JP2000182653A - Solid electrolyte fuel cell block and solid electrolyte fuel cell module - Google Patents

Solid electrolyte fuel cell block and solid electrolyte fuel cell module

Info

Publication number
JP2000182653A
JP2000182653A JP10356729A JP35672998A JP2000182653A JP 2000182653 A JP2000182653 A JP 2000182653A JP 10356729 A JP10356729 A JP 10356729A JP 35672998 A JP35672998 A JP 35672998A JP 2000182653 A JP2000182653 A JP 2000182653A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
power generation
solid oxide
cell block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10356729A
Other languages
Japanese (ja)
Inventor
Shinji Takeuchi
伸二 竹内
Masayoshi Nishimura
正義 西村
Tsutomu Iwazawa
力 岩澤
Masataka Mochizuki
正孝 望月
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Kansai Electric Power Co Inc
Original Assignee
Fujikura Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Kansai Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP10356729A priority Critical patent/JP2000182653A/en
Publication of JP2000182653A publication Critical patent/JP2000182653A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell module using interconnectorless SOFC's capable of taking out a generated power of high voltage and small current. SOLUTION: A specified number of interconnectorless solid electrolyte fuel cells 100 are accommodated in a power generation chamber 11, and a fuel exhaust chamber 15 and fuel supply chamber 14 are formed over the power generation chamber while an air supply chamber 18 is formed under the power generation chamber, and their periphery is enwrapped with a heat insulating material 19, and the air electrodes are connected electrically with the respective air electrode side collector members 31 arranged under the power generation chamber while conductive connecting rods 106 are connected with the upper parts of fuel supply pipes, and thus an intended fuel cell block 10 is accomplished. A plurality of such blocks 10 are piled up in stages, and the connecting rods 106 of the lower fuel cell block 10 are inserted in corresponding recesses 33 formed at the bottoms of the air electrode side collector members 31 of the upper fuel cell block 10 so that series connection is generated, and thus assembly of a fuel cell module is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インターコネクタ
レス固体電解質型燃料電池を用いた固体電解質型燃料電
池ブロック及び固体電解質型燃料電池モジュールに関す
る。
The present invention relates to a solid oxide fuel cell block and a solid oxide fuel cell module using an interconnectless solid oxide fuel cell.

【0002】[0002]

【従来の技術】近年、固体電解質型燃料電池(SOF
C)の実用機に適用される固体電解質型燃料電池モジュ
ールの開発が進められている。特開平10−01225
8号公報には、内部改質型固体電解質型燃料電池モジュ
ールが提案されている。この従来の固体電解質型燃料電
池モジュールは、外部に改質反応器を設けずに、モジュ
ール内で燃料ガスと水蒸気との改質反応を行わせ、その
後燃料電池スタックに供給し、発電に利用しようとする
ものである。
2. Description of the Related Art In recent years, solid oxide fuel cells (SOF)
The development of a solid oxide fuel cell module applicable to the practical device of C) is underway. JP-A-10-01225
No. 8 proposes an internal reforming solid oxide fuel cell module. In this conventional solid oxide fuel cell module, a reforming reaction between fuel gas and steam is performed in the module without providing an external reforming reactor, and then the fuel gas is supplied to the fuel cell stack and used for power generation. It is assumed that.

