JP2000196074A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JP2000196074A
JP2000196074A JP10371307A JP37130798A JP2000196074A JP 2000196074 A JP2000196074 A JP 2000196074A JP 10371307 A JP10371307 A JP 10371307A JP 37130798 A JP37130798 A JP 37130798A JP 2000196074 A JP2000196074 A JP 2000196074A
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor device
film
trench
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP10371307A
Other languages
Japanese (ja)
Other versions
JP2000196074A5 (en
Inventor
Hiroshi Ishibashi
弘 石橋
Noboru Matsuda
昇 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10371307A priority Critical patent/JP2000196074A/en
Publication of JP2000196074A publication Critical patent/JP2000196074A/en
Publication of JP2000196074A5 publication Critical patent/JP2000196074A5/ja
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures

Abstract

PROBLEM TO BE SOLVED: To provide a reliable trench structure of semiconductor device which has a gate-insulating film free of BT(bias temperature) and long in TDDB life time, and its manufacturing method. SOLUTION: This is a semiconductor device which at least possesses a semiconductor substrate 1 equipped with a trench for element isolation, a gate insulating film 7 having three-layer structure of a first oxide film, a nitride film, and a second oxide film in order from trench side, made on the trench, and the gate electrode 8 buried in the trench, and in which the thickness reduced to oxide film basis of the three-layer structure of gate insulating film 7 is 25-35 nm, and its manufacturing method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、素子分離用溝部を
有する半導体装置およびその製造方法に係わり、特に、
低電圧駆動縦型MOS−FETにおいて三層のゲート絶
縁膜を有するトレンチゲート型半導体装置およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a trench for element isolation and a method of manufacturing the same.
The present invention relates to a trench gate type semiconductor device having a three-layer gate insulating film in a low voltage driven vertical MOS-FET and a method of manufacturing the same.

【0002】[0002]

【従来の技術】トランジスタなどの半導体装置を、微細
加工技術により高密度に集積させた高集積回路におい
て、さらなる高集積化および高い駆動能力が求められて
いる。
2. Description of the Related Art In a highly integrated circuit in which semiconductor devices such as transistors are integrated at a high density by a fine processing technique, higher integration and higher driving capability are required.

【0003】近年、中でも注目されているのがトレンチ
(溝)を有する半導体装置である。ゲートをトレンチ構
造にすると、基板上のゲート部分の占有面積を狭くする
ことができ、その結果電流値の大きな、性能の良い高集
積化回路が実現される。
In recent years, a semiconductor device having a trench (groove) has attracted particular attention. When the gate has a trench structure, the area occupied by the gate on the substrate can be reduced, and as a result, a highly integrated circuit with a large current value and high performance can be realized.

【0004】特に100V以下の低耐圧デバイスにはオ
ン抵抗を改善するためにトレンチ構造のパワーMOSF
ETが用いられている。このような低電圧駆動型MOS
−FETのトレンチゲート絶縁膜の構造は、シリコン酸
化膜、シリコン窒化膜−シリコン酸化膜、シリコン酸化
膜−シリコン窒化膜−シリコン酸化膜、シリコン酸化膜
−ポリシリコン酸化膜等である。
In particular, for a low breakdown voltage device of 100 V or less, a power MOSF having a trench structure is used to improve the on-resistance.
ET is used. Such a low voltage drive type MOS
-The structure of the trench gate insulating film of the FET is a silicon oxide film, a silicon nitride film-a silicon oxide film, a silicon oxide film-a silicon nitride film-a silicon oxide film, a silicon oxide film-a polysilicon oxide film, and the like.

【0005】こうしたトレンチゲートにおけるゲートの
信頼性を表わすパラメータとして、BT(Bias Tempera
ture)ストレスおよびTDDB寿命がある。
As a parameter representing the reliability of such a trench gate, BT (Bias Tempera
ture) There is stress and TDDB life.

