JP2000188406A - Silicon carbide schottky barrier diode and its manufacture - Google Patents

Silicon carbide schottky barrier diode and its manufacture

Info

Publication number
JP2000188406A
JP2000188406A JP10365929A JP36592998A JP2000188406A JP 2000188406 A JP2000188406 A JP 2000188406A JP 10365929 A JP10365929 A JP 10365929A JP 36592998 A JP36592998 A JP 36592998A JP 2000188406 A JP2000188406 A JP 2000188406A
Authority
JP
Japan
Prior art keywords
silicon carbide
electrode
schottky
schottky electrode
barrier diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10365929A
Other languages
Japanese (ja)
Other versions
JP3635956B2 (en
Inventor
Takashi Tsuji
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP36592998A priority Critical patent/JP3635956B2/en
Publication of JP2000188406A publication Critical patent/JP2000188406A/en
Application granted granted Critical
Publication of JP3635956B2 publication Critical patent/JP3635956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]

Abstract

PROBLEM TO BE SOLVED: To increase the width of a depletion layer under the end of an electrode, and alleviate the concentration of electric fields for enhancement of reverse voltage withstand by forming on a surface layer of silicon carbide crystal a ring-shaped low-concentration region of the same conductivity type, containing the end of a Schottky electrode. SOLUTION: An epitaxial wafer obtained by growing a n-epitaxial layer 2 on a substrate 1 of low-resistance 4H-type SiC single crystal is used, and aluminum ions are selectively implanted in the surface layer of the n-epitaxial layer 2. At this time, a low-concentration region 3 is defined by photoresist or the like. After implantation, annealing is performed in an Ar atmosphere under normal pressure. Then a Ni film is formed on the underside of the substrate 1 by sputtering, and subsequently an ohmic electrode 6 is formed by heat treatment. Thereafter, a Ni film is formed on the surface of the epitaxial layer 2 by sputtering to obtain a Schottky electrode 4. As a result, the depletion layer 5 at the time of backward voltage bypassing is sufficiently spread even in the vicinity of the end of the Schottky electrode 4, and reverse voltage withstand is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化けい素(以下
SiCと記す)を用いたショットキーバリアダイオード
およびその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a Schottky barrier diode using silicon carbide (hereinafter referred to as SiC) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】高周波、大電力の制御を目的として、け
い素(以下Siと記す)を用いた電力用半導体素子(以
下パワーデバイスと称する)では、各種の工夫により高
性能化が進められている。しかし、シリコン材料による
パワーデバイスでは、理論的な限界に近づいてきている
ことと、パワーデバイスは高温や放射線等の存在下で使
用されることもあり、そのような条件下ではSiデバイ
スは使用できないことから、Siに代わる新しい材料の
適用が検討されている。
2. Description of the Related Art For the purpose of controlling high frequency and high power, a power semiconductor device (hereinafter referred to as a power device) using silicon (hereinafter referred to as Si) has been improved in performance by various means. I have. However, in the case of a power device using a silicon material, the theoretical limit is approaching, and the power device may be used in the presence of high temperature, radiation, etc., and under such conditions, the Si device cannot be used. Therefore, application of a new material instead of Si is being studied.

【0003】SiCは広い禁制帯幅(4H型で3.26
eV、6H型で3.02eV)をもつため、高温での電
気伝導度の制御性に優れ、動作上限温度を高くできる。
またSiより約1桁高い絶縁破壊電圧をもつため、厚さ
を薄くでき、定常状態におけるパワーロスを低減でき、
また一方では高耐圧素子への適用が可能である。さら
に、SiCはSiの約2倍の電子飽和ドリフト速度をも
つので、高周波大電力制御にも適する。
[0003] SiC has a wide bandgap (3.26 for 4H type).
(eV, 3.02 eV for 6H type), the controllability of electric conductivity at high temperature is excellent, and the upper limit operating temperature can be increased.
In addition, since it has a breakdown voltage about one order higher than Si, the thickness can be reduced, and power loss in a steady state can be reduced.
On the other hand, application to a high breakdown voltage element is possible. Further, since SiC has an electron saturation drift speed about twice as high as that of Si, it is also suitable for high-frequency high-power control.

