JP2000192201A - High corrosion resistance austenitic stainless steel for heat transfer pipe for waste incinerating plant boiler - Google Patents

High corrosion resistance austenitic stainless steel for heat transfer pipe for waste incinerating plant boiler

Info

Publication number
JP2000192201A
JP2000192201A JP37122998A JP37122998A JP2000192201A JP 2000192201 A JP2000192201 A JP 2000192201A JP 37122998 A JP37122998 A JP 37122998A JP 37122998 A JP37122998 A JP 37122998A JP 2000192201 A JP2000192201 A JP 2000192201A
Authority
JP
Japan
Prior art keywords
heat transfer
stainless steel
austenitic stainless
corrosion resistance
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37122998A
Other languages
Japanese (ja)
Other versions
JP4290260B2 (en
Inventor
Atsushi Sho
篤史 庄
Tetsuro Kariya
哲朗 仮屋
Tatsuro Isomoto
辰郎 磯本
Takeo Urabe
武生 占部
Masaaki Nagashima
公明 永島
Sadao Suzuki
貞夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Takuma Co Ltd
Sanyo Special Steel Co Ltd
IHI Corp
Kawasaki Heavy Industries Ltd
Kobe Steel Ltd
Kubota Corp
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Tokyo Metropolitan Government
Original Assignee
Ebara Corp
Takuma Co Ltd
Sanyo Special Steel Co Ltd
IHI Corp
Kawasaki Heavy Industries Ltd
Kobe Steel Ltd
Kubota Corp
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Tokyo Metropolitan Government
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Takuma Co Ltd, Sanyo Special Steel Co Ltd, IHI Corp, Kawasaki Heavy Industries Ltd, Kobe Steel Ltd, Kubota Corp, Hitachi Zosen Corp, Mitsubishi Heavy Industries Ltd, Tokyo Metropolitan Government, NKK Corp, Nippon Kokan Ltd filed Critical Ebara Corp
Priority to JP37122998A priority Critical patent/JP4290260B2/en
Publication of JP2000192201A publication Critical patent/JP2000192201A/en
Application granted granted Critical
Publication of JP4290260B2 publication Critical patent/JP4290260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide austenitic stainless steel for a boiler heat transfer pipe having excellent resistance to molten salt corrosion and acid dew point corrosion in a waste incinerating power generating plant and having excellent intergranular corrosion resistance in molten salt corrosive environments in particular. SOLUTION: This steel is the one having a compsn. contg., by weight, <=0.05% C, 2.0 to 4.0% Si, >0.5 to 2.0% Mn, 20 to <25% Ni, 20 to 30% Cr and <=0.15% N, also simultaneously satisfying the following formulas I and II, and the balance substantial Fe and inevitable impurities. If required, the steel can be added with <1.0% Mo, one or two kinds of Nb and Ti by 0.1 to 1.5% in total and 0.001 to 0.015% Ca individually or combinedly: the formula I: Si(%)×Cr(%)-15.2)>=17.6 and the formula II: Cr(%)+6×Si(%)<=48.0%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、産業廃
棄物等の廃棄物(いわゆる、ごみ)あるいは、近年のR
DF(Refuse Derived Fuel)を原
料に発電を行う施設に設置されるボイラの蒸発管、水壁
管および過熱器管等のボイラ伝熱管として利用される高
耐食性オーステナイト系ステンレス鋼に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to waste (so-called garbage) such as municipal waste and industrial waste,
The present invention relates to a high corrosion resistant austenitic stainless steel used as a boiler heat transfer tube such as a boiler evaporator tube, a water wall tube, and a superheater tube installed in a facility that generates power using DF (Refuse Derived Fuel) as a raw material.

【0002】[0002]

【従来の技術】近年、これまで利用されずに放置されて
いたエネルギーを活用し高効率化を図ることによって結
果的にCO2 の排出を抑制しようとする動き、いわゆる
サーマルリサイクルが地球規模で急速に普及し始めてい
る。国内ではその中でも廃棄物エネルギーの回収と有効
利用が積極的に展開され、古くは焼却施設内の電力や地
域暖房を賄うためだけに留まっていたものが、現状では
例えば売電のような高度な(高効率な)ものに移行して
きている。
2. Description of the Related Art In recent years, there has been a movement to reduce CO 2 emissions by utilizing energy that has been left unutilized until now to achieve high efficiency. Has begun to spread. In Japan, the recovery and effective use of waste energy is being actively promoted, and in the old days, it was only used to supply electricity in incineration facilities and district heating, but at present, advanced (Highly efficient) ones.