【0006】BTストレスとは、正に帯電したアルカリ
イオンを定量化するために、200℃から300℃で加
熱し、106 V/cm程度の電界を印加することであ
る。これによるCV(容量−電圧)特性の平行移動、す
なわち、ΔVFBからその定量ができる。MOSトランジ
スタでは分極性ヒステリシスを起こす。図10に150
℃で168時間電界を印加したときのヒステリシスの一
例を示す。
[0006] BT stress refers to heating at 200 ° C to 300 ° C and applying an electric field of about 10 6 V / cm to quantify positively charged alkali ions. As a result, the CV (capacitance-voltage) characteristic can be determined from the parallel shift, that is, ΔV FB . A MOS transistor causes polarization hysteresis. 150 in FIG.
4 shows an example of hysteresis when an electric field is applied at 168 ° C. for 168 hours.

【0007】また、TDDB寿命とは、トランジスタの
製品寿命であり、詳しくは10Vで一年経た時の不良率
である。図9にTDDBの一例を示す。
[0007] The TDDB life is the product life of the transistor, and more specifically, the failure rate when one year has passed at 10 V. FIG. 9 shows an example of the TDDB.

【0008】ゲート絶縁膜が、シリコン酸化膜−シリコ
ン窒化膜−シリコン酸化膜の三層構造からなる場合、長
いTDDB寿命を得るためには窒化膜を厚くすればよい
が、−BT時の変動が大きくなる。これは窒化膜自体に
蓄積されている電荷に起因している。また、逆に窒化膜
が薄いと、窒化膜のピンホール等に起因してゲート電極
からプラスの可動イオンが窒化膜を突き抜けて、これが
ゲート絶縁膜中にトラップされることでBT変動が生じ
てしまう。
When the gate insulating film has a three-layer structure of a silicon oxide film-silicon nitride film-silicon oxide film, the nitride film may be made thick to obtain a long TDDB life. growing. This is due to the charge stored in the nitride film itself. Conversely, if the nitride film is thin, positive movable ions penetrate through the nitride film from the gate electrode due to a pinhole or the like in the nitride film and are trapped in the gate insulating film, thereby causing BT fluctuation. I will.

【0009】[0009]

【発明が解決しようとする課題】以上のように、BT変
動のない、TDDB寿命の長いゲート絶縁膜を有するト
レンチ構造の半導体装置およびその製造方法が必要とさ
れていた。
As described above, there is a need for a semiconductor device having a trench structure having a gate insulating film having a long TDDB life and having no BT fluctuation, and a method of manufacturing the same.

【0010】従って、本発明は、BT変動のない、TD
DB寿命の長いゲート絶縁膜を有する信頼性の高いトレ
ンチ構造の半導体装置およびその製造方法を提供するこ
とを目的とする。
[0010] Therefore, the present invention provides a TD having no BT fluctuation.
It is an object of the present invention to provide a highly reliable trench-structured semiconductor device having a gate insulating film with a long DB life and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明の半導体装置は、
素子分離用溝部を備えた半導体基板と、前記溝部上に形
成された、前記溝部側から第1の酸化膜、窒化膜および
第2の酸化膜の順に三層構造を有するゲート絶縁膜と、
前記溝部に埋め込まれたゲート電極とを少なくとも具備
し、前記三層構造のゲート絶縁膜の酸化膜換算の厚さが
25から35nmであることを特徴としている。
According to the present invention, there is provided a semiconductor device comprising:
A semiconductor substrate having an element isolation groove, a gate insulating film formed on the groove, and having a three-layer structure in the order of a first oxide film, a nitride film, and a second oxide film from the groove side;
A gate electrode buried in the trench, wherein a thickness of the three-layered gate insulating film in terms of an oxide film is 25 to 35 nm.

【0012】本発明の半導体装置は、低電圧駆動型MO
S−FETとして有用である。
The semiconductor device according to the present invention is a low voltage drive type MO.
Useful as an S-FET.

【0013】本発明の半導体装置の製造方法は、半導体
基板上に素子分離用溝部を形成する工程と、前記溝部上
に、第1の酸化膜、窒化膜および第2の酸化膜からなる
三層構造のゲート絶縁膜を酸化膜換算の厚さが25から
35nmとなるように形成する工程と、前記ゲート絶縁
膜の形成された前記溝部にゲート電極を埋め込む工程と
を少なくとも具備することを特徴としている。
According to the method of manufacturing a semiconductor device of the present invention, there is provided a step of forming a groove for element isolation on a semiconductor substrate, and forming a three-layer structure comprising a first oxide film, a nitride film and a second oxide film on the groove. Forming at least a step of forming a gate insulating film having a structure with an oxide film equivalent thickness of 25 to 35 nm, and embedding a gate electrode in the trench in which the gate insulating film is formed. I have.