【0004】このようなSiCの物性を活かしたパワー
デバイスのひとつにショットキーバリアダイオードがあ
る。ショッキーバリアダイオードは、pn接合ダイオー
ドと比較して、順方向の電圧降下が小さく、スイッチン
グ速度が速い。しかしながら、逆方向耐圧は、pn接合
ダイオードと比較して低く、Siショットキーバリアダ
イオードでは数10V程度である。このため、Siショ
ットキーバリアダイオードは、主にコンピュータ用の駆
動電源など低電圧機器に使用されていた。
[0004] A Schottky barrier diode is one of the power devices utilizing the physical properties of SiC. A Schottky barrier diode has a smaller forward voltage drop and a higher switching speed than a pn junction diode. However, the reverse breakdown voltage is lower than that of a pn junction diode, and is about several tens of volts for a Si Schottky barrier diode. For this reason, Si Schottky barrier diodes have been mainly used for low-voltage devices such as drive power supplies for computers.

【0005】[0005]

【発明が解決しようとする課題】しかし、Siの代わり
にSiC結晶を用いてショッキーバリアダイオードを作
成すれば、その高い絶縁破壊電界強度により、逆方向耐
圧を高くすることができ、ショッキーバリアダイオード
をパワーテバイスとして使用することができるようにな
ると期待される。しかし、これまで試作されたSiCシ
ョッキーバリアダイオードでは、逆方向絶縁耐圧が10
0V程度であり、これを高めるための様々な工夫がなさ
れている。
However, if a Schottky barrier diode is formed by using a SiC crystal instead of Si, the reverse breakdown voltage can be increased due to the high breakdown electric field strength. It is expected that it can be used as a power device. However, the SiC Schottky barrier diode prototyped so far has a reverse breakdown voltage of 10%.
It is about 0 V, and various measures have been taken to increase this.

【0006】例えば、n型エピタキシャルウェハを用い
たショッキーバリアダイオードのショットキー電極周辺
の表面層に、ほう素イオンを1×1015cm-2のドーズ
量でイオン注入して、逆導電型のガードリングを形成す
ることににより、電極の端部の高電界を緩和する方法
で、高耐圧化を図った例が報告されている[A.Itoh, IE
EE, Electron Device Lett., 17(3) p.139 (1996)参
照]。
For example, boron ions are implanted into a surface layer around a Schottky electrode of a Schottky barrier diode using an n-type epitaxial wafer at a dose of 1 × 10 15 cm −2 to form a reverse conductive type guard. An example has been reported in which a ring is formed to reduce the high electric field at the end of the electrode to increase the withstand voltage [A. Itoh, IE
EE, Electron Device Lett., 17 (3) p.139 (1996)].

【0007】SiCショッキーバリアダイオードの破壊
は、主に電極端部で発生することが多かった。これは、
ショッキー電極の端部では、電極中央部と比較して空乏
層の広がりが小さく、局所的に高電界領域ができるため
である。このような状況に鑑み本発明の目的は、逆方向
耐圧が高く、しかも製造の容易なSiCショッキーバリ
アダイオードおよびその製造方法を提供することにあ
る。
[0007] Destruction of the SiC Schottky barrier diode often occurs mainly at the end of the electrode. this is,
This is because the depletion layer has a smaller spread at the end of the Shocky electrode than at the center of the electrode, and a high electric field region is locally formed. In view of such a situation, an object of the present invention is to provide a SiC Schottky barrier diode having a high reverse breakdown voltage and easy manufacture, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記課題解決のため本発
明は、炭化けい素結晶と、その表面に接触してショット
キー接合を形成するショットキー電極と、表面の別の部
分にオーミックな接触をするオーミック電極とからなる
炭化けい素ショットキーバリアダイオードにおいて、炭
化けい素結晶のショットキー電極の設けられる部分の表
面層に、ショットキー電極の端部を含むリング状の同じ
導電型の低濃度領域を有するものとする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a silicon carbide crystal, a Schottky electrode which contacts a surface thereof to form a Schottky junction, and an ohmic contact with another portion of the surface. In a silicon carbide Schottky barrier diode comprising an ohmic electrode, a ring-shaped low-concentration of the same conductivity type including the end of the Schottky electrode is provided on the surface layer of the portion where the Schottky electrode of silicon carbide crystal is provided. It has an area.