【0003】しかしながら、廃棄物エネルギーを高効率
に電気エネルギーとして回収するためには、一般的にボ
イラの蒸気温度および圧力を上昇させなければならず、
高効率化にはわが国独特の腐食性の高いごみ質も相俟っ
て、燃焼灰に含まれる溶融塩と燃焼排ガスによるボイラ
伝熱管材料の激しい腐食損傷が避けられない状況にあ
る。そのため、廃棄物発電ボイラ伝熱管の材料寿命は高
温における耐食性に依存するところが大きいと認識され
ており、種々の耐食材料が既に提案されてはいるが、メ
タル温度400℃以上で実証され成功を収めた例は未だ
数少ない。
However, in order to efficiently recover waste energy as electric energy, the steam temperature and pressure of a boiler generally need to be increased.
The high efficiency is accompanied by the highly corrosive waste quality unique to Japan, and severe corrosion damage to the boiler heat transfer tube material due to the molten salt contained in the combustion ash and the combustion exhaust gas is inevitable. Therefore, it is recognized that the material life of the heat transfer tubes for waste power generation boilers largely depends on the corrosion resistance at high temperatures, and although various corrosion-resistant materials have already been proposed, they have been successfully demonstrated at metal temperatures of 400 ° C or higher. There are still a few examples.

【0004】このように、わが国のサーマルリサイクル
情勢を見れば、廃棄物発電ボイラの伝熱管用材料として
燃焼灰や排ガスによる過酷な高温腐食環境および炉停止
時に生じる酸露点腐食環境に耐え得る材料の出現が多く
で望まれ、当該材料の開発およびその実証が急務とされ
ている。既に廃棄物焼却廃熱ボイラ管用途として、耐食
性および耐応力腐食性を改善した特開平4−35014
9号公報が提案されている。しかしながら、これはNi
が25%未満の場合、Siの添加は耐高温腐食性に悪影
響を及ぼすとされ、またNiの多量添加による高コスト
な材料であった。しかしながら、本発明者らがさらに詳
細に実験を重ねた結果、Ni:25%以下の成分系にお
いても上述した式(1)を満たせば、耐高温腐食性に対
してSiの添加は有効であることを見出し、本発明材料
が廃棄物発電ボイラ伝熱管として優れた性質を有してい
ることが明らかとなった。
[0004] Thus, in view of the thermal recycling situation in Japan, as materials for heat transfer tubes of waste power boilers, materials that can withstand severe high-temperature corrosive environment due to combustion ash and exhaust gas and acid dew point corrosive environment generated when the furnace is shut down. The emergence is much desired and the development and demonstration of such materials is urgent. Japanese Unexamined Patent Publication No. 4-35014 which has already improved corrosion resistance and stress corrosion resistance for use in waste incineration waste heat boiler tubes.
No. 9 has been proposed. However, this is because Ni
Is less than 25%, the addition of Si is considered to have an adverse effect on high-temperature corrosion resistance, and is a high-cost material due to the addition of a large amount of Ni. However, as a result of further detailed experiments by the present inventors, the addition of Si is effective for high-temperature corrosion resistance if the above-mentioned formula (1) is satisfied even in a component system of Ni: 25% or less. It was found that the material of the present invention had excellent properties as a heat transfer tube for a waste power generation boiler.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、わが
国の過酷な腐食環境における廃棄物焼却発電の高効率
化、およびボイラの長寿命化をはかるために、高温腐食
性ガス、溶融塩および酸などが単独あるいは複合で存在
する過酷な腐食環境下において、優れた耐食性を有する
廃棄物焼却発電用のボイラ伝熱管材料を提供するところ
にある。
SUMMARY OF THE INVENTION An object of the present invention is to increase the efficiency of waste incineration power generation in a severe corrosive environment in Japan and extend the life of a boiler by using high-temperature corrosive gas, molten salt, and the like. An object of the present invention is to provide a boiler heat transfer tube material for waste incineration power generation having excellent corrosion resistance in a severe corrosive environment in which an acid or the like exists alone or in combination.

【0006】[0006]

【課題を解決するための手段】本発明は、以下に示す化
学組成をもつ廃棄物焼却プラントボイラ伝熱管用の高耐
食性オーステナイト系ステンレス鋼を要旨とする。その
要旨とするところは、 (1)重量%で、C:0.05%以下、Si:2.0〜
4.0%、Mn:0.5超〜2.0%、Ni:20〜2
5%未満、Cr:20〜30%、N:0.15%以下を
含み、かつ下式(1)および(2)を同時に満足して、
残部が実質的にFeおよび不可避的不純物からなること
を特徴とする廃棄物焼却プラントボイラ伝熱管用高耐食
性オーステナイト系ステンレス鋼。 Si(%)×{Cr(%)−15.2}≧17.6% … (1) Cr(%)+6×Si(%)≦48.0% … (2)
SUMMARY OF THE INVENTION The gist of the present invention is a highly corrosion-resistant austenitic stainless steel for a boiler heat transfer tube of a waste incineration plant having the following chemical composition. The main points are as follows: (1) By weight%, C: 0.05% or less, Si: 2.0 to
4.0%, Mn: more than 0.5 to 2.0%, Ni: 20 to 2
Less than 5%, Cr: 20-30%, N: 0.15% or less, and simultaneously satisfying the following expressions (1) and (2),
A high corrosion resistant austenitic stainless steel for a boiler heat transfer tube of a waste incineration plant, the balance substantially consisting of Fe and unavoidable impurities. Si (%) × {Cr (%) − 15.2} ≧ 17.6% (1) Cr (%) + 6 × Si (%) ≦ 48.0% (2)