【0014】より具体的には、本発明の半導体装置の製
造方法は、半導体基板上にエピタキシャル層およびベー
ス層を堆積する工程と、コンタクト領域となる不純物拡
散領域そしてソース領域を形成する工程と、素子分離用
溝部であるトレンチをRIE(Reactive Ion Etching)
によりエッチングする工程と、トレンチに第1の酸化
膜、窒化膜および第2の酸化膜からなる三層構造のゲー
ト絶縁膜を、それぞれ所定の温度にて、熱酸化、減圧C
VD(Chemical Vapor Deposition )法、熱酸化により
形成する工程と、ゲート絶縁膜の形成されたトレンチに
ゲート電極を埋め込み、平坦化し、CDE(Chemical D
ry Etching)によりエッチバックする工程と、少なくと
もゲート電極を覆うように層間絶縁膜を形成する工程
と、層間絶縁膜の上にバリアメタル層を堆積する工程
と、バリアメタル層の上にソース電極を形成する工程と
を具備している。
More specifically, a method of manufacturing a semiconductor device according to the present invention includes a step of depositing an epitaxial layer and a base layer on a semiconductor substrate, a step of forming an impurity diffusion region and a source region serving as a contact region, RIE (Reactive Ion Etching) for trench, which is a trench for element isolation
A gate insulating film having a three-layer structure consisting of a first oxide film, a nitride film and a second oxide film in a trench at predetermined temperatures by thermal oxidation and decompression, respectively.
A step of forming by VD (Chemical Vapor Deposition) method and thermal oxidation, and embedding a gate electrode in a trench in which a gate insulating film is formed, flattening, and forming a CDE (Chemical D
ry Etching), forming an interlayer insulating film to cover at least the gate electrode, depositing a barrier metal layer on the interlayer insulating film, and forming a source electrode on the barrier metal layer. Forming step.

【0015】本発明の半導体装置およびその製造方法に
おいて、前記第1の酸化膜の厚さは15から25nm、
窒化膜の厚さは8から16nm、前記第2の酸化膜の厚
さは6から10nmである。
In the semiconductor device and the method of manufacturing the same according to the present invention, the first oxide film has a thickness of 15 to 25 nm,
The thickness of the nitride film is 8 to 16 nm, and the thickness of the second oxide film is 6 to 10 nm.

【0016】本発明の半導体装置およびその製造方法に
おいて、前記第1の酸化膜の形成温度は900から95
0℃、前記窒化膜の形成温度は700から800℃であ
る。
In the semiconductor device and the method of manufacturing the same according to the present invention, the temperature for forming the first oxide film is 900 to 95.
0 ° C., and the temperature for forming the nitride film is 700 to 800 ° C.

【0017】本発明において、ゲート絶縁膜は、基板側
から第1の酸化膜、窒化膜、第2の窒化膜からなる三層
構造とした。三層構造にすると、トレンチ開口部の角部
における応力を緩和したり、欠陥をカバーしたり、機能
を分担させるのに効果的である。ゲート絶縁膜は厚くす
れば破壊耐圧を増大させることができるが、単純に厚く
すればよい、というわけではない。というのは、第1の
酸化膜と窒化膜の厚みにより半導体素子の動作特性が決
まるためである。
In the present invention, the gate insulating film has a three-layer structure including a first oxide film, a nitride film, and a second nitride film from the substrate side. The three-layer structure is effective in relieving stress at the corner of the trench opening, covering defects, and sharing functions. Although the breakdown voltage can be increased by increasing the thickness of the gate insulating film, it is not always sufficient to simply increase the thickness. This is because the operating characteristics of the semiconductor element are determined by the thicknesses of the first oxide film and the nitride film.