【0009】そのようにすると、逆バイアス時にショッ
トキー電極端部下の空乏層幅が広がり、電界を緩和する
ことができる。そのような炭化けい素ショットキーバリ
アダイオードの製造方法としては、炭化けい素結晶と異
なる導電型のイオンを注入し、熱処理することにより低
濃度領域を形成するものとする。
In this case, the width of the depletion layer below the end of the Schottky electrode at the time of reverse bias is widened, and the electric field can be reduced. As a method of manufacturing such a silicon carbide Schottky barrier diode, a low concentration region is formed by implanting ions of a conductivity type different from that of the silicon carbide crystal and performing heat treatment.

【0010】そのような方法で、確実にショットキー電
極の端部を含むようなリング状の低濃度領域を形成する
ことができる。特に、熱処理温度を1300℃以下とす
れば、SiC表面の凹凸の発生を抑えることができる。
By such a method, a ring-shaped low-concentration region including the end of the Schottky electrode can be reliably formed. In particular, when the heat treatment temperature is set to 1300 ° C. or less, the occurrence of irregularities on the SiC surface can be suppressed.

【0011】[0011]

【発明の実施の形態】以下図面を参照しながら本発明の
実施例を説明する。 [実施例]図1は、本発明にかかるSiCショットキー
ダイオードの断面図である。図において、1は高不純物
濃度のn+ サブストレート、2は低不純物濃度のnエピ
タキシャル層、3は更に低不純物濃度の低濃度領域、4
はニッケル(Ni)のショットキー電極、6はニッケル
(Ni)のオーミック電極である。各層のディメンショ
ンは例えば、SiC基板1の不純物濃度は5×1018
-3、厚さ300μm、エピタキシャル層2の不純物濃
度は1×1016cm-3、厚さ10μm、低濃度領域3の
不純物濃度は約5×1015cm-3、幅100μmであ
る。ショットキー電極4、オーミック電極6の厚さはと
もに200nmとした。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a SiC Schottky diode according to the present invention. In the drawing, 1 is an n + substrate having a high impurity concentration, 2 is an n epitaxial layer having a low impurity concentration, 3 is a low concentration region having a further low impurity concentration, 4
Is a nickel (Ni) Schottky electrode, and 6 is a nickel (Ni) ohmic electrode. The dimension of each layer is, for example, the impurity concentration of the SiC substrate 1 is 5 × 10 18 c
m −3 , thickness 300 μm, impurity concentration of epitaxial layer 2 is 1 × 10 16 cm −3 , thickness 10 μm, low concentration region 3 has an impurity concentration of about 5 × 10 15 cm −3 , and width 100 μm. The thickness of both the Schottky electrode 4 and the ohmic electrode 6 was 200 nm.