【0007】(2)前記(1)に記載した合金成分に加
えて、さらに、Mo:1.0重量%未満含有することを
特徴とする廃棄物焼却プラントボイラ伝熱管用高耐食性
オーステナイト系ステンレス鋼。 (3)前記(1)または(2)に記載した合金成分に加
えて、さらに、NbまたはTiのいずれか1種または2
種を合計で0.1〜1.5重量%含有することを特徴と
する廃棄物焼却プラントボイラ伝熱管用高耐食性オース
テナイト系ステンレス鋼。 (4)前記(1)〜(3)に記載したいずれかの合金成
分に加えて、さらに、Ca:0.001〜0.015重
量%含有することを特徴とする廃棄物焼却プラントボイ
ラ伝熱管用高耐食性オーステナイト系ステンレス鋼にあ
る。
(2) A high corrosion resistant austenitic stainless steel for a waste incineration plant boiler heat transfer tube, characterized by further containing Mo: less than 1.0% by weight in addition to the alloy component described in the above (1). . (3) In addition to the alloy components described in the above (1) or (2), further, any one of Nb or Ti or 2
A high-corrosion-resistant austenitic stainless steel for a boiler heat transfer tube of a waste incineration plant, comprising 0.1 to 1.5% by weight of seeds in total. (4) A boiler heat transfer tube for a waste incineration plant, characterized by further containing Ca: 0.001 to 0.015% by weight in addition to any of the alloy components described in (1) to (3) above. For high corrosion resistance austenitic stainless steel.

【0008】本発明の技術的な考え方と特徴は次の通り
である。 (1)溶融塩腐食および耐酸露点腐食に対する抵抗性
を、合金最前縁におけるCr2 3 およびSiO2 被膜
の同時形成によって達成させる。 (2)粒界Cr炭化物の析出によって発生したCr欠乏
層の形成による耐食性劣化をSiO2 被膜形成によって
補う。 (3)C含有量の低減により、Cr欠乏層の形成による
粒界侵食を抑制させる。 (4)不可避的に含まれるCをNbおよびTiによって
固定させ、Cr欠乏層の形成による粒界侵食を抑制させ
る。 という技術思想に基づき、SiおよびCrの複合添加
(式(1)の関係)をもって耐溶融塩腐食性、特に耐粒
界腐食性が向上するところを見出したことに本発明の特
徴がある。さらに、化学組成が式(2)の関係を満たす
時、効率的な製造が行えることを見出したことも本発明
の特徴の一つに挙げられる。
The technical concept and features of the present invention are as follows. (1) Resistance to molten salt corrosion and acid dew point corrosion is achieved by simultaneous formation of Cr 2 O 3 and SiO 2 coatings on the leading edge of the alloy. (2) Deterioration of corrosion resistance due to formation of a Cr deficient layer generated by precipitation of grain boundary Cr carbide is compensated for by formation of a SiO 2 film. (3) By reducing the C content, grain boundary erosion due to the formation of a Cr-deficient layer is suppressed. (4) C inevitably contained is fixed by Nb and Ti, and grain boundary erosion due to formation of a Cr-deficient layer is suppressed. Based on the technical idea described above, it is a feature of the present invention that the molten salt corrosion resistance, particularly the intergranular corrosion resistance is improved by the combined addition of Si and Cr (relationship of the formula (1)). Furthermore, it has been found that one of the features of the present invention is that efficient production can be performed when the chemical composition satisfies the relationship of the formula (2).

【0009】以下に本発明鋼の各合金成分の作用とそれ
らの含有量の限定理由を説明する。 C:0.05%以下 Cの多量の含有は、高温で結晶粒界に多量のCr炭化物
の析出を招き、粒界腐食の進行を促すので、含有量はで
きるだけ低減されることが望ましい。Cの含有量が0.
05%を超えると上述した問題が顕著に現れるようにな
るので、含有量を0.05%以下とした。
The function of each alloy component of the steel of the present invention and the reason for limiting the content thereof will be described below. C: 0.05% or less A large amount of C causes precipitation of a large amount of Cr carbide at a crystal grain boundary at a high temperature and promotes the progress of intergranular corrosion. Therefore, it is desirable that the content is reduced as much as possible. C content is 0.
If the content exceeds 0.05%, the above-described problem becomes noticeable, so the content is set to 0.05% or less.

【0010】Si:2.0〜4.0% Siは一般に脱酸剤を目的に用いられる元素であるが、
本発明においては、前述したようにCrとの同時添加に
よって材料に優れた耐食性を付与させるために用いられ
る。この効果はSi含有量が2.0%以上で顕著となる
ことから、2.0%を下限とした。ところが、Si含有
量が4.0%を超えると著しく熱間加工性を劣化させる
ため、4.0%を上限とした。
Si: 2.0 to 4.0% Si is an element generally used for the purpose of a deoxidizing agent.
In the present invention, as described above, it is used for imparting excellent corrosion resistance to the material by simultaneous addition with Cr. Since this effect becomes significant when the Si content is 2.0% or more, the lower limit is set to 2.0%. However, when the Si content exceeds 4.0%, the hot workability deteriorates remarkably, so the upper limit was set to 4.0%.