【0018】ゲート絶縁膜が三層構造からなる場合、上
述したように、長いTDDB寿命を得るためには窒化膜
を厚くすればよいが、窒化膜を20nm程度まで厚くす
ると、窒化膜自体に蓄積されている電荷が原因で−BT
時の変動が大きくなる。また、逆に窒化膜を、8nm未
満の薄さにすると、窒化膜のピンホール等に起因してゲ
ート電極からプラスの可動イオンが窒化膜を突き抜け
て、これがゲート絶縁膜中にトラップされてBT変動が
生じる。
When the gate insulating film has a three-layer structure, as described above, a long TDDB life can be obtained by increasing the thickness of the nitride film. -BT due to the charge
Fluctuation of time becomes large. Conversely, if the nitride film is made thinner than 8 nm, positive mobile ions penetrate the gate electrode from the gate electrode due to pinholes in the nitride film and the like, and are trapped in the gate insulating film, thereby causing BT. Fluctuations occur.

【0019】窒化膜の厚さとTDDB寿命の関係につい
て図6に示す。製品寿命としては少なくとも106 時間
は必要とされる。この製品寿命を得るには窒化膜の厚さ
は8nm必要である。また、窒化膜とBT変動の関係に
ついて図7および8に示す。+BT時のΔVFBは窒化膜
厚が0nm、80nmおよび20nmのいずれの場合も
十分低いが、−BT時のΔVFBは窒化膜厚が0nmおよ
び20nmの場合に許容できないレベルとなってしま
う。
FIG. 6 shows the relationship between the thickness of the nitride film and the TDDB life. A product life of at least 10 6 hours is required. To obtain this product life, the thickness of the nitride film is required to be 8 nm. 7 and 8 show the relationship between the nitride film and the BT fluctuation. While ΔV FB at + BT is sufficiently low in any of the nitride film thicknesses of 0 nm, 80 nm and 20 nm, ΔV FB at −BT becomes an unacceptable level when the nitride film thickness is 0 nm and 20 nm.

【0020】従って、本発明においては、BT変動なら
びにTDDB寿命を考慮して、窒化膜厚を8から16n
mを最適値として定めた。この値は、実際にBT変動お
よびTDDB寿命を測定してはじめて得られたものであ
る。
Therefore, in the present invention, the nitride film thickness is set to 8 to 16 n in consideration of BT fluctuation and TDDB life.
m was determined as the optimum value. This value is obtained only after actually measuring the BT fluctuation and the TDDB life.

【0021】また、本発明において、最も基板側の第1
の酸化膜の厚さを15から25nmとすることで絶縁性
に優れ、信頼性が向上する。
Also, in the present invention, the first substrate side
By setting the thickness of the oxide film to 15 to 25 nm, insulation properties are excellent and reliability is improved.

【0022】このように、本発明においては、所定の形
成温度を用いて所定の厚さの第1の酸化膜および窒化膜
を形成することで、BT変動のない、TDDB寿命の長
いゲート絶縁膜が実現される。
As described above, in the present invention, by forming the first oxide film and the nitride film having a predetermined thickness at a predetermined formation temperature, a gate insulating film having a long TDDB life without BT fluctuation is formed. Is realized.

【0023】本発明の半導体装置において用いる材料は
特に限定されるものではないが、例えば、半導体基板と
しては、シリコン、GaAs等、ゲート電極としては、
ポリシリコン、BPSG(Boron Phospharus Silicate
Glass )、PSG(PhosphoSilicate Glass)等、層間
絶縁膜としては、SiO2 、PSG、Si3 4 等、バ
リアメタルとしてはTi、TiW等、ソース電極および
ドレイン電極としては、Al、Cu、Au等である。
Although the material used in the semiconductor device of the present invention is not particularly limited, for example, the semiconductor substrate is silicon, GaAs, etc., and the gate electrode is
Polysilicon, BPSG (Boron Phospharus Silicate)
Glass), PSG (PhosphoSilicate Glass), etc., interlayer insulating film such as SiO 2 , PSG, Si 3 N 4 , barrier metal such as Ti, TiW, etc., source and drain electrodes such as Al, Cu, Au etc. It is.

【0024】また、本発明は、MOS−FETばかりで
なく、半導体基板の裏面全面にp型層を形成したn型半
導体基板を用いればIGBT(絶縁ゲート型バイポーラ
トランジスタ)にも適用することができる。
The present invention can be applied not only to a MOS-FET but also to an IGBT (insulated gate bipolar transistor) if an n-type semiconductor substrate having a p-type layer formed on the entire back surface of the semiconductor substrate is used. .