【0012】以下このダイオードの作製方法を述べる。
SiCウェハとして低抵抗の4H型SiC単結晶のサブ
ストレート1上にnエピタキシャル層2を成長させたエ
ピタキシャルウェハを使用した。そのnエピタキシャル
層2の表面層に、最大180keVの加速電圧でアルミ
ニウム(Al)イオンを0.5μm程度の深さまで選択
的に注入する。注入ドーズ量は、5×1013cm-2であ
り、その時の不純物濃度は、2×1018cm-3となる。
その他のイオン種としてアクセプタとして働くB、Ga
を用いることもできる。フォトレジスト等で注入領域を
限定し、低濃度領域3は、外径1.2mm、内径1.0
mmのリング状である。注入後、常圧Ar雰囲気中で1
300℃、30分間のアニールをおこなった。1300
℃程度では、不純物の電気的活性化率は0.5%以下で
あり、低濃度領域3はp型に反転するに至らず、1015
cm-3オーダーの低濃度のn型となっている。なお、反
転していないことは、同じ条件でイオン注入、熱処理し
た試料でダイオードを作って確認した。
Hereinafter, a method for manufacturing this diode will be described.
As the SiC wafer, an epitaxial wafer having an n epitaxial layer 2 grown on a low-resistance 4H-type SiC single crystal substrate 1 was used. Aluminum (Al) ions are selectively implanted into the surface layer of the n-epitaxial layer 2 at a maximum acceleration voltage of 180 keV to a depth of about 0.5 μm. The implantation dose is 5 × 10 13 cm −2 , and the impurity concentration at that time is 2 × 10 18 cm −3 .
B, Ga acting as acceptors as other ion species
Can also be used. The injection region is limited by a photoresist or the like, and the low concentration region 3 has an outer diameter of 1.2 mm and an inner diameter of 1.0 mm.
mm ring shape. After the injection, 1 at normal pressure Ar atmosphere
Annealing was performed at 300 ° C. for 30 minutes. 1300
In order ° C., the electrical activation ratio of impurities is 0.5% or less, the low density region 3 is not enough to be inverted to p-type, 10 15
It is an n-type with a low concentration of the order of cm -3 . In addition, it was confirmed that the diode was not inverted by fabricating a diode using a sample that had been subjected to ion implantation and heat treatment under the same conditions.

【0013】サブストレート1の裏面にNiをスパッタ
成膜した後、1000℃、5分間の熱処理によりオーミ
ック電極6を形成する。その後エピタキシャル層2の表
面に、Niをスパッタ成膜し、ショットキー電極4とし
た。ショットキー電極4の直径は、1.1mmであり、
ショットキー電極4の端が低濃度領域3内に止まるよう
にした。その結果、低濃度領域3を形成しない場合では
平均約300Vであった逆方向破壊電圧が、1000V
以上と向上した。
After Ni is formed on the back surface of the substrate 1 by sputtering, an ohmic electrode 6 is formed by heat treatment at 1000 ° C. for 5 minutes. Thereafter, Ni was formed on the surface of the epitaxial layer 2 by sputtering to form a Schottky electrode 4. The diameter of the Schottky electrode 4 is 1.1 mm,
The end of the Schottky electrode 4 was stopped in the low concentration region 3. As a result, the reverse breakdown voltage, which was about 300 V on average when the low concentration region 3 was not formed, was changed to 1000 V
It improved with the above.

【0014】図1の構造とすることにより、逆電圧バイ
アス時の空乏層5が、ショットキー電極4の端部近傍に
おいても十分広がるようになり、その結果逆方向耐圧を
向上させることができたと考えられる。しかも先に述べ
た逆導電型のガードリングを形成する場合より一桁以上
低いドーズ量ですむので、工程時間が短縮できる利点が
ある。また、逆導電型のガードリングを形成する場合の
ドーズ量によって、イオン注入部に発生する結晶欠陥は
かなり多いと考えられるが、ドーズ量を低くすることに
より、そのような結晶欠陥が及ぼす特性への悪影響を免
れることができる。
According to the structure shown in FIG. 1, the depletion layer 5 at the time of reverse voltage bias becomes sufficiently wide even near the end of the Schottky electrode 4, and as a result, the reverse breakdown voltage can be improved. Conceivable. In addition, the dose can be reduced by at least one order of magnitude compared to the case of forming the above-described guard ring of the opposite conductivity type, so that there is an advantage that the process time can be reduced. In addition, it is considered that crystal defects generated in the ion-implanted portion are considerably large depending on the dose in forming the guard ring of the opposite conductivity type. However, by lowering the dose, characteristics caused by such crystal defects are reduced. Can be avoided.