【0011】Mn:0.5超〜2.0%以下 Mnは、脱酸とオーステナイト組織の安定化をはかるた
めに添加される。0.5%以下では、脱酸の効果がな
く、一方で含有量が2.0%を超えたとき、熱間加工性
の劣化を生じるので、含有量を2.0%以下とした。 Ni:20〜25%未満 Niはオーステナイト組織を安定化させ、十分な機械的
性質を確保するために添加される。オーステナイト組織
の安定化および機械的性質を確保させるには、含有量が
20〜25%未満必要であるのでそのように設定した。
Mn: more than 0.5 to 2.0% Mn is added to deoxidize and stabilize the austenite structure. If the content is 0.5% or less, there is no deoxidizing effect, and if the content exceeds 2.0%, the hot workability deteriorates. Therefore, the content is set to 2.0% or less. Ni: less than 20 to 25% Ni is added in order to stabilize the austenite structure and secure sufficient mechanical properties. In order to ensure the stability and mechanical properties of the austenitic structure, the content is required to be less than 20 to 25%.

【0012】Cr:20〜30% Crは材料の耐溶融塩腐食性および耐酸露点腐食性を向
上させるために不可欠な元素である。特に耐溶融塩腐食
性に対しては、Siとの複合添加によってその効果をよ
り発揮させる。含有量が20%以上でその効果が認めら
れるので、20%を下限とした。 一方、30%を超え
て含有するようになると高温保持においてオーステナイ
ト組織の維持が困難となり、脆化を招きやすくなるの
で、上限を30%とした。
Cr: 20 to 30% Cr is an element indispensable for improving the molten salt corrosion resistance and acid dew point corrosion resistance of the material. In particular, with respect to the molten salt corrosion resistance, the effect is more exerted by adding Si in combination with Si. Since the effect is recognized when the content is 20% or more, the lower limit is set to 20%. On the other hand, if the content exceeds 30%, it becomes difficult to maintain the austenite structure in holding at a high temperature, and it is easy to cause embrittlement. Therefore, the upper limit is set to 30%.

【0013】N:0.15%以下 Nはオーステナイト組織の安定化に寄与するばかりでな
く、高温強度を高める効果を有する元素であるが、含有
量の増加にともなって熱間および冷間加工性を低下させ
る傾向にあるので上限を0.15%とし、望ましくは
0.04%超と設定した。上述した成分の他に、本発明
では上述した化学組成に加えて、さらに必要に応じて、
Moを含有させることができる。
N: 0.15% or less N is an element that not only contributes to stabilization of the austenite structure, but also has the effect of increasing the high-temperature strength, but as the content increases, hot and cold workability increases. Therefore, the upper limit is set to 0.15%, and desirably is set to more than 0.04%. In addition to the components described above, in the present invention, in addition to the chemical composition described above, if necessary,
Mo can be contained.

【0014】Mo:1.0%未満 Moは高温強度の向上ばかりでなく、優れた耐酸露点腐
食性を発揮する元素である。特にこれらの効果を得たい
場合、必要に応じて添加することができる。ところがM
o含有量が増加するにしたがって熱間加工性が低下する
傾向にあるので、上限を1.0%未満とした。さらに、
本発明では上述した化学組成に加え、必要に応じてNb
またはTiのいずれか1種または2種を選んで含有させ
ることができる。
Mo: less than 1.0% Mo is an element that not only improves high-temperature strength but also exhibits excellent acid dew point corrosion resistance. Particularly when these effects are desired, they can be added as necessary. However, M
Since the hot workability tends to decrease as the o content increases, the upper limit is set to less than 1.0%. further,
In the present invention, in addition to the chemical composition described above, Nb
Alternatively, one or two of Ti can be selected and contained.

【0015】Nb、Ti:いずれかの1種または2種を
合計で0.1〜1.5% NbおよびTiはいずれも炭化物を形成しやすいので、
鋼中のCを固定させ、Cr欠乏層の発生を未然に防ぐこ
とによって、溶融塩腐食環境における耐粒界腐食性と酸
露点腐食に対する抵抗性の劣化を防止する作用を有す
る。これらの効果を得たい場合には、必要に応じてNb
およびTiを選択して含有させる。この場合、合計で
0.1%未満では効果が認められず、1.5%を超える
ようになると著しく熱間および冷間加工が劣化するの
で、請求の範囲を1種または2種合計で0.1〜1.5
%とした。
Nb, Ti: 0.1 to 1.5% in total of one or two of Nb and Ti. Since Nb and Ti both easily form carbides,
By fixing C in the steel and preventing the generation of a Cr-deficient layer, it has an effect of preventing deterioration of intergranular corrosion resistance and resistance to acid dew point corrosion in a molten salt corrosion environment. To obtain these effects, if necessary,
And Ti are selectively contained. In this case, if the total is less than 0.1%, no effect is recognized, and if it exceeds 1.5%, the hot and cold working is significantly deteriorated. .1 to 1.5
%.