【0025】[0025]

【発明の実施の形態】本発明の半導体装置について図1
〜5を用いて説明する。
FIG. 1 shows a semiconductor device according to the present invention.
This will be described with reference to FIGS.

【0026】図1は本発明の半導体装置の断面図であ
る。
FIG. 1 is a sectional view of a semiconductor device according to the present invention.

【0027】N型シリコン基板1の一主面側に堆積され
たP型ベース層3に、トレンチが形成されており、トレ
ンチには厚さ20nmの第1の酸化膜、その上に厚さ1
2nmの窒化膜、そしてその上に厚さ8nmの第2の酸
化膜からなるゲート絶縁膜7が形成されている。このゲ
ート絶縁膜の酸化膜換算の総厚さは30nmである。ト
レンチにはゲート電極8が埋め込まれている。トレンチ
−トレンチ間領域には、P不純物拡散領域4とN
ース領域5が形成されている。さらに、ゲート電極8を
覆うようにSi3 4 CVD膜9が堆積され、Tiから
なるバリアメタルを介してソース電極であるアルミニウ
ム12が堆積している。また、シリコン基板1の他主面
側にはドレイン電極となるメタル13が堆積されてい
る。
A trench is formed in the P-type base layer 3 deposited on one main surface side of the N-type silicon substrate 1, and a first oxide film having a thickness of 20 nm is formed on the trench.
A gate insulating film 7 made of a 2 nm nitride film and an 8 nm thick second oxide film is formed thereon. The total thickness of this gate insulating film in terms of an oxide film is 30 nm. The gate electrode 8 is buried in the trench. In the region between the trenches, a P + impurity diffusion region 4 and an N + source region 5 are formed. Further, a Si 3 N 4 CVD film 9 is deposited so as to cover the gate electrode 8, and aluminum 12 as a source electrode is deposited via a barrier metal made of Ti. On the other main surface side of the silicon substrate 1, a metal 13 serving as a drain electrode is deposited.

【0028】本発明の一実施例による半導体装置の製造
工程を図2〜5を用いて説明する。
A manufacturing process of a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.

【0029】まず、図2(a)に示す通り、N型シリコ
ン基板1の一主面側にP型ベース層2を、例えばCVD
法により堆積させて、その上にマスクを介してホウ素等
のイオンを注入して所定の位置にP不純物拡散領域を
形成する。さらに、P不純物拡散領域の間に砒素、ア
ンチモン、りん等のイオンをで注入してNソース領域
を形成する。さらに、熱シリコン酸化膜3を堆積する。
First, as shown in FIG. 2A, a P-type base layer 2 is formed on one main surface of an N-type silicon substrate 1 by, for example, CVD.
Then, ions such as boron are implanted through a mask through a mask to form P + impurity diffusion regions at predetermined positions. Further, ions of arsenic, antimony, phosphorus and the like are implanted between the P + impurity diffusion regions to form an N + source region. Further, a thermal silicon oxide film 3 is deposited.

【0030】次に、熱シリコン酸化膜3の上にさらに、
CVD法によりCVC酸化膜4を堆積する(図2
(b))。
Next, on the thermal silicon oxide film 3,
A CVC oxide film 4 is deposited by a CVD method (FIG. 2)
(B)).

【0031】トレンチエッチングする部位以外にレジス
ト5を塗布し(図2(c))、エッチングする(図2
(d))。
A resist 5 is applied to a portion other than the portion to be etched by the trench (FIG. 2C) and etched (FIG. 2C).
(D)).

【0032】レジスト5を除去したら(図3(e))、
ソース領域5を貫くようにしてトレンチ6を反応性
イオンエッチング(RIE)により形成する。トレンチ
6の幅は約1μm、深さは約3μmとする(図3
(f))。トレンチ6にCDE(Chemical Dry Etchin
g)によりダメージ処理を施す(図3(g))。熱シリ
コン酸化膜3およびCVD酸化膜4を除去する(図3
(h))。
After removing the resist 5 (FIG. 3E),
A trench 6 is formed through the N + source region 5 by reactive ion etching (RIE). The width of the trench 6 is about 1 μm and the depth is about 3 μm (FIG.
(F)). CDE (Chemical Dry Etchin) in trench 6
g) to perform a damage process (FIG. 3 (g)). The thermal silicon oxide film 3 and the CVD oxide film 4 are removed (FIG. 3
(H)).