【0015】熱処理温度を高くすれば、注入された不純
物の活性化率が増すので、Alのドーズ量を少なくし
て、熱処理温度を高くし、同様の低濃度領域を形成する
こともできる。しかしその場合はSiC表面に凹凸が発
生しやすいので、本発明のように熱処理の低温化によ
り、SiC表面の凹凸の発生を防ぐことができる。ま
た、酸化膜がSiC上に成膜された場合でもその酸化膜
によるSiC露出部のエッチングを防止することができ
る。特に、1300℃以下の熱処理であれば、発熱線と
してカンタル線を用い、雰囲気管として石英管を用いた
普及型の熱処理炉で加熱でき、タングステン炉のような
特別の高温炉を用いる必要がない。
When the heat treatment temperature is increased, the activation rate of the implanted impurities is increased. Therefore, the dose of Al can be reduced, the heat treatment temperature can be increased, and a similar low concentration region can be formed. However, in this case, irregularities are likely to be generated on the SiC surface. Therefore, the lowering of the heat treatment can prevent the irregularities on the SiC surface as in the present invention. Further, even when an oxide film is formed on SiC, it is possible to prevent the SiC exposed portion from being etched by the oxide film. In particular, if the heat treatment is performed at a temperature of 1300 ° C. or less, heating can be performed by a popular heat treatment furnace using a Kanthal wire as a heating wire and a quartz tube as an atmosphere tube, and there is no need to use a special high-temperature furnace such as a tungsten furnace. .

【0016】以上の実施例では4H−SiCのSi面上
に中間層を形成する例を述べたが、本発明の方法は4H
−SiCのC面や6H−SiCのSi、C面にも適用で
きると考えられる。
In the above embodiment, an example in which an intermediate layer is formed on the Si surface of 4H—SiC has been described.
It is considered that the present invention can be applied to the C-plane of -SiC and the Si and C-planes of 6H-SiC.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば炭化
けい素ショットキーバリアダイオードにおいて、炭化け
い素結晶の表面層に、ショットキー電極の端部を含むリ
ング状の同じ導電型の低濃度領域を設けることにより、
電極端部の下の空乏層幅を広げ、電界集中を軽減して逆
方向絶縁耐圧を向上させることができた。
As described above, according to the present invention, in a silicon carbide Schottky barrier diode, a ring-shaped low-concentration of the same conductivity type including an end of a Schottky electrode is provided on a surface layer of a silicon carbide crystal. By providing an area,
The width of the depletion layer below the electrode end was widened, the electric field concentration was reduced, and the reverse breakdown voltage was improved.