【0016】さらに、本発明では上述した化学組成に加
えてCaを含有させてもよい。 Ca:0.001〜0.015% Caは熱間加工性を劣化させる要因の一つであるSを固
定させる作用を有するため、本発明の熱間加工性の向上
を目的とする場合に添加することができる。含有させる
場合には、0.001%以上の添加が望ましいが、0.
015%を超える添加は、低融点のCa−Ni化合物を
生成させ、逆に熱間加工性を悪化させるので上限を0.
015%とした。
Further, in the present invention, Ca may be contained in addition to the above-mentioned chemical composition. Ca: 0.001 to 0.015% Since Ca has an effect of fixing S, which is one of the factors that deteriorate hot workability, it is added when the purpose of the present invention is to improve hot workability. can do. When it is contained, it is desirable to add 0.001% or more.
If the addition exceeds 015%, a Ca—Ni compound having a low melting point is formed, and conversely, hot workability is deteriorated.
015%.

【0017】 Si(%)×{Cr(%)−15.2}≧17.6% … (1) 前述したように、本発明者らが詳細に実験を重ねた結
果、廃棄物焼却環境における溶融塩腐食に対する効果
は、SiおよびCrが適正に添加された場合に著しく大
きくなり、SiおよびCrの含有量が式(1)の条件を
満たす時、耐溶融塩腐食性、特に耐粒界腐食性が相乗的
に向上することが判明した。 Cr(%)+6×Si(%)≦48.0% … (2) しかしながら、確かに式(1)の値が大きくなるにつれ
て耐溶融塩腐食性は向上するが、式(2)の値が48%
を超えるようになると熱間加工性が著しく劣化するよう
になるので、式(2)のように、SiおよびCrの複合
含有量を48.0%以下に制限した。
Si (%) × {Cr (%) − 15.2} ≧ 17.6% (1) As described above, as a result of repeated experiments by the present inventors, in the waste incineration environment, The effect on molten salt corrosion is significantly increased when Si and Cr are properly added, and when the content of Si and Cr satisfies the condition of formula (1), the molten salt corrosion resistance, particularly the intergranular corrosion resistance It was found that the properties improved synergistically. Cr (%) + 6 × Si (%) ≦ 48.0% (2) However, as the value of the formula (1) increases, the molten salt corrosion resistance improves, but the value of the formula (2) is 48%
, The hot workability is remarkably deteriorated, so that the complex content of Si and Cr is limited to 48.0% or less as in the equation (2).

【0018】[0018]

【実施例】実施例として表1に本発明鋼、比較鋼および
既存鋼の化学成分を示す。既存鋼として3鋼種採用し、
既存鋼No38、39、40はそれぞれ、SUS310
S、SUS316、NCF800Hに相当するものであ
る。表1に示す化学組成の合金を真空溶解炉で100k
gづつ溶製し、得られたインゴットを幅60mm×厚さ
10mmのプレートに熱間鍛造後、1160℃で成品熱
処理を行った。その後、機械加工、研削工程を通って1
0mm×10mm×3.5mmの腐食試験片を調整し
た。
EXAMPLES As examples, Table 1 shows the chemical compositions of the steels of the present invention, comparative steels and existing steels. Adopted three steel grades as existing steel,
Existing steel Nos. 38, 39 and 40 are SUS310
S, SUS316, and NCF800H. Alloy of the chemical composition shown in Table 1 was melted in a vacuum melting furnace at 100k
Each of the obtained ingots was hot forged into a plate having a width of 60 mm and a thickness of 10 mm, and then subjected to a product heat treatment at 1160 ° C. Then, through the machining and grinding process,
A corrosion test specimen of 0 mm × 10 mm × 3.5 mm was prepared.

【0019】[0019]

【表1】 [Table 1]

【0020】耐溶融塩腐食性の評価は、埋没法にて行っ
た。実験は外径26mm×高さ19mm、容量5mlの
るつぼを使用して、廃棄物焼却実炉ボイラで採取された
付着灰(150μm以下に調整)に試験片を埋没させた
後、焼却炉の腐食性ガスを模擬した10%CO2 −10
%O2 −50ppmSO2 −50ppmNO−100p
pmCO−1500ppmHCl−20%H2 O−ba
l.N2 の混合ガスを600ml/minの流量で流し
ながら、550℃の温度で100h保持するという工程
で行われた。なお、実験に供試した灰は、表2に示すよ
うな組成のものである。実験終了後、脱スケールを施
し、試料の重量減量を測定した。さらにその後、試料を
厚み方向に切断し、光学顕微鏡にて最大全面腐食深さお
よび最大粒界腐食長さを測定し、評価した。
The evaluation of molten salt corrosion resistance was performed by the burial method. In the experiment, using a crucible having an outer diameter of 26 mm × a height of 19 mm and a capacity of 5 ml, the test piece was buried in the attached ash (adjusted to 150 μm or less) collected by a waste incineration boiler, and the incinerator was corroded. 10% CO 2 -10 simulating anaerobic gas
% O 2 -50 ppm SO 2 -50 ppm NO-100p
pmCO-1500 ppm HCl-20% H 2 O-ba
l. This was carried out in a process of maintaining the temperature of 550 ° C. for 100 hours while flowing a mixed gas of N 2 at a flow rate of 600 ml / min. The ash used in the experiment had the composition shown in Table 2. After the experiment, descaling was performed, and the weight loss of the sample was measured. Thereafter, the sample was cut in the thickness direction, and the maximum overall corrosion depth and the maximum intergranular corrosion length were measured and evaluated using an optical microscope.