【0033】さらに、図4(i)に示すように、トレン
チ6に厚さ20nmの第1の酸化膜、その上に厚さ12
nmの窒化膜、そしてその上に厚さ8nmの第2の酸化
膜からなるゲート絶縁膜7を堆積する。第1の酸化膜の
形成条件は、酸素と水素の混合雰囲気内で930℃、窒
化膜の形成条件は、減圧CVDで750℃、第2の酸化
膜の形成条件は、酸素と水素の混合雰囲気内とする。
Further, as shown in FIG. 4I, a first oxide film having a thickness of 20 nm is formed in the trench 6, and a first oxide film having a thickness of 12
A gate insulating film 7 made of a nitride film having a thickness of 10 nm and a second oxide film having a thickness of 8 nm is deposited thereon. The conditions for forming the first oxide film are 930 ° C. in a mixed atmosphere of oxygen and hydrogen, the conditions for forming the nitride film are 750 ° C. by low pressure CVD, and the conditions for forming the second oxide film are a mixed atmosphere of oxygen and hydrogen. Inside.

【0034】ゲート絶縁膜7の形成されたトレンチ6に
ゲート電極8を埋め込む(図4(j))。このゲート電
極8に平坦化処理を施し、エッチバックする(図4
(k))。層間絶縁膜としてSi3 4 からなるCVD
膜9を全面に堆積する(図4(l))。
The gate electrode 8 is buried in the trench 6 where the gate insulating film 7 is formed (FIG. 4 (j)). The gate electrode 8 is subjected to a flattening process and etched back (FIG.
(K)). CVD made of Si 3 N 4 as interlayer insulating film
A film 9 is deposited on the entire surface (FIG. 4 (l)).

【0035】Si3 4 からなるCVD膜9をエッチン
グするために、レジスト10を塗布して(図5
(m))、RIEにより加工した後(図5(n))、T
iからなるバリアメタル11を介してソース電極である
アルミニウム12を全面に堆積させて(図5(o))、
ドレイン電極をシリコン基板1の他主面側に堆積させて
(図示せず)半導体装置とする。
In order to etch the CVD film 9 made of Si 3 N 4 , a resist 10 is applied (FIG. 5).
(M)), after processing by RIE (FIG. 5 (n)),
Aluminum 12 as a source electrode is deposited on the entire surface via a barrier metal 11 made of i (FIG. 5 (o)).
A semiconductor device is formed by depositing a drain electrode on the other main surface side of the silicon substrate 1 (not shown).

【0036】以上、Nチャネル型について説明してきた
が、言うまでもなく、Pチャネル型についても同様に作
成できる。
The N-channel type has been described above. Needless to say, the P-channel type can be similarly created.

【0037】[0037]

【発明の効果】本発明によれば、BT変動のない、TD
DB寿命の長いゲート絶縁膜を有するトレンチ構造の半
導体装置およびその製造方法が提供される。
According to the present invention, TD fluctuation free TD
Provided are a semiconductor device having a trench structure having a gate insulating film having a long DB life and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の拡大断面図。FIG. 1 is an enlarged cross-sectional view of a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造工程を示す図。FIG. 2 is a diagram showing a manufacturing process of the semiconductor device of the present invention.

【図3】本発明の半導体装置の製造工程を示す図。FIG. 3 is a view showing a manufacturing process of the semiconductor device of the present invention.

【図4】本発明の半導体装置の製造工程を示す図。FIG. 4 is a view showing a manufacturing process of the semiconductor device of the present invention.

【図5】本発明の半導体装置の製造工程を示す図。FIG. 5 is a view showing a manufacturing process of the semiconductor device of the present invention.

【図6】ライフタイムと窒化膜厚の関係を示すグラフ。FIG. 6 is a graph showing a relationship between a lifetime and a nitride film thickness.

【図7】+BT時の電圧特性と窒化膜厚の関係を示すグ
ラフ。
FIG. 7 is a graph showing a relationship between a voltage characteristic at + BT and a nitride film thickness.

