JP2000201031A - Light receiving circuit - Google Patents
Light receiving circuitInfo
- Publication number
- JP2000201031A JP2000201031A JP11001645A JP164599A JP2000201031A JP 2000201031 A JP2000201031 A JP 2000201031A JP 11001645 A JP11001645 A JP 11001645A JP 164599 A JP164599 A JP 164599A JP 2000201031 A JP2000201031 A JP 2000201031A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- ternary
- apd
- reverse bias
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Light Receiving Elements (AREA)
- Amplifiers (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光受信回路に係
り、特に3元APDを受光素子とする光受信回路に関す
るものである。The present invention relates to an optical receiving circuit, and more particularly to an optical receiving circuit using a ternary APD as a light receiving element.
【0002】[0002]
【従来の技術】従来より、光受信回路の受光素子とし
て、GaInAsアバランシェフォトダイオード(以
下、3元APDという)が知られている。図2に、この
3元APDの逆バイアス電圧Vと増倍率Mとの関係を示
し、図3に、3元APDの増倍率Mと帯域との関係を示
す。3元APDは、SiAPD等と比べて暗電流が小さ
いという特徴を有しているが、図2のように増倍率Mが
温度によって大きく変動し、また図3のように増倍率M
がMminを下回ると、その帯域が急激に劣化するとい
う欠点をもっている。2. Description of the Related Art Conventionally, a GaInAs avalanche photodiode (hereinafter, referred to as a ternary APD) has been known as a light receiving element of an optical receiving circuit. FIG. 2 shows the relationship between the reverse bias voltage V and the multiplication factor M of the ternary APD, and FIG. 3 shows the relationship between the multiplication factor M and the band of the ternary APD. The ternary APD has a feature that the dark current is smaller than that of a Si APD or the like. However, as shown in FIG. 2, the multiplication factor M greatly varies depending on the temperature, and as shown in FIG.
Is below Mmin, the band is rapidly deteriorated.
【0003】そこで、従来の光受信回路では、このよう
な3元APDの欠点を以下のようにして克服していた。
図4は、特開平5−102744号公報に開示された、
従来の光受信回路のブロック図である。図4の光受信回
路は、光信号を光電変換して電流信号を出力する3元A
PD21と、光電流を電圧信号に変換する前置増幅回路
22と、その出力を等価増幅する等化増幅回路23と、
等化増幅回路23の出力信号の高周波成分を取り出すハ
イパスフィルタ24と、ハイパスフィルタ24で取り出
した高周波成分の振幅ピーク値を検出するピーク検出回
路25と、3元APD21の受光電力に応じて逆バイア
ス電圧を決定する逆バイアス制御回路26と、逆バイア
ス制御回路26の制御に従って3元APD21に逆バイ
アス電圧を印加する逆バイアス印加回路27とを有して
いる。Therefore, the conventional optical receiving circuit overcomes such a disadvantage of the ternary APD as follows.
FIG. 4 is disclosed in JP-A-5-102744.
FIG. 11 is a block diagram of a conventional optical receiving circuit. The optical receiving circuit shown in FIG.
A PD 21, a preamplifier circuit 22 for converting a photocurrent into a voltage signal, an equalizing amplifier circuit 23 for equivalently amplifying the output thereof,
A high-pass filter 24 for extracting a high-frequency component of the output signal of the equalizing amplifier 23, a peak detection circuit 25 for detecting the amplitude peak value of the high-frequency component extracted by the high-pass filter 24, and a reverse bias according to the received light power of the ternary APD 21. It has a reverse bias control circuit 26 that determines a voltage, and a reverse bias application circuit 27 that applies a reverse bias voltage to the ternary APD 21 under the control of the reverse bias control circuit 26.
【0004】逆バイアス制御回路26は、通常、3元A
PD21の受光電力が大きくなるに従って、3元APD
21の増倍率Mを下げるように、つまり3元APD21
に印加する逆バイアス電圧を下げるように動作する。こ
のとき、増倍率Mを低下させる制御によって増倍率Mが
Mminより小さくなると、等化増幅回路23の出力信
号のうち高周波成分が低下し、帯域不足となる。図4の
光受信回路の出力信号、すなわち等化増幅回路23の出
力信号をアイパターンで観測すると、増倍率MがMmi
n〜Mmaxの範囲にあれば、図5(a)のようにアイ
は十分に開く。これに対し、増倍率MがMminより小
さくなると、帯域不足のために図5(b)のようにアイ
が閉じる。The reverse bias control circuit 26 usually has a three-way A
As the light receiving power of the PD 21 increases, the ternary APD
21 to reduce the multiplication factor M, that is, the three-way APD 21
Operates to reduce the reverse bias voltage applied to. At this time, if the multiplication factor M becomes smaller than Mmin by the control for decreasing the multiplication factor M, the high-frequency component of the output signal of the equalization amplifier circuit 23 is reduced, and the band becomes insufficient. When the output signal of the optical receiving circuit in FIG. 4, that is, the output signal of the equalizing amplifier 23 is observed in an eye pattern, the multiplication factor M is Mmi.
If it is in the range of n to Mmax, the eye is sufficiently opened as shown in FIG. On the other hand, when the multiplication factor M is smaller than Mmin, the eye closes as shown in FIG.
【0005】そこで、図4の光受信回路では、ハイパス
フィルタ24によって等化増幅回路23の出力信号の高
周波成分を取り出し、ピーク検出回路25で高周波成分
の振幅ピーク値を検出する。そして、逆バイアス制御回
路26は、このピーク検出回路25によって検出された
ピーク値が所定のしきい値以下になると、3元APD2
1の増倍率Mを上げるように、つまり3元APD21に
印加する逆バイアス電圧を上げるように動作する。こう
して、図4の光受信回路では、増倍率MがMminを下
回ることによる帯域の急激な劣化を防止して、図5
(b)のようにアイが閉じることを防止している。In the optical receiving circuit shown in FIG. 4, a high-pass filter 24 extracts a high-frequency component of the output signal of the equalizing amplifier 23, and a peak detecting circuit 25 detects an amplitude peak value of the high-frequency component. When the peak value detected by the peak detection circuit 25 falls below a predetermined threshold value, the reverse bias control circuit 26 outputs the ternary APD2.
The operation is performed so as to increase the multiplication factor M of 1, that is, to increase the reverse bias voltage applied to the ternary APD 21. In this way, the optical receiving circuit of FIG. 4 prevents the band from abruptly deteriorating due to the multiplication factor M falling below Mmin.
The eye is prevented from closing as shown in FIG.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
光受信回路では、受光電力が大きくなったときに、増倍
率MをMminより大きくするために、3元APD21
に過大な電流が流れることがあり、3元APD21の劣
化を早めてしまうという問題点があった。また、経年変
化により3元APD21が特性劣化して受光電力が低下
した場合にも、ダイナミックレンジを確保しようとして
増倍率Mを上げるため、3元APD21の劣化をさらに
早めてしまうという問題点があった。また、3元APD
21の増倍率Mは、図2のように温度によって大きく変
動する。しかし、従来の光受信回路では、このような温
度特性を考慮していないため、3元APD21の増倍率
Mを最適値に設定できず、光受信回路の出力信号振幅が
不足することがあるという問題点があった。本発明は、
上記課題を解決するためになされたもので、3元APD
の増倍率を最適値に設定することができる光受信回路を
提供することを目的とする。However, in the conventional optical receiving circuit, when the received light power becomes large, the ternary APD 21 is used in order to make the multiplication factor M larger than Mmin.
However, there is a problem that an excessive current may flow through the APD 21 and the deterioration of the ternary APD 21 is accelerated. Further, even when the ternary APD 21 deteriorates in characteristics due to aging and the received light power decreases, the multiplication factor M is increased in order to secure a dynamic range, and the ternary APD 21 is further deteriorated. Was. In addition, three yuan APD
The multiplication factor M of 21 greatly varies depending on the temperature as shown in FIG. However, since such a temperature characteristic is not taken into consideration in the conventional optical receiving circuit, the multiplication factor M of the ternary APD 21 cannot be set to an optimum value, and the output signal amplitude of the optical receiving circuit may be insufficient. There was a problem. The present invention
It was made to solve the above-mentioned problems, and it is a three-way APD
It is an object of the present invention to provide an optical receiving circuit capable of setting the multiplication factor of the optical receiver to an optimum value.
【0007】[0007]
【課題を解決するための手段】本発明の光受信回路は、
3元APD(1)の光電流を電圧信号に変換する前置増
幅回路(2)と、前置増幅回路の出力信号を増幅するA
GC増幅回路(3)と、前置増幅回路の出力信号の高周
波成分を取り出すハイパスフィルタ(4)と、この高周
波成分の振幅ピーク値を検出するピーク検出回路(5)
と、3元APDの温度を検出する温度検出回路(8)
と、3元APDの逆バイアス電圧と増倍率との関係を各
温度ごとに記憶したメモリ(9)と、温度検出回路で検
出された3元APDの温度に対応する逆バイアス電圧と
増倍率との関係をメモリから読み出し、この関係と3元
APDの受光電力とピーク検出回路で検出された振幅ピ
ーク値に基づいて、3元APDの逆バイアス電圧を決定
する逆バイアス制御回路(6)と、逆バイアス制御回路
で決定された逆バイアス電圧を3元APDに印加する逆
バイアス印加回路(7)とを有するものである。An optical receiving circuit according to the present invention comprises:
A preamplifier circuit (2) for converting a photocurrent of the ternary APD (1) into a voltage signal, and an A for amplifying an output signal of the preamplifier circuit
GC amplifier circuit (3), high-pass filter (4) for extracting high-frequency components of the output signal of the preamplifier circuit, and peak detection circuit (5) for detecting the amplitude peak value of the high-frequency components
And a temperature detection circuit (8) for detecting the temperature of the ternary APD
And a memory (9) storing the relationship between the reverse bias voltage and the multiplication factor of the ternary APD for each temperature, and the reverse bias voltage and the multiplication factor corresponding to the temperature of the ternary APD detected by the temperature detection circuit. A reverse bias control circuit (6) for reading out the relationship from the memory, determining the reverse bias voltage of the ternary APD based on the relationship, the received light power of the ternary APD, and the amplitude peak value detected by the peak detection circuit; A reverse bias application circuit (7) for applying the reverse bias voltage determined by the reverse bias control circuit to the ternary APD.
【0008】また、上記AGC増幅回路(3)の出力信
号からクロック成分を抽出するクロック抽出回路(1
0)と、このクロック成分のレベルを検出するレベル検
出回路(11)と、上記AGC増幅回路の出力信号を一
定振幅にするために、レベル検出回路で検出されたクロ
ック成分のレベルを所定のしきい値と比較して、AGC
増幅回路の利得を制御する比較回路(12)とを有する
ものである。A clock extracting circuit (1) for extracting a clock component from an output signal of the AGC amplifier (3).
0), a level detecting circuit (11) for detecting the level of the clock component, and a predetermined level for the clock component detected by the level detecting circuit in order to make the output signal of the AGC amplifier circuit have a constant amplitude. AGC compared to the threshold
A comparison circuit (12) for controlling the gain of the amplifier circuit.
【0009】[0009]
【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して詳細に説明する。図1は本発明の実施
の形態を示す光受信回路のブロック図である。本実施の
形態の光受信回路は、光信号を光電変換して電流信号を
出力する3元APD1と、3元APD1の光電流を電圧
信号に変換する前置増幅回路2と、前置増幅回路2の出
力信号を増幅するAGC増幅回路3と、前置増幅回路2
の出力信号の高周波成分を取り出すハイパスフィルタ4
と、ハイパスフィルタ4で取り出した高周波成分の振幅
ピーク値を検出するピーク検出回路5と、3元APD1
の現在の温度に対応する逆バイアス電圧と増倍率との関
係を後述するROMから読み出し、この関係と3元AP
D1の受光電力と後述する振幅ピーク値に基づいて、3
元APD1の逆バイアス電圧を決定する逆バイアス制御
回路6と、逆バイアス制御回路6の制御に従って3元A
PD1に逆バイアス電圧を印加する逆バイアス印加回路
7と、3元APD1の温度を検出する温度検出回路8
と、3元APD1の逆バイアス電圧Vと増倍率Mとの関
係(以下、V−M特性と呼ぶ)を各温度ごとに記憶した
ROM9と、AGC増幅回路3の出力信号からクロック
成分を抽出するクロック抽出回路10と、このクロック
成分のレベルを検出するレベル検出回路11と、レベル
検出回路11で検出されたクロック成分のレベルを所定
のしきい値Vthと比較し、AGC増幅回路3の利得を
制御する比較回路12とを有している。Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of an optical receiving circuit showing an embodiment of the present invention. The optical receiving circuit according to the present embodiment includes a ternary APD 1 that photoelectrically converts an optical signal and outputs a current signal, a preamplifier circuit 2 that converts a photocurrent of the ternary APD 1 into a voltage signal, and a preamplifier circuit. AGC amplifier circuit 3 for amplifying the output signal from
High-pass filter 4 for extracting the high-frequency component of the output signal of
A peak detection circuit 5 for detecting the amplitude peak value of the high-frequency component extracted by the high-pass filter 4;
The relationship between the reverse bias voltage corresponding to the current temperature and the multiplication factor is read from a ROM described later, and this relationship and the three-dimensional AP
Based on the received light power of D1 and the amplitude peak value described later, 3
A reverse bias control circuit 6 for determining a reverse bias voltage of the original APD 1;
Reverse bias application circuit 7 for applying a reverse bias voltage to PD 1 and temperature detection circuit 8 for detecting the temperature of ternary APD 1
And a ROM 9 storing the relationship between the reverse bias voltage V of the ternary APD 1 and the multiplication factor M (hereinafter referred to as VM characteristics) for each temperature, and extracting a clock component from the output signal of the AGC amplifier circuit 3. A clock extraction circuit 10, a level detection circuit 11 for detecting the level of the clock component, and a level of the clock component detected by the level detection circuit 11 are compared with a predetermined threshold value Vth, and the gain of the AGC amplification circuit 3 is adjusted. And a comparison circuit 12 for controlling.