【0021】[0021]

【表2】 [Table 2]

【0022】耐酸露点腐食性は、試料に実炉灰を塗布、
水蒸気飽和させた80℃の恒温槽中で100h保持後、
光学顕微鏡にて局部腐食の発生有無の確認およびその深
さの測定・比較によって評価された。表3および図1に
これらの実験結果を示す。なお、比較鋼No36および
No37については、鋼塊の熱間鍛造時に著しい鍛造割
れを引き起こし、試験片の調整ができなかったため、実
験を実施することができなかった。
The acid dew point corrosion resistance is determined by applying a real furnace ash to a sample,
After holding for 100 hours in a steam-saturated 80 ° C. thermostat,
Evaluation was made by confirming the occurrence of local corrosion with an optical microscope and measuring and comparing the depth. Table 3 and FIG. 1 show the results of these experiments. In addition, about comparative steel No. 36 and No. 37, it was not possible to perform an experiment because a remarkable forging crack was caused at the time of hot forging of a steel ingot and a test piece could not be adjusted.

【0023】実験結果を解析した結果、図1で示される
ように、本発明で規定される成分範囲において、耐溶融
塩腐食性は、SiとCrの相乗効果(式(1))によっ
て向上し、整理されることが明らかとなった。さらに、
本発明鋼の最大全面腐食深さは既存鋼に対し最高1/5
〜1/4を示し、何れの例においても粒界侵食される最
大の長さは0.01mm未満であるので、本発明鋼は既
存鋼に対して最高4〜5倍の耐溶融塩腐食を有すること
が確認された。なお、高温環境における粒界腐食が懸念
されるような環境には、例えば発明鋼No18とNo1
9やNo22とNo23との比較で明らかなように、N
bおよびTiの単独あるいは複合添加が有効であること
が分かる。
As a result of analyzing the experimental results, as shown in FIG. 1, in the component range specified by the present invention, the molten salt corrosion resistance is improved by the synergistic effect of Si and Cr (formula (1)). It was clear that it would be organized. further,
The maximum general corrosion depth of the steel of the present invention is up to 1/5 that of the existing steel.
Since the maximum length of grain boundary erosion is less than 0.01 mm in any of the examples, the steel of the present invention has a molten salt corrosion resistance of up to 4 to 5 times that of the existing steel. It was confirmed to have. In an environment in which intergranular corrosion is concerned in a high-temperature environment, for example, invention steels No. 18 and No. 1
As is clear from the comparison between No. 9 and No. 22 and No. 23, N
It can be seen that the addition of b and Ti alone or in combination is effective.

【0024】耐酸露点腐食性についても本発明鋼は比較
鋼や既存鋼よりも優れており、殆どにおいて、2.5μ
m未満の最大孔食深さであった。特にCr、Moを多く
含む組成においては、例えば発明鋼No1、No16お
よびNo17等で示されるように、孔食は観察されなか
ったため、酸露点腐食が懸念されるような環境において
は、Crの増量あるいはMoの選択添加が望ましい。
The steel of the present invention is also superior in acid dew point corrosion resistance to comparative steels and existing steels.
The maximum pit depth was less than m. In particular, in a composition containing a large amount of Cr and Mo, for example, as shown by invention steels No. 1, No. 16, and No. 17, pitting corrosion was not observed. Alternatively, selective addition of Mo is desirable.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】以上述べたように、本発明鋼は廃棄物焼
却環境という極めて過酷な腐食環境下においても、優れ
た耐溶融塩腐食性を有し、しかも炉停止時に起こる酸露
点腐食に対しても強い抵抗性を有するオーステナイト系
ステンレス鋼であることが示された。従って、本発明鋼
からなる管を例えば過熱器管のようなボイラの高温部位
に適用される際には、廃棄物焼却ボイラの高温・高圧化
が可能となり、サーマルリサイクルに則った焼却廃熱の
高効率利用が可能となる。
As described above, the steel of the present invention has excellent molten salt corrosion resistance even in an extremely severe corrosive environment such as a waste incineration environment, and is resistant to acid dew point corrosion that occurs when the furnace is shut down. Austenitic stainless steel having high resistance was also shown. Therefore, when a pipe made of the steel of the present invention is applied to a high-temperature portion of a boiler such as a superheater pipe, the temperature and pressure of a waste incineration boiler can be increased, and the heat of incineration waste heat in accordance with thermal recycling can be obtained. Highly efficient utilization becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】腐食減量に対するSi、Crの相乗効果を示す
図である。 特許出願人 山陽特殊製鋼株式会社 他10名 代理人 弁理士 椎 名 彊
FIG. 1 is a diagram showing a synergistic effect of Si and Cr on weight loss due to corrosion. Patent applicant Sanyo Special Steel Co., Ltd. and 10 others Attorney Patent Attorney Shiina Jin