【0018】その製造方法としては、炭化けい素結晶と
異なる導電型のイオンを注入し、熱処理することにより
低濃度領域を容易に形成できることを示した。本発明
は、Siショットキーダイオードを超えたパワーデバイ
スとしてのSiCショットキーダイオードの発展、普及
に極めて重要な貢献をなすものである。
As a manufacturing method, it has been shown that a low concentration region can be easily formed by implanting ions of a conductivity type different from that of the silicon carbide crystal and performing heat treatment. The present invention makes a very important contribution to the development and spread of SiC Schottky diodes as power devices beyond Si Schottky diodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のショットキーバリアダイオー
ドの断面図
FIG. 1 is a cross-sectional view of a Schottky barrier diode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 n+ サブストレート 2 nエピタキシャル層 3 低濃度領域 4 ショットキー電極 5 空乏層 6 オーミック電極Reference Signs List 1 n + substrate 2 n epitaxial layer 3 low concentration region 4 Schottky electrode 5 depletion layer 6 ohmic electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭化けい素結晶と、その表面に接触してシ
ョットキー接合を形成するショットキー電極と、表面の
別の部分にオーミックな接触をするオーミック電極とか
らなる炭化けい素ショットキーバリアダイオードにおい
て、炭化けい素結晶のショットキー電極の設けられる部
分の表面層に、ショットキー電極の端部を含むリング状
の同じ導電型の低濃度領域を有することを特徴とする炭
化けい素ショットキーバリアダイオード。
1. A silicon carbide Schottky barrier comprising a silicon carbide crystal, a Schottky electrode in contact with the surface thereof to form a Schottky junction, and an ohmic electrode in ohmic contact with another part of the surface. A diode having a ring-shaped low-concentration region of the same conductivity type including an end of the Schottky electrode in a surface layer of a portion where the Schottky electrode of the silicon carbide crystal is provided; Barrier diode.
【請求項2】炭化けい素結晶と、その表面に接触してシ
ョットキー接合を形成するショットキー電極と、表面の
別の部分にオーミックな接触をするオーミック電極と、
炭化けい素結晶のショットキー電極の設けられる部分の
表面層にショットキー電極の端部を含んで設けられたリ
ング状の同じ導電型の低濃度領域を有する炭化けい素シ
ョットキーバリアダイオードの製造方法において、炭化
けい素結晶と異なる導電型のイオンを注入し、熱処理す
ることにより前記の低濃度領域を形成することを特徴と
する炭化けい素ショットキーバリアダイオードの製造方
法。
2. A silicon carbide crystal, a Schottky electrode in contact with the surface thereof to form a Schottky junction, and an ohmic electrode in ohmic contact with another part of the surface.
Method for manufacturing silicon carbide Schottky barrier diode having ring-shaped low-concentration region of same conductivity type provided in a surface layer of a portion of silicon carbide crystal where Schottky electrode is provided including an end of Schottky electrode 3. The method of manufacturing a silicon carbide Schottky barrier diode according to claim 1, wherein said low-concentration region is formed by implanting ions of a conductivity type different from that of the silicon carbide crystal and performing heat treatment.
【請求項3】熱処理温度を1300℃以下とすることを
特徴とする請求項2に記載の炭化けい素ショットキーバ
リアダイオードの製造方法。
3. The method for manufacturing a silicon carbide Schottky barrier diode according to claim 2, wherein the heat treatment temperature is 1300 ° C. or less.
JP36592998A 1998-12-24 1998-12-24 Method for manufacturing silicon carbide Schottky barrier diode Expired - Fee Related JP3635956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36592998A JP3635956B2 (en) 1998-12-24 1998-12-24 Method for manufacturing silicon carbide Schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36592998A JP3635956B2 (en) 1998-12-24 1998-12-24 Method for manufacturing silicon carbide Schottky barrier diode

Publications (2)

Publication Number Publication Date
JP2000188406A true JP2000188406A (en) 2000-07-04
JP3635956B2 JP3635956B2 (en) 2005-04-06

Family

ID=18485484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36592998A Expired - Fee Related JP3635956B2 (en) 1998-12-24 1998-12-24 Method for manufacturing silicon carbide Schottky barrier diode

Country Status (1)

Country Link
JP (1) JP3635956B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463216C (en) * 2004-03-26 2009-02-18 财团法人电力中央研究所 Process for producing schottky junction semiconductor device
US7847296B2 (en) 2005-09-14 2010-12-07 Mitsubishi Electric Corporation Silicon carbide semiconductor device
JP2012049347A (en) * 2010-08-27 2012-03-08 New Japan Radio Co Ltd Silicon carbide schottky barrier diode and method of manufacturing the same
WO2012157679A1 (en) * 2011-05-18 2012-11-22 ローム株式会社 Semiconductor device and method for producing same
JP2013232556A (en) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology Silicon carbide semiconductor element manufacturing method
WO2017134509A1 (en) * 2016-02-02 2017-08-10 Toyota Jidosha Kabushiki Kaisha Schottky diode
DE112017000426T5 (en) 2016-01-19 2018-10-11 Mitsubishi Electric Corporation POWER SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING A POWER SEMICONDUCTOR DEVICE