【0010】次に、本実施の形態の光受信回路の動作に
ついて説明する。入力された光信号は、3元APD1に
よって光電流信号に変換される。3元APD1から出力
された光電流信号は、前置増幅回路2によって増幅され
電圧信号に変換される。逆バイアス印加回路7は、逆バ
イアス制御回路6の制御に従って3元APD1に逆バイ
アス電圧を印加する。Next, the operation of the optical receiving circuit according to the present embodiment will be described. The input optical signal is converted by the ternary APD 1 into a photocurrent signal. The photocurrent signal output from the ternary APD 1 is amplified by the preamplifier circuit 2 and converted into a voltage signal. The reverse bias application circuit 7 applies a reverse bias voltage to the ternary APD 1 under the control of the reverse bias control circuit 6.
【0011】逆バイアス制御回路6は、通常、3元AP
D1の受光電力が大きくなるに従って、3元APD1の
増倍率Mを下げるように、つまり3元APD1に印加す
る逆バイアス電圧を下げるように動作する。こうして、
光受信回路の出力信号レベル(AGC増幅回路3の出力
信号レベル)が一定となるように逆バイアス印加回路7
を制御している。The reverse bias control circuit 6 usually has a three-way AP
As the light receiving power of D1 increases, the multiplication factor M of the ternary APD 1 is reduced, that is, the reverse bias voltage applied to the ternary APD 1 is reduced. Thus,
The reverse bias applying circuit 7 is controlled so that the output signal level of the optical receiving circuit (the output signal level of the AGC amplifier circuit 3) becomes constant.
Is controlling.
【0012】このとき、増倍率Mを低下させる制御によ
って増倍率MがMminより小さくなると、前置増幅回
路2の出力信号のうち高周波成分が低下し、図5(b)
のようにアイが閉じて帯域不足となる。本実施の形態で
は、このような帯域の劣化を防止するために、ハイパス
フィルタ4によって前置増幅回路2の出力信号の高周波
成分を取り出し、ピーク検出回路5で高周波成分の振幅
ピーク値を検出する。At this time, when the multiplication factor M is smaller than Mmin by the control for decreasing the multiplication factor M, the high-frequency component of the output signal of the preamplifier circuit 2 is reduced, and FIG.
The eye closes and the band becomes insufficient. In the present embodiment, in order to prevent such band degradation, the high-pass filter 4 extracts the high-frequency component of the output signal of the preamplifier circuit 2, and the peak detection circuit 5 detects the amplitude peak value of the high-frequency component. .
【0013】そして、逆バイアス制御回路6は、このピ
ーク検出回路5によって検出されたピーク値が所定のし
きい値以下になると、3元APD1の増倍率Mを上げる
ように、つまり3元APD1に印加する逆バイアス電圧
を上げるように逆バイアス印加回路7を制御する。この
ようにして、増倍率MがMminを下回ることによる帯
域の急激な劣化を防止し、図5(b)のようにアイが閉
じることを防止している。When the peak value detected by the peak detection circuit 5 falls below a predetermined threshold value, the reverse bias control circuit 6 increases the multiplication factor M of the ternary APD 1, ie, the ternary APD 1 The reverse bias applying circuit 7 is controlled so as to increase the applied reverse bias voltage. In this way, rapid deterioration of the band due to the multiplication factor M falling below Mmin is prevented, and the eyes are prevented from closing as shown in FIG. 5B.
【0014】ただし、3元APD1の増倍率Mは、図2
のように温度によって大きく変動するため、このような
温度特性を考慮しないと、以上のような制御を適切に行
うことができなくなる。そこで、逆バイアス制御回路6
は、温度検出回路8で検出された3元APD1の現在の
温度に対応するV−M特性をROM9から読み出す。そ
して、逆バイアス制御回路6は、このV−M特性に基づ
いて前述のように逆バイアス電圧を決定する。こうし
て、3元APD1の増倍率Mを最適値に設定することが
できる。なお、上記V−M特性は、使用する個々の3元
APD1に応じてROM9に書き込まれる。However, the multiplication factor M of the three-way APD 1 is shown in FIG.
As described above, the above-described control cannot be performed properly unless such temperature characteristics are taken into account. Therefore, the reverse bias control circuit 6
Reads from the ROM 9 the VM characteristic corresponding to the current temperature of the ternary APD 1 detected by the temperature detection circuit 8. Then, the reverse bias control circuit 6 determines the reverse bias voltage based on the VM characteristics as described above. Thus, the multiplication factor M of the three-way APD 1 can be set to an optimum value. The above-mentioned VM characteristics are written in the ROM 9 according to each ternary APD 1 to be used.
【0015】また、本実施の形態では、図4の等化増幅
回路23と同等の機能をもつAGC増幅回路3の出力信
号からクロック成分を抽出するクロック抽出回路10
と、このクロック成分のレベルを検出するレベル検出回
路11と、レベル検出回路11で検出されたクロック成
分のレベルを所定のしきい値Vthと比較し、AGC増
幅回路3の利得を制御する比較回路12とを設けること
により、光受信回路の出力(AGC増幅回路3の出力)
で一定振幅の信号が得られるようにした。Further, in this embodiment, a clock extraction circuit 10 for extracting a clock component from an output signal of an AGC amplification circuit 3 having the same function as that of the equalization amplification circuit 23 of FIG.
A level detecting circuit 11 for detecting the level of the clock component; a comparing circuit for comparing the level of the clock component detected by the level detecting circuit 11 with a predetermined threshold Vth to control the gain of the AGC amplifier circuit 3 12, the output of the optical receiving circuit (the output of the AGC amplifier circuit 3)
And a signal of a constant amplitude was obtained.
【0016】[0016]
【発明の効果】本発明によれば、個々の3元APDの特
性をメモリに書き込むため、3元APDのばらつきを考
慮する必要がなくなり、3元APDの温度が変動したと
しても、3元APDの増倍率を最適値に設定することが
できる。その結果、3元APDの劣化を早めることがな
くなる。According to the present invention, since the characteristics of the individual ternary APDs are written in the memory, there is no need to consider the variance of the ternary APDs. Can be set to an optimum value. As a result, the deterioration of the ternary APD is not accelerated.
【0017】また、クロック抽出回路、レベル検出回
路、レベル検出回路及び比較回路を設けることにより、
光受信回路(AGC増幅回路)の出力信号を一定振幅に
することができるので、出力信号振幅の不足を防止する
ことができる。また、3元APDの特性が経年変化した
場合でも、電気で増幅してダイナミックレンジを一定と
するため、3元APDの劣化を防止する効果を有する。Further, by providing a clock extracting circuit, a level detecting circuit, a level detecting circuit and a comparing circuit,
Since the output signal of the optical receiving circuit (AGC amplifier circuit) can have a constant amplitude, shortage of the output signal amplitude can be prevented. Further, even if the characteristics of the ternary APD change over time, the ternary APD is amplified by electricity to keep the dynamic range constant, and thus has the effect of preventing the ternary APD from deteriorating.
【図1】 本発明の実施の形態を示す光受信回路のブロ
ック図である。FIG. 1 is a block diagram of an optical receiving circuit showing an embodiment of the present invention.
【図2】 3元APDの逆バイアス電圧と増倍率との関
係を示す図である。FIG. 2 is a diagram illustrating a relationship between a reverse bias voltage and a multiplication factor of a ternary APD.
【図3】 3元APDの増倍率と帯域との関係を示す図
である。FIG. 3 is a diagram illustrating a relationship between a multiplication factor and a band of a ternary APD.
【図4】 従来の光受信回路のブロック図である。FIG. 4 is a block diagram of a conventional optical receiving circuit.
【図5】 光受信回路の出力信号のアイパターンを示す
図である。FIG. 5 is a diagram showing an eye pattern of an output signal of the optical receiving circuit.
1…3元APD、2…前置増幅回路、3…AGC増幅回
路、4…ハイパスフィルタ、5…ピーク検出回路、6…
逆バイアス制御回路、7…逆バイアス印加回路、8…温
度検出回路、9…ROM、10…クロック抽出回路、1
1…レベル検出回路、12…比較回路。DESCRIPTION OF SYMBOLS 1 ... Three-way APD, 2 ... Preamplifier circuit, 3 ... AGC amplifier circuit, 4 ... High-pass filter, 5 ... Peak detection circuit, 6 ...
Reverse bias control circuit, 7 reverse bias application circuit, 8 temperature detection circuit, 9 ROM, 10 clock extraction circuit, 1
1 ... Level detection circuit, 12 ... Comparison circuit.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04B 10/14 10/04 10/06 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H04B 10/14 10/04 10/06
Claims (2)
において、 3元APDの光電流を電圧信号に変換する前置増幅回路
と、 前置増幅回路の出力信号を増幅するAGC増幅回路と、 前置増幅回路の出力信号の高周波成分を取り出すハイパ
スフィルタと、 この高周波成分の振幅ピーク値を検出するピーク検出回
路と、 3元APDの温度を検出する温度検出回路と、 3元APDの逆バイアス電圧と増倍率との関係を各温度
ごとに記憶したメモリと、 温度検出回路で検出された3元APDの温度に対応する
逆バイアス電圧と増倍率との関係をメモリから読み出
し、この関係と3元APDの受光電力とピーク検出回路
で検出された振幅ピーク値に基づいて、3元APDの逆
バイアス電圧を決定する逆バイアス制御回路と、 逆バイアス制御回路で決定された逆バイアス電圧を3元
APDに印加する逆バイアス印加回路とを有することを
特徴とする光受信回路。1. An optical receiving circuit using a ternary APD as a light receiving element, comprising: a preamplifier circuit for converting a photocurrent of the ternary APD into a voltage signal; and an AGC amplifier circuit for amplifying an output signal of the preamplifier circuit. A high-pass filter for extracting a high-frequency component of an output signal of the preamplifier circuit; a peak detection circuit for detecting an amplitude peak value of the high-frequency component; a temperature detection circuit for detecting a temperature of the ternary APD; A memory in which the relationship between the bias voltage and the multiplication factor is stored for each temperature, and a relationship between the reverse bias voltage and the multiplication factor corresponding to the temperature of the ternary APD detected by the temperature detection circuit are read from the memory. A reverse bias control circuit that determines a reverse bias voltage of the ternary APD based on the received light power of the ternary APD and the amplitude peak value detected by the peak detection circuit; Optical receiving circuit; and a reverse bias applying circuit for applying a constant inverse bias voltage to the ternary APD.
するクロック抽出回路と、 このクロック成分のレベルを検出するレベル検出回路
と、 前記AGC増幅回路の出力信号を一定振幅にするため
に、レベル検出回路で検出されたクロック成分のレベル
を所定のしきい値と比較して、AGC増幅回路の利得を
制御する比較回路とを有することを特徴とする光受信回
路。2. The optical reception circuit according to claim 1, wherein a clock extraction circuit extracts a clock component from an output signal of the AGC amplification circuit, a level detection circuit that detects a level of the clock component, and the AGC amplification circuit. And a comparator circuit for controlling the gain of the AGC amplifier circuit by comparing the level of the clock component detected by the level detection circuit with a predetermined threshold value in order to make the output signal of the AGC amplifier have a constant amplitude. Light receiving circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11001645A JP2000201031A (en) | 1999-01-07 | 1999-01-07 | Light receiving circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11001645A JP2000201031A (en) | 1999-01-07 | 1999-01-07 | Light receiving circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000201031A true JP2000201031A (en) | 2000-07-18 |
Family
ID=11507268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11001645A Pending JP2000201031A (en) | 1999-01-07 | 1999-01-07 | Light receiving circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000201031A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002084235A (en) * | 2000-09-07 | 2002-03-22 | Fujitsu Ltd | Apd bias voltage control circuit |
US7332702B2 (en) | 2002-08-05 | 2008-02-19 | Sumitomo Electric Industries, Ltd. | Optical receiver and a method for manufacturing the same |
US7792434B2 (en) | 2005-09-07 | 2010-09-07 | Sumitomo Electric Industries, Ltd. | Optical receiver |
WO2012104448A1 (en) * | 2011-01-31 | 2012-08-09 | Universidad De Malaga | Laser receiving apparatus based on an avalanche photodiode thermally regulated with embedded control |
JP2013016638A (en) * | 2011-07-04 | 2013-01-24 | Hamamatsu Photonics Kk | Photodiode array module |
JP2015177148A (en) * | 2014-03-18 | 2015-10-05 | 株式会社東芝 | Photodetector |
JP2016516179A (en) * | 2013-02-22 | 2016-06-02 | アレヴァ・エヌセーAreva Nc | Method for controlling the gain and zero of a multi-pixel photon counter device, and an optical measurement system implementing the method |
CN104871456B (en) * | 2012-10-29 | 2017-05-03 | 菲尼萨公司 | Integrated circuits in optical receivers |
-
1999
- 1999-01-07 JP JP11001645A patent/JP2000201031A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002084235A (en) * | 2000-09-07 | 2002-03-22 | Fujitsu Ltd | Apd bias voltage control circuit |
US7332702B2 (en) | 2002-08-05 | 2008-02-19 | Sumitomo Electric Industries, Ltd. | Optical receiver and a method for manufacturing the same |
US7792434B2 (en) | 2005-09-07 | 2010-09-07 | Sumitomo Electric Industries, Ltd. | Optical receiver |
WO2012104448A1 (en) * | 2011-01-31 | 2012-08-09 | Universidad De Malaga | Laser receiving apparatus based on an avalanche photodiode thermally regulated with embedded control |
ES2386732A1 (en) * | 2011-01-31 | 2012-08-28 | Universidad De Málaga | Laser receiving apparatus based on an avalanche photodiode thermally regulated with embedded control |
JP2013016638A (en) * | 2011-07-04 | 2013-01-24 | Hamamatsu Photonics Kk | Photodiode array module |
CN104871456B (en) * | 2012-10-29 | 2017-05-03 | 菲尼萨公司 | Integrated circuits in optical receivers |
JP2016516179A (en) * | 2013-02-22 | 2016-06-02 | アレヴァ・エヌセーAreva Nc | Method for controlling the gain and zero of a multi-pixel photon counter device, and an optical measurement system implementing the method |
JP2015177148A (en) * | 2014-03-18 | 2015-10-05 | 株式会社東芝 | Photodetector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0786859B1 (en) | Power amplifying circuit and method | |
JP4532563B2 (en) | Optical receiver and identification threshold value generation method thereof | |
CA2363400A1 (en) | System and method for inverting automatic gain control (agc) and soft limiting | |
US6362911B1 (en) | Burst mode optical receiver using two amplifiers having different bandwidth | |
US8144813B2 (en) | Receiving method and receiving circuit | |
KR20020003873A (en) | Automatic gain control method, automatic gain control processor, and demodulator | |
KR100640413B1 (en) | Optical receiver for receiving burst-mode signal | |
JP2000201031A (en) | Light receiving circuit | |
US4987298A (en) | Automatic gain control apparatus which adjusts bias and gain to maximize signal to noise ratio | |
US6798282B1 (en) | Method and system for transimpedance amplifiers with high current input while maintaining high transimpedance gain and bandwidth | |
JP2003125012A (en) | Ask demodulator with agc | |
KR20050089845A (en) | Method for automatically setting the gain of an interrogator receiver within a non-contacting identification system | |
JP3114821B2 (en) | Optical receiver circuit for ternary APD | |
KR101139450B1 (en) | system and its operating method | |
JPS6047783B2 (en) | Automatic gain control method | |
JP2501319B2 (en) | Optical receiver circuit for angle modulation signal | |
JPH11196053A (en) | Optical receiving circuit | |
JP3005472B2 (en) | Receiving machine | |
JPH05122153A (en) | Photodetecting circuit | |
JPH0736500B2 (en) | AGC control method | |
JPH024033A (en) | Optical receiver | |
JPH1155194A (en) | Bias control system for optical receiver | |
JPH0516728Y2 (en) | ||
JPH079450Y2 (en) | Optical receiver circuit | |
JPS6111016B2 (en) |