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000133032 株式会社タクマ 大阪府大阪市北区堂島浜1丁目3番23号 (71)出願人 000004123 日本鋼管株式会社 東京都千代田区丸の内一丁目1番2号 (71)出願人 000006208 三菱重工業株式会社 東京都千代田区丸の内二丁目5番1号 (71)出願人 000000239 株式会社荏原製作所 東京都大田区羽田旭町11番1号 (71)出願人 000000099 石川島播磨重工業株式会社 東京都千代田区大手町2丁目2番1号 (71)出願人 000001052 株式会社クボタ 大阪府大阪市浪速区敷津東一丁目2番47号 (71)出願人 000001199 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18号 (71)出願人 000180070 山陽特殊製鋼株式会社 兵庫県姫路市飾磨区中島字一文字3007番地 (72)発明者 庄 篤史 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 仮屋 哲朗 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 磯本 辰郎 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 占部 武生 東京都江東区青海二丁目地先 東京都清掃 局中防庁舎内 (72)発明者 永島 公明 東京都新宿区西新宿二丁目8番1号 東京 都清掃局工場管理部内 (72)発明者 鈴木 貞夫 東京都新宿区西新宿二丁目8番1号 東京 都清掃局工場管理部内 ──────────────────────────────────────────────────続 き Continuation of front page (71) Applicant 000133032 Takuma Co., Ltd. 1-3-3 Dojimahama, Kita-ku, Osaka-shi, Osaka (71) Applicant 000004123 Nippon Kokan Co., Ltd. 1-1-2 Marunouchi, Chiyoda-ku, Tokyo, Japan (71) Applicant 000006208 Mitsubishi Heavy Industries, Ltd. 2-5-1 Marunouchi, Chiyoda-ku, Tokyo (71) Applicant 000000239 Ebara Corporation 11-1 Asahicho, Haneda, Ota-ku, Tokyo (71) Applicant 000000099 Harima Ishikawajima Heavy Industries, Ltd. 2-2-1, Otemachi, Chiyoda-ku, Tokyo (71) Applicant 000001052 Kubota Corporation 2-47, Shikitsu-Higashi 1-chome, Naniwa-ku, Osaka-shi, Osaka (71) Applicant 000001199 Kobe Steel, Ltd. 1-3-18 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo (71) Applicant 000180070 Sanyo Special Steel Co., Ltd.Shimima-ku, Himeji-shi, Hyogo Sanji One Letter 3007 (72) Inventor Atsushi Sho 3007 Nakajima One Letter in Shima, Himeji City, Hyogo Prefecture Inside Sanyo Special Steel Co., Ltd. (72) Inventor Tatsuro Isomoto 3007 1 character, Nakajima, Shima, Himeji-shi, Hyogo Sanyo Special Steel Co., Ltd. (72) Inventor Takeo Ubube 2-chome, Aomi, Koto-ku, Tokyo Tokyo Cleaning Bureau Chubu Inside the government building (72) Inventor Kimiaki Nagashima 2-8-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside the Tokyo Metropolitan Government Cleaning Department Plant Management Department (72) Inventor Sadao Suzuki 2-2-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Bureau factory management department