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463216C (en) * 2004-03-26 2009-02-18 财团法人电力中央研究所 Process for producing schottky junction semiconductor device
US7507650B2 (en) 2004-03-26 2009-03-24 Central Research Institute Of Electric Power Industry Process for producing Schottky junction type semiconductor device
US7847296B2 (en) 2005-09-14 2010-12-07 Mitsubishi Electric Corporation Silicon carbide semiconductor device
JP2012049347A (en) * 2010-08-27 2012-03-08 New Japan Radio Co Ltd Silicon carbide schottky barrier diode and method of manufacturing the same
US9111769B2 (en) 2011-05-18 2015-08-18 Rohm Co., Ltd. Semiconductor device and method for producing same
CN103534810A (en) * 2011-05-18 2014-01-22 罗姆股份有限公司 Semiconductor device and method for producing same
JPWO2012157679A1 (en) * 2011-05-18 2014-07-31 ローム株式会社 Semiconductor device and manufacturing method thereof
WO2012157679A1 (en) * 2011-05-18 2012-11-22 ローム株式会社 Semiconductor device and method for producing same
JP2016066813A (en) * 2011-05-18 2016-04-28 ローム株式会社 Semiconductor device and method of manufacturing the same
US9548353B2 (en) 2011-05-18 2017-01-17 Rohm Co., Ltd. Wide band-gap semiconductor device including schotky electrode and method for producing same
JP2018074170A (en) * 2011-05-18 2018-05-10 ローム株式会社 Semiconductor device
JP2019176165A (en) * 2011-05-18 2019-10-10 ローム株式会社 Semiconductor device
JP2013232556A (en) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology Silicon carbide semiconductor element manufacturing method
DE112017000426T5 (en) 2016-01-19 2018-10-11 Mitsubishi Electric Corporation POWER SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING A POWER SEMICONDUCTOR DEVICE
US10727167B2 (en) 2016-01-19 2020-07-28 Mitsubishi Electric Corporation Power semiconductor device and method for manufacturing power semiconductor device
WO2017134509A1 (en) * 2016-02-02 2017-08-10 Toyota Jidosha Kabushiki Kaisha Schottky diode
JP2017139289A (en) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 diode

Also Published As

Publication number Publication date
JP3635956B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
KR100937276B1 (en) Semiconductor device and manufacturing method thereof
JP5236279B2 (en) Insulated gate bipolar transistor with current suppression layer
US5506421A (en) Power MOSFET in silicon carbide
US8981385B2 (en) Silicon carbide semiconductor device
JP5044117B2 (en) Silicon carbide bipolar semiconductor device
US10600921B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2004247545A (en) Semiconductor device and its fabrication process
US9184229B2 (en) Semiconductor device and method for manufacturing same
US8178949B2 (en) Bipolar semiconductor device, method for producing the same, and method for controlling Zener voltage
JP2008503894A (en) Silicon carbide device and manufacturing method thereof
JP2007013087A (en) Field-effect transistor and thyristor
JP2010050468A (en) Method for junction barrier schottky diode, diode and method of operation thereof
CN110473911B (en) SiC MOSFET device and manufacturing method thereof
JP2011165902A (en) Semiconductor device and method for manufacturing semiconductor device
JP5802492B2 (en) Semiconductor device and manufacturing method thereof
JP4532853B2 (en) Semiconductor device
JP2015056644A (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP3817915B2 (en) Schottky diode and manufacturing method thereof
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP2018082056A (en) Semiconductor device and method of manufacturing the same
JP3856729B2 (en) Semiconductor device and manufacturing method thereof
JP6253133B2 (en) Method for manufacturing silicon carbide semiconductor device
JP7074173B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2005026408A (en) Semiconductor element and its fabricating process
JP2012199522A (en) Semiconductor rectifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees