbのH
Fへの溶解抽出を行った。
The de-Fe cake 21 thus obtained is obtained.
2.0 g (dry base) was placed in a reaction tank (volume: 0.5 l) into which 0.1 l of water had been impregnated.
0.14 l of HF was added little by little, and the mixture was heated to 60 ° C. and stirred for 60 minutes while maintaining the temperature.
Dissolution extraction into F was performed.

【0022】得られた溶解抽出液を全量を濾紙で濾過し
て濾液0.44リットル(Nb185g/l、Ta20
g/l、Fe21g/l)と溶解残渣12.7g(Fe
0.3%、Nb13.6%、Ta1.6%)を得た。溶
解抽出で回収されたTa、Nbの回収率は各々Nb9
7.9%、Ta97.6%であった。
The whole amount of the obtained dissolved extract was filtered through filter paper to obtain 0.44 liter of the filtrate (185 g / l Nb, Ta20).
g / l, 21 g / l Fe) and 12.7 g of dissolved residue (Fe
0.3%, Nb 13.6%, Ta 1.6%). The recovery rates of Ta and Nb recovered by dissolution extraction were Nb9
7.9% and Ta 97.6%.

【0023】比較例1 ジョークラッシャで粗粉砕されたFe−Ta/Nb合金
200gを水0.2lを張込んだ反応槽(容量1l)に
入れ攪拌混合しながら、少量ずつHFを添加し、12時
間かけて溶解抽出を行った。使用した55%HFの量は
0.24lであった。
Comparative Example 1 200 g of an Fe-Ta / Nb alloy roughly pulverized by a jaw crusher was placed in a reaction tank (volume: 1 liter) filled with 0.2 liter of water, and HF was added little by little while stirring and mixing. Dissolution extraction was performed over time. The amount of 55% HF used was 0.24 l.

【0024】次に得られた溶解抽出液に、H2 SO4
添加し、H2 SO4 濃度が4Nになるように調整した
後、全量フィルタプレスで濾過して濾液1.1l(Nb
70g/l、Ta7.6g/l、Fe30g/l)と溶
解残渣100g(Dryベース)を得た。溶解残渣はFe
25.1%、Nb4.8%、Ta0.6%であり、T
a、Nbの回収率は各Nb93.4%、Ta92.9%
であった。
Then, H 2 SO 4 was added to the obtained dissolved extract to adjust the H 2 SO 4 concentration to 4N, and the whole was filtered with a filter press to obtain 1.1 L (Nb) of the filtrate.
70 g / l, Ta 7.6 g / l, Fe 30 g / l) and 100 g of dissolved residue (dry basis) were obtained. Dissolution residue is Fe
25.1%, Nb 4.8%, Ta 0.6%, and T
The recovery rates of a and Nb were 93.4% for each Nb and 92.9% for Ta.
Met.

【0025】実施例2 ボールミルで微粉砕された各100gのFe−Ta/N
b合金(Fe29%、Ta4.5%、Nb41.2%)
をNaOH水溶液中に投入し、NaOH処理を行った。
NaOH処理はNaOHの濃度、添加量、液温、処理時
間をいろいろかえて行われた。
Example 2 100 g of Fe-Ta / N each finely pulverized by a ball mill
b alloy (Fe 29%, Ta 4.5%, Nb 41.2%)
Was poured into an aqueous solution of NaOH to perform a NaOH treatment.
The NaOH treatment was performed by changing the concentration, the amount of addition, the liquid temperature, and the treatment time of NaOH.

【0026】上記各条件でのNaOH処理後、反応終了
液を全量フィルタプレスで濾過分離して不溶解性生成物
を得た。得られた不溶解性生成物を反応槽(容量3l)
に入れH2 SO4 をpH1に維持できるまで添加し、不
溶解性生成物中の鉄を硫酸中に溶出させた。その後全量
液をフィルタプレスで濾過分離し未溶解物(脱Feケー
キ)を得、各々の脱Feケーキ中のFe量を分析測定
し、脱Fe率を求めた。その結果を、表1に示す。
After the NaOH treatment under each of the above conditions, the whole reaction solution was filtered and separated by a filter press to obtain an insoluble product. The obtained insoluble product is placed in a reaction tank (volume: 3 l).
H 2 SO 4 was added until pH 1 was maintained, and the iron in the insoluble product was eluted in sulfuric acid. Thereafter, the whole liquid was separated by filtration with a filter press to obtain an undissolved substance (de-Fe cake), and the amount of Fe in each de-Fe cake was analyzed and measured, and the de-Fe ratio was determined. Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例3 ボールミルで微粉砕されたFe−Ta/Nb(Fe29
%、Ta4.5%、Nb41.2%)25kgを、濃度
500g/lの苛性ソーダ水溶液44l中に少量ずつ添
加し、10時間かけて投入し、液温を75±5℃に保持
しながらNaOH処理を行った。
Example 3 Fe-Ta / Nb (Fe29) finely pulverized by a ball mill
%, Ta 4.5%, Nb 41.2%) was added little by little to 44 l of a 500 g / l aqueous solution of caustic soda, added over 10 hours, and treated with NaOH while maintaining the liquid temperature at 75 ± 5 ° C. Was done.

【0029】Fe−Ta/Nb投入完了後のNaOH処
理時間経過毎にサンプルを0.1l採取し、そのサンプ
ルを濾紙で濾過分離し、不溶解性生成物を得、得られた
不溶解性生成物を反応槽(容量1l)に入れ、H2 SO
4 をpH1に維持できるまで添加し、不溶解性生成物中
のFeを硫酸中に溶出させた。その後全量液を濾紙で濾
過分離し、未溶解物(脱Feケーキ)を得、各々の脱F
eケーキ中のFe量を分析測定した。その結果を、図3
に示す。
After the completion of the Fe-Ta / Nb injection, a sample of 0.1 L was taken every elapse of the NaOH treatment time, and the sample was separated by filtration through filter paper to obtain an insoluble product. The substance was put into a reaction tank (volume of 1 l), and H 2 SO
4 was added until pH 1 could be maintained, and the Fe in the insoluble product was eluted in the sulfuric acid. Thereafter, the whole liquid was separated by filtration with filter paper to obtain an undissolved substance (de-Fe cake).
The amount of Fe in the e-cake was analyzed and measured. The result is shown in FIG.
Shown in

【0030】実施例4 ボールミルで微粉砕された25kgのFe−Ta/Nb
(Fe29%、Ta4.5%、Nb41.2%)を濃度
500g/lのNaOHの苛性ソーダ44l中に少量ず
つ添加し、10時間かけて投入し液温を75±5℃に保
持しながら更に14時間攪拌を継続した。
Example 4 25 kg of Fe-Ta / Nb finely pulverized by a ball mill
(29% of Fe, 4.5% of Ta, 41.2% of Nb) were added little by little to 44 liters of 500 g / l NaOH caustic soda, and the mixture was added thereto over 10 hours while maintaining the liquid temperature at 75 ± 5 ° C. and further adding 14 parts. Stirring was continued for hours.

【0031】上記反応終了液を全量フィルタプレスで濾
過し、不溶解性生成物を得、得られた不溶解性生成物を
5分割し、各々を反応槽(容量100l)に入れ、H2
SO4 濃度および添加量をかえてFeの溶出を行い、フ
ィルタプレスで濾過分離して未溶解物(脱Feケーキ)
を得、得られた脱Feケーキ中のFe量を分析測定し、
Fe除去率を求めた。その結果を、図4に示す。
[0031] The reaction-terminated liquid was filtered with a total volume of filter press to obtain a insoluble product, insoluble product obtained 5 divided, placed each reaction vessel (volume 100l), H 2
Elution of Fe was carried out by changing the concentration of SO 4 and the amount of addition, and undissolved matter (de-Fe cake) was separated by filtration with a filter press.
And the Fe content in the obtained de-Fe cake was analyzed and measured,
The Fe removal rate was determined. The result is shown in FIG.

【0032】実施例5 実施例4において、H2 SO4 の代りにHClを用いた
以外は同様の条件で試験を行った。ボールミルで微粉砕
された25kgのFe−Ta/Nb(Fe29%、Ta
4.5%、Nb41.2%)を濃度500g/lのNa
OHの苛性ソーダ44l中に少量ずつ添加し、10時間
かけて投入し、液温を75±5℃に保持しながら更に1
4時間攪拌を継続した。
Example 5 A test was performed under the same conditions as in Example 4 except that HCl was used instead of H 2 SO 4 . 25 kg of Fe-Ta / Nb (Fe 29%, Ta
4.5%, Nb 41.2%) at a concentration of 500 g / l Na
OH was added little by little to 44 liters of caustic soda, and charged over 10 hours.
Stirring was continued for 4 hours.

【0033】上記反応終了液を全量フィルタプレスで濾
過し、不溶解性生成物を得、得られた不溶解性生成物を
5分割し、各々を反応槽(容量100l)に入れ、HC
l濃度および添加量をかえてFeの溶出を行い、フィル
タプレスで濾過分離して未溶解物(脱Feケーキ)を
得、得られた脱Feケーキ中のFe量を分析測定し、F
e除去率を求めた。その結果を、図5に示す。
[0033] The whole reaction solution was filtered with a filter press to obtain an insoluble product. The obtained insoluble product was divided into 5 parts, each of which was put into a reaction tank (capacity: 100 l).
Then, Fe was eluted by changing the concentration and the amount of addition, and separated by filtration with a filter press to obtain an undissolved substance (de-Fe cake). The Fe content in the obtained de-Fe cake was analyzed and measured.
e The removal rate was determined. The result is shown in FIG.

【0034】[0034]

【発明の効果】1. 従来法は原料合金中のTa/Nb
以外の不純物金属も全て、フッ化水素酸またはこれと硫
酸との混酸で溶解抽出するので、高価なフッ化水素酸を
多量に必要とするが、本発明では、原料合金中の不純物
金属を前処理(NaOH処理、脱鉄処理)で除去した
後、Ta/Nbをフッ化水素酸またはこれと硫酸との混
酸で溶解抽出するのでフッ化水素酸の使用量が少ない。
特に、Fe−Ta/Nb合金の如く、Ta/Nbに比較
してFeの量が多いものはその効果の差は顕著である。 2. 原料中の不純物金属特に鉄は、中和されて廃滓と
して廃棄されるが、脱Fe処理工程からのFe含有濾液
中には、Fが含有されていないため濾液処理に際し、C
a塩によるF処理が不要となり、中和された廃滓量は従
来法に比べ大幅に減少する。
Advantages of the Invention The conventional method uses Ta / Nb
All of the other impurity metals are dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. Therefore, a large amount of expensive hydrofluoric acid is required. After removal by treatment (NaOH treatment, deironing treatment), Ta / Nb is dissolved and extracted with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid, so that the amount of hydrofluoric acid used is small.
In particular, the difference in the effect is remarkable in an alloy having a large amount of Fe as compared with Ta / Nb, such as an Fe-Ta / Nb alloy. 2. The impurity metals, particularly iron, in the raw material are neutralized and discarded as waste, but the Fe-containing filtrate from the de-Fe treatment step does not contain F, so the C is not treated during the filtrate treatment.
The F treatment with salt a becomes unnecessary, and the amount of neutralized waste is greatly reduced as compared with the conventional method.

【0035】3. 本発明ではNaOH処理により原料
合金中のTa/Nbはフッ酸以外の鉱酸には不溶解性の
生成物となるため、鉱酸処理ではFe等の不純物のみ溶
解抽出されるため不純物側へのTa/Nbの移行がなく
Ta/Nbの回収率を高めることができる。 4. Ta/Nbの不純物側への移行がなく、従来行わ
れていたFe等の不純物残渣へ移行したTa/Nbの回
収のための残渣洗浄に伴う回収水の発生がなく溶媒抽出
工程へ通す液中のTa/Nbの濃度が高くなり、生産性
が向上する。 5. NaOH処理後の濾過工程の濾液は、不純物をあ
まり含まないのでNaOH処理工程で使用するNaOH
溶解用の用水として、あるいはFe塩溶液の排水処理用
中和剤しとて再利用できる。
3. In the present invention, since Ta / Nb in the raw material alloy becomes a product insoluble in mineral acids other than hydrofluoric acid by the NaOH treatment, only impurities such as Fe are dissolved and extracted in the mineral acid treatment. There is no transfer of Ta / Nb, and the recovery rate of Ta / Nb can be increased. 4. There is no transfer of Ta / Nb to the impurity side, and there is no generation of recovered water due to residue washing for recovery of Ta / Nb which has been transferred to impurity residues such as Fe which has been conventionally performed. Increases the concentration of Ta / Nb, thereby improving the productivity. 5. Since the filtrate in the filtration step after the NaOH treatment does not contain much impurities, the NaOH used in the NaOH treatment step
It can be reused as water for dissolution or as a neutralizing agent for wastewater treatment of Fe salt solutions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のタンタルおよび/またはニオブ含有合金
からの酸化焙焼法による酸化タンタル/酸化ニオブを製
造する工程図である。
FIG. 1 is a process chart for producing tantalum oxide / niobium oxide from a conventional tantalum and / or niobium-containing alloy by an oxidative roasting method.

【図2】本発明の鉄含有タンタル/ニオブ合金の溶解抽
出方法の工程図である。
FIG. 2 is a process diagram of a method for dissolving and extracting an iron-containing tantalum / niobium alloy according to the present invention.

【図3】本発明の実施例3におけるNaOH処理でのF
e−Ta/Nb合金投入終了からの時間と脱Fe品のF
e含有率との関係を示すグラフである。
FIG. 3 shows F in NaOH treatment in Example 3 of the present invention.
Time from the end of charging the e-Ta / Nb alloy and F
It is a graph which shows the relationship with e content rate.

【図4】実施例4におけるH2 SO4 使用当量とFe除
去率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the use equivalent of H 2 SO 4 and the Fe removal rate in Example 4.

【図5】実施例5におけるHCl使用当量とFe除去率
との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the HCl equivalent and the Fe removal rate in Example 5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 祖 浜 嘉 男 東京都中央区日本橋室町二丁目1番1号 三井金属鉱業株式会社内 Fターム(参考) 4D004 AA21 AB03 CA04 CA13 CA15 CA30 CA34 CA35 CA42 CB03 CB13 CC04 CC12 DA02 DA03 DA06 4D056 AB05 AB08 AC22 BA03 CA06 CA14 CA18 CA22 DA01 DA05 DA10 4G048 AA01 AB02 AB08 AC08 AE06 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshio Sohama 1-1-1, Nihonbashi Muromachi, Chuo-ku, Tokyo Mitsui Kinzoku Mining Co., Ltd. F-term (reference) 4D004 AA21 AB03 CA04 CA13 CA15 CA30 CA34 CA35 CA42 CB03 CB13 CC04 CC12 DA02 DA03 DA06 4D056 AB05 AB08 AC22 BA03 CA06 CA14 CA18 CA22 DA01 DA05 DA10 4G048 AA01 AB02 AB08 AC08 AE06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タンタルおよび/またはニオブ含有合金中
のタンタルおよび/またはニオブをフッ化水素酸または
これと硫酸との混酸で溶解抽出する方法において、反応
槽内の所定量の水中に粉砕したタンタルおよび/または
ニオブ含有合金を所要量投入後、まず苛性ソーダで処理
し、処理液を固液分離し、得られた不溶解性生成物をフ
ッ化水素酸以外の鉱酸で処理してタンタル、ニオブ以外
の不純物金属を鉱酸中に溶出させ、次いで固液分離を行
い、得られた残存する不溶解性生成物をフッ化水素酸ま
たはこれと硫酸との混酸で溶解抽出することを特徴とす
るタンタルおよび/またはニオブ含有合金の溶解抽出方
法。
1. A method for dissolving and extracting tantalum and / or niobium in a tantalum and / or niobium-containing alloy with hydrofluoric acid or a mixed acid of sulfuric acid and sulfuric acid. And / or after charging a required amount of niobium-containing alloy, first treat with caustic soda, subject the treatment liquid to solid-liquid separation, and treat the resulting insoluble product with a mineral acid other than hydrofluoric acid to obtain tantalum and niobium. Other metal impurities are eluted in the mineral acid, followed by solid-liquid separation, and the remaining insoluble product obtained is dissolved and extracted with hydrofluoric acid or a mixed acid thereof and sulfuric acid. A method for dissolving and extracting tantalum and / or niobium-containing alloy.
JP37461598A 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys Expired - Lifetime JP3613443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37461598A JP3613443B2 (en) 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37461598A JP3613443B2 (en) 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys

Publications (2)

Publication Number Publication Date
JP2000203841A true JP2000203841A (en) 2000-07-25
JP3613443B2 JP3613443B2 (en) 2005-01-26

Family

ID=18504143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37461598A Expired - Lifetime JP3613443B2 (en) 1998-12-28 1998-12-28 Method for dissolving and extracting tantalum and / or niobium-containing alloys

Country Status (1)

Country Link
JP (1) JP3613443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087908A1 (en) * 2008-01-10 2009-07-16 Shibaura Institute Of Technology Method of recycling useful metal
JP2010254501A (en) * 2009-04-23 2010-11-11 Mitsui Mining & Smelting Co Ltd Treatment method for obtaining niobium raw material or tantalum raw material, method for separating and refining niobium or tantalum, and method for producing niobium oxide or tantalum oxide
RU2717421C1 (en) * 2019-12-20 2020-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Method for extraction of niobium from cakes from leaching complex rare-metal raw material of complex composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087908A1 (en) * 2008-01-10 2009-07-16 Shibaura Institute Of Technology Method of recycling useful metal
US8317896B2 (en) 2008-01-10 2012-11-27 Shibaura Institute Of Technology Method of recycling useful metal
KR101312775B1 (en) * 2008-01-10 2013-09-27 각코호진 시바우라고교다이가쿠 Method of recycling useful metal
JP5403814B2 (en) * 2008-01-10 2014-01-29 学校法人 芝浦工業大学 How to recycle useful metals
CN101909770B (en) * 2008-01-10 2014-05-07 学校法人芝浦工业大学 Method of recycling useful metal
JP2010254501A (en) * 2009-04-23 2010-11-11 Mitsui Mining & Smelting Co Ltd Treatment method for obtaining niobium raw material or tantalum raw material, method for separating and refining niobium or tantalum, and method for producing niobium oxide or tantalum oxide
RU2717421C1 (en) * 2019-12-20 2020-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" Method for extraction of niobium from cakes from leaching complex rare-metal raw material of complex composition

Also Published As

Publication number Publication date
JP3613443B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US20110229366A1 (en) Method for recovering rhenium and other metals from rhenium-bearing materials
TWI411581B (en) Method for recovering ruthenium from waste containing ruthenium
JP2019127634A (en) Manufacturing method of high purity scandium oxide
JP2013204068A (en) Method for recovering tungsten or cobalt from cemented carbide powder
JP6703077B2 (en) Lithium recovery method
CN107058738A (en) The method that nickel sulfate is reclaimed from nickel slag
KR20130073507A (en) A preparation method of tungsten compounds and cobalt compounds through a tungsten carbide scrap recycling
WO2012132107A9 (en) Method for producing and method for isolating/purifying niobium
JP2007009274A (en) Method for recovering indium
KR100888040B1 (en) Method of recovering platinum metals from waste catalysts
JP3641190B2 (en) Method for processing tantalum / niobium-containing raw materials
JP2010138490A (en) Method of recovering zinc
NO791741L (en) PROCEDURE FOR PREPARING EXTREMELY FINE COBOLT METAL POWDER
WO2018043704A1 (en) Method for producing high-purity scandium oxide
JP5549648B2 (en) Molybdenum recovery method and molybdenum extraction solvent
JP2000203841A (en) Dissolving extraction for alloy containing tantalum and/ or niobium
JP4183926B2 (en) Method for recovering tantalum / niobium from tantalum / niobium-containing carbide materials
KR100277503B1 (en) Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
CN114875252B (en) Recovery method of tungsten-containing waste
JPH09506675A (en) Recovery of used catalyst
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
EP0734355B1 (en) Recovery of spent catalyst
JP7453727B1 (en) How to extract aluminum
JP3586104B2 (en) Method for producing high-purity tantalum oxide from tantalum oxide-containing sludge
JP7011794B2 (en) Cobalt and nickel recovery methods

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term