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.05%以下、 Si:2.0〜4.0%、 Mn:0.5超〜2.0%、 Ni:20〜25%未満、 Cr:20〜30%、 N:0.15%以下を含み、かつ下式(1)および
(2)を同時に満足して、残部が実質的にFeおよび不
可避的不純物からなることを特徴とする廃棄物焼却プラ
ントボイラ伝熱管用高耐食性オーステナイト系ステンレ
ス鋼。 Si(%)×{Cr(%)−15.2}≧17.6% … (1) Cr(%)+6×Si(%)≦48.0% … (2)
1. wt%, C: 0.05% or less, Si: 2.0 to 4.0%, Mn: more than 0.5 to 2.0%, Ni: 20 to less than 25%, Cr: 20 to 30%, N: 0.15% or less, and simultaneously satisfying the following formulas (1) and (2), with the balance substantially consisting of Fe and unavoidable impurities: High corrosion resistant austenitic stainless steel for heat transfer tubes in incineration plant boilers. Si (%) × {Cr (%) − 15.2} ≧ 17.6% (1) Cr (%) + 6 × Si (%) ≦ 48.0% (2)
【請求項2】 請求項1に記載した合金成分に加えて、
さらに、Mo:1.0重量%未満含有することを特徴と
する廃棄物焼却プラントボイラ伝熱管用高耐食性オース
テナイト系ステンレス鋼。
2. In addition to the alloy component according to claim 1,
Further, Mo: a highly corrosion-resistant austenitic stainless steel for a waste incineration plant boiler heat transfer tube, characterized by containing less than 1.0% by weight.
【請求項3】 請求項1または2に記載した合金成分に
加えて、さらに、NbまたはTiのいずれか1種または
2種を合計で0.1〜1.5重量%含有することを特徴
とする廃棄物焼却プラントボイラ伝熱管用高耐食性オー
ステナイト系ステンレス鋼。
3. An alloy according to claim 1, further comprising one or two of Nb and Ti in a total amount of 0.1 to 1.5% by weight. High austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes.
【請求項4】 請求項1〜3に記載したいずれかの合金
成分に加えて、さらに、Ca:0.001〜0.015
重量%含有することを特徴とする廃棄物焼却プラントボ
イラ伝熱管用高耐食性オーステナイト系ステンレス鋼。
4. In addition to any of the alloy components according to claim 1, Ca: 0.001 to 0.015
High corrosion-resistant austenitic stainless steel for boiler heat transfer tubes in a waste incineration plant characterized by containing by weight.
JP37122998A 1998-12-25 1998-12-25 Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes Expired - Lifetime JP4290260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37122998A JP4290260B2 (en) 1998-12-25 1998-12-25 Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37122998A JP4290260B2 (en) 1998-12-25 1998-12-25 Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes

Publications (2)

Publication Number Publication Date
JP2000192201A true JP2000192201A (en) 2000-07-11
JP4290260B2 JP4290260B2 (en) 2009-07-01

Family

ID=18498361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37122998A Expired - Lifetime JP4290260B2 (en) 1998-12-25 1998-12-25 Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes

Country Status (1)

Country Link
JP (1) JP4290260B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041349A (en) * 2001-08-01 2003-02-13 Nisshin Steel Co Ltd Electrically resistive material
EP2016031A1 (en) * 2006-05-02 2009-01-21 Sandvik Intellectual Property AB A component for supercritical water oxidation plants, made of an austenitic stainless steel alloy
JP7334940B2 (en) 2019-08-02 2023-08-29 新報国マテリアル株式会社 austenitic stainless steel castings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041349A (en) * 2001-08-01 2003-02-13 Nisshin Steel Co Ltd Electrically resistive material
EP2016031A1 (en) * 2006-05-02 2009-01-21 Sandvik Intellectual Property AB A component for supercritical water oxidation plants, made of an austenitic stainless steel alloy
EP2016031A4 (en) * 2006-05-02 2011-03-16 Sandvik Intellectual Property A component for supercritical water oxidation plants, made of an austenitic stainless steel alloy
JP7334940B2 (en) 2019-08-02 2023-08-29 新報国マテリアル株式会社 austenitic stainless steel castings

Also Published As

Publication number Publication date
JP4290260B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
EP0834580B1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
JP3104622B2 (en) Nickel-based alloy with excellent corrosion resistance and workability
US5378427A (en) Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
JPH09279313A (en) Stainless steel for exhaust gas system of city waste incineration equipment
US5620805A (en) Alloy and multilayer steel tube having corrosion resistance in fuel combustion environment containing V, Na, S and Cl
US5190832A (en) Alloy and composite steel tube with corrosion resistance in combustion environment where v, na, s and cl are present
JP2000192201A (en) High corrosion resistance austenitic stainless steel for heat transfer pipe for waste incinerating plant boiler
CN1093887C (en) Austenitic stainless steel with good oxidation resistance
JP2643709B2 (en) High corrosion resistant alloy for boiler heat transfer tubes
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
JP2817456B2 (en) High alloy steel for waste incineration waste heat boiler tubes
JPH0570895A (en) Highly corrosion resistant alloy steel for heat transfer tube for waste incineration waste heat boiler
US5194222A (en) Alloy and composite steel tube with corrosion resistance in combustion environment where v, na, s and c1 are present
JP3310892B2 (en) High-strength corrosion-resistant heat-resistant alloy for refuse incinerators
JP3239763B2 (en) Austenitic stainless steel with excellent resistance to sulfuric acid corrosion
JPH05195127A (en) Highly corrosion resistant alloy for heat exchanger tube of boiler
JP2020045539A (en) Steel
JPH02213449A (en) Highly corrosion resistant steel for waste incineration waste heat boiler tube
JP3300747B2 (en) Corrosion and heat resistant Ni-based alloy for waste incinerator
JPH05148587A (en) High corrosion-resistant alloy for waste incineration boiler heat transfer tube
JPH08120392A (en) Austenitic corrosion resistant alloy for high efficiency rubbish power generating boiler superheater tube
JP7252497B2 (en) hot rolled steel
JPH03236449A (en) High chromium steel for waste incineration waste heat boiler tube
JP3865912B2 (en) Corrosion resistant alloy pipe for coal gasification plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term