【図8】−BT時の電圧特性と窒化膜厚の関係を示すグ
ラフ。
FIG. 8 is a graph showing a relationship between a voltage characteristic at the time of −BT and a nitride film thickness.

【図9】TDDB寿命を示すグラフ。FIG. 9 is a graph showing TDDB life.

【図10】BT変動を示すグラフ。FIG. 10 is a graph showing BT fluctuation.

【符号の説明】[Explanation of symbols]

1…基板 2…ベース層 3…熱シリコン酸化膜 4…CVD酸化膜 5…レジスト 6…トレンチ 7…ゲート絶縁膜(第1の酸化膜、窒化膜、第2の酸化
膜) 8…ゲート電極 9…CVD膜 10…レジスト 11…バリアメタル 12…アルミニウム
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Base layer 3 ... Thermal silicon oxide film 4 ... CVD oxide film 5 ... Resist 6 ... Trench 7 ... Gate insulating film (1st oxide film, nitride film, 2nd oxide film) 8 ... Gate electrode 9 ... CVD film 10 ... resist 11 ... barrier metal 12 ... aluminum

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 素子分離用溝部を備えた半導体基板と、
前記溝部上に形成された、前記溝部側から第1の酸化
膜、窒化膜および第2の酸化膜の順に三層構造を有する
ゲート絶縁膜と、前記溝部に埋め込まれたゲート電極と
を少なくとも具備する半導体装置であって、 前記三層構造のゲート絶縁膜の酸化膜換算の厚さが25
から35nmであることを特徴とする半導体装置。
A semiconductor substrate having an element isolation groove;
At least a gate insulating film formed on the groove and having a three-layer structure in the order of a first oxide film, a nitride film, and a second oxide film from the groove side, and a gate electrode embedded in the groove A three-layered gate insulating film having a thickness equivalent to an oxide film of 25.
A semiconductor device having a thickness of from 35 to 35 nm.
【請求項2】 前記第1の酸化膜の厚さが15から25
nmであり、前記窒化膜の厚さが8から16nm、前記
第2の酸化膜の厚さが6から10nmであることを特徴
とする請求項1記載の半導体装置。
2. The method according to claim 1, wherein said first oxide film has a thickness of 15 to 25.
2. The semiconductor device according to claim 1, wherein the thickness of the nitride film is 8 to 16 nm, and the thickness of the second oxide film is 6 to 10 nm.
【請求項3】 前記第1の酸化膜の形成温度が900か
ら950℃であり、前記窒化膜の形成温度が700から
800℃であることを特徴とする請求項1記載の半導体
装置。
3. The semiconductor device according to claim 1, wherein a temperature at which said first oxide film is formed is 900 to 950 ° C., and a temperature at which said nitride film is formed is 700 to 800 ° C.
【請求項4】 前記半導体装置は、低電圧駆動型MOS
−FETであることを特徴とする請求項1記載の半導体
装置。
4. The semiconductor device according to claim 1, wherein said semiconductor device is a low voltage drive type MOS.
2. The semiconductor device according to claim 1, wherein the semiconductor device is an FET.
【請求項5】 半導体基板上に素子分離用溝部を形成す
る工程と、前記溝部上に、第1の酸化膜、窒化膜および
第2の酸化膜からなる三層構造のゲート絶縁膜を酸化膜
換算の厚さが25から35nmとなるように形成する工
程と、前記ゲート絶縁膜の形成された前記溝部にゲート
電極を埋め込む工程とを少なくとも具備することを特徴
とする半導体装置の製造方法。
5. A step of forming a trench for element isolation on a semiconductor substrate, and forming an oxide film on the trench with a three-layered structure including a first oxide film, a nitride film and a second oxide film. A method for manufacturing a semiconductor device, comprising: at least a step of forming a converted thickness to be 25 to 35 nm, and a step of burying a gate electrode in the trench in which the gate insulating film is formed.
【請求項6】 前記第1の酸化膜の厚さが15から25
nmであり、前記窒化膜の厚さが8から16nm、前記
第2の酸化膜の厚さが6から10nmであることを特徴
とする請求項5記載の半導体装置の製造方法。
6. The thickness of the first oxide film is 15 to 25.
6. The method according to claim 5, wherein the thickness of the nitride film is 8 to 16 nm, and the thickness of the second oxide film is 6 to 10 nm.
【請求項7】 前記第1の酸化膜の形成温度が900か
ら950℃であり、前記窒化膜の形成温度が700から
800℃であることを特徴とする請求項5記載の半導体
装置の製造方法。
7. The method according to claim 5, wherein a temperature of forming the first oxide film is 900 to 950 ° C., and a temperature of forming the nitride film is 700 to 800 ° C. .
JP10371307A 1998-12-25 1998-12-25 Semiconductor device and its manufacture Abandoned JP2000196074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371307A JP2000196074A (en) 1998-12-25 1998-12-25 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371307A JP2000196074A (en) 1998-12-25 1998-12-25 Semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JP2000196074A true JP2000196074A (en) 2000-07-14
JP2000196074A5 JP2000196074A5 (en) 2004-11-11

Family

ID=18498487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371307A Abandoned JP2000196074A (en) 1998-12-25 1998-12-25 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JP2000196074A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974996B2 (en) 2003-01-23 2005-12-13 Denso Corporation Semiconductor device and method of manufacturing the same
US7622768B2 (en) 2004-04-21 2009-11-24 Denso Corporation Semiconductor device and method of manufacturing thereof
CN101840931B (en) * 2009-03-18 2014-03-12 联发科技股份有限公司 High-voltage metal-dielectric-semiconductor device
CN107978641A (en) * 2017-11-23 2018-05-01 中航(重庆)微电子有限公司 A kind of power MOS (Metal Oxide Semiconductor) device manufacture method of new gate structure
CN108962993A (en) * 2017-05-24 2018-12-07 株式会社东芝 Semiconductor device and its manufacturing method
CN110047919A (en) * 2014-05-12 2019-07-23 英飞凌科技股份有限公司 Semiconductor devices and it is formed in semiconductor mesa source region insulated gate bipolar transistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974996B2 (en) 2003-01-23 2005-12-13 Denso Corporation Semiconductor device and method of manufacturing the same
US7622768B2 (en) 2004-04-21 2009-11-24 Denso Corporation Semiconductor device and method of manufacturing thereof
CN101840931B (en) * 2009-03-18 2014-03-12 联发科技股份有限公司 High-voltage metal-dielectric-semiconductor device
CN110047919A (en) * 2014-05-12 2019-07-23 英飞凌科技股份有限公司 Semiconductor devices and it is formed in semiconductor mesa source region insulated gate bipolar transistor
CN108962993A (en) * 2017-05-24 2018-12-07 株式会社东芝 Semiconductor device and its manufacturing method
JP2018198267A (en) * 2017-05-24 2018-12-13 株式会社東芝 Semiconductor device and manufacturing method for the same
CN108962993B (en) * 2017-05-24 2021-09-24 株式会社东芝 Semiconductor device and method for manufacturing the same
CN107978641A (en) * 2017-11-23 2018-05-01 中航(重庆)微电子有限公司 A kind of power MOS (Metal Oxide Semiconductor) device manufacture method of new gate structure

Similar Documents

Publication Publication Date Title
US9275863B2 (en) Method of fabricating semiconductor device
US6278165B1 (en) MIS transistor having a large driving current and method for producing the same
US7354829B2 (en) Trench-gate transistor with ono gate dielectric and fabrication process therefor
US5770514A (en) Method for manufacturing a vertical transistor having a trench gate
US20100187602A1 (en) Methods for making semiconductor devices using nitride consumption locos oxidation
JP3532188B1 (en) Semiconductor device and manufacturing method thereof
US6133099A (en) Vertical MOSFET and method of manufacturing thereof
US5969393A (en) Semiconductor device and method of manufacture of the same
JPH0586673B2 (en)
JPH07249770A (en) Semiconductor device and its fabrication
JP2000196074A (en) Semiconductor device and its manufacture
JP2000349289A (en) Semiconductor device and manufacture thereof
US6974996B2 (en) Semiconductor device and method of manufacturing the same
JPH1174526A (en) Semiconductor device and its manufacture
US6919250B2 (en) Multiple-gate MOS device and method for making the same
JPH10190002A (en) High voltage device with insulated gate pinchi-off structure
JPH03246947A (en) Semiconductor device
JPH08125168A (en) Semiconductor device and fabrication thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050309