【0003】この従来の固体電解質型燃料電池モジュー
ルでは、個々の固体電解質型燃料電池に図6に示すよう
なインターコネクタ1を備えた縦縞方式固体電解質型燃
料電池を使用している。このインターコネクタを有する
縦縞方式固体電解質型燃料電池は、多孔質基体管2の外
側に順に、空気極3、固体電解質4、燃料極5をEVD
法その他の方法で積層し、かつ隣接する固体電解質型燃
料電池との直列接続のために、燃料極5とは絶縁した形
でインターコネクタ1を埋込み、このインターコネクタ
1を内層の空気極3に接続した構造である。
In this conventional solid oxide fuel cell module, a vertical stripe type solid oxide fuel cell having an interconnector 1 as shown in FIG. 6 is used for each solid oxide fuel cell. In a vertical stripe type solid electrolyte fuel cell having this interconnector, an air electrode 3, a solid electrolyte 4, and a fuel electrode 5 are sequentially provided outside a porous substrate tube 2 by EVD.
The interconnector 1 is buried in a manner insulated from the fuel electrode 5 for serial connection with an adjacent solid oxide fuel cell by stacking the interconnector 1 in the air electrode 3 in the inner layer. It is a connected structure.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
インターコネクタを有する縦縞方式固体電解質型燃料電
池を採用した固体電解質型燃料電池モジュールの場合、
燃料極5、固体電解質4とインターコネクタ1との境界
部分では材質に差があり、特に燃料電池モジュールは8
00〜1000℃という高温度条件で発電するので、熱
膨張率の差により破損が発生しやすい問題点があった。
However, in the case of a solid electrolyte fuel cell module employing a vertical stripe type solid electrolyte fuel cell having such an interconnect,
There is a difference in the material at the boundary between the fuel electrode 5, the solid electrolyte 4, and the interconnector 1.
Since power is generated under a high temperature condition of 00 to 1000 ° C., there is a problem that breakage easily occurs due to a difference in coefficient of thermal expansion.

【0005】そこでインターコネクタレスの固体電解質
型燃料電池を採用して燃料電池モジュールを構成する技
術の開発が進められているが、インターコネクタレスの
固体電解質型燃料電池の場合には、隣接する燃料電池間
を電気的に接続するために、従来のインターコネクタに
代わる技術を必要とする。また、燃料電池単体の起電力
は小さいために、多数本の燃料電池単体をスタックし、
かつ可能な限りに多段に直列に接続することによって内
部抵抗による損失を抑え、大電力を取り出す必要があ
る。
[0005] To cope with this, a technology for constructing a fuel cell module using an interconnect-less solid oxide fuel cell has been developed. In order to electrically connect the batteries, a technology that replaces the conventional interconnector is required. Also, since the electromotive force of a single fuel cell is small, a large number of fuel cells are stacked,
In addition, it is necessary to connect a plurality of stages in series as much as possible to suppress the loss due to the internal resistance and to extract a large amount of power.

【0006】本発明はこのような技術的課題を解決する
ためになされたもので、インターコネクタレスの固体電
解質型燃料電池を使用し、高効率に発電電力を取り出す
ことができる固体電解質型燃料電池ブロック及び固体電
解質型燃料電池モジュールを提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such a technical problem, and uses a solid electrolyte fuel cell without an interconnector to efficiently generate electric power. It is an object to provide a block and a solid oxide fuel cell module.

【0007】[0007]

【課題を解決するための手段】請求項1の発明の固体電
解質型燃料電池ブロックは、外側から内側へ順に空気
極、固体電解質、燃料極が積層され、燃料極の内側に集
電兼用の燃料供給管が挿入された、インターコネクタレ
スの固体電解質型燃料電池の所定数体を発電室に収容
し、前記発電室の上方に燃料排出室と燃料供給室とを形
成し、前記発電室の下方に空気供給室を形成し、それら
の各室の周囲を断熱材で包囲し、前記空気極それぞれを
前記発電室の下部に配置された空気極側集電部材に電気
的に接続し、前記燃料供給管それぞれの上部に導電性連
結棒を接合し、前記空気極側集電部材の底面に、前記導
電性連結棒の上端部を挿入して電気的に接続するための
嵌合部を形成したものである。
According to a first aspect of the present invention, there is provided a solid oxide fuel cell block in which an air electrode, a solid electrolyte, and a fuel electrode are stacked in order from the outside to the inside, and a fuel collector / collector is provided inside the fuel electrode. A predetermined number of interconnector-less solid oxide fuel cells into which a supply pipe is inserted are housed in a power generation chamber, and a fuel discharge chamber and a fuel supply chamber are formed above the power generation chamber, and below the power generation chamber. Forming an air supply chamber, surrounding each of the chambers with a heat insulating material, electrically connecting each of the air electrodes to an air electrode side current collecting member disposed at a lower portion of the power generation chamber, A conductive connecting rod was joined to the upper part of each supply pipe, and a fitting part for inserting an upper end of the conductive connecting rod and electrically connecting the conductive connecting rod to the bottom surface of the air electrode side current collecting member was formed. Things.

【0008】請求項1の発明の固体電解質型燃料電池ブ
ロックでは、これを複数段に積層し、各下側の固体電解
質型燃料電池ブロックの燃料供給管それぞれに接合され
た導電性連結棒の上端部それぞれを各上側の固体電解質
型燃料電池ブロックの空気極側集電部材それぞれの底面
に形成された嵌合部それぞれに挿入して電気的に直列接
続することによって固体電解質型燃料電池モジュールを
簡単に組立てることができ、また発電電力の内部損失を
小さくして、効率良く取り出すことができる。
In the solid electrolyte fuel cell block according to the first aspect of the present invention, the solid electrolyte fuel cell blocks are stacked in a plurality of stages, and the upper ends of the conductive connecting rods respectively joined to the fuel supply pipes of the lower solid electrolyte fuel cell blocks. The solid electrolyte fuel cell module is simplified by inserting each part into the fitting part formed on the bottom surface of each air electrode side current collecting member of the solid electrolyte fuel cell block on each upper side and electrically connecting them in series. In addition, the internal loss of the generated power can be reduced and the power can be efficiently extracted.

【0009】請求項2の発明は、請求項1の発明の固体
電解質型燃料電池ブロックにおいて、前記空気極側集電
部材をLaMnO系酸化物で形成し、当該空気極側集電
部材の底面に形成された嵌合部の内周面にLaCrO系
酸化物の保護層を形成し、前記導電性連結棒をSUS、
Ni又はNi系合金の緻密な材料で形成したものであ
り、高温度条件での燃料電池発電における熱膨張率の差
に起因して各部にクラックや亀裂が発生するのを抑制
し、長期の使用に耐えるものとなる。
According to a second aspect of the present invention, in the solid oxide fuel cell block according to the first aspect of the present invention, the air electrode-side current collecting member is formed of a LaMnO-based oxide, and is provided on a bottom surface of the air electrode-side current collecting member. A protective layer of LaCrO-based oxide is formed on the inner peripheral surface of the formed fitting portion, and the conductive connecting rod is made of SUS,
It is made of a dense material of Ni or Ni-based alloy, and suppresses the occurrence of cracks and cracks in each part due to the difference in the coefficient of thermal expansion in fuel cell power generation under high temperature conditions. To withstand.

【0010】請求項3の発明の固体電解質型燃料電池ブ
ロックは、内側から外側へ順に空気極、固体電解質、燃
料極が積層され、空気極の内側に集電兼用の空気供給管
が挿入された、インターコネクタレスの固体電解質型燃
料電池の所定数体を発電室に収容し、前記発電室の上方
に空気供給室と空気排出室とを形成し、前記発電室の下
方に燃料供給室を形成し、それら各室の周囲を断熱材で
包囲し、前記燃料極それぞれを前記発電室の下部に配置
された燃料極側集電部材に電気的に接続し、前記空気供
給管それぞれの上部に導電性連結棒を接合し、前記燃料
極側集電部材の底面に、前記導電性連結棒の上端部を挿
入して電気的に接続するための嵌合部を形成したもので
ある。
In the solid oxide fuel cell block according to the third aspect of the present invention, an air electrode, a solid electrolyte, and a fuel electrode are stacked in order from the inside to the outside, and an air supply pipe serving both as a current collector is inserted inside the air electrode. A predetermined number of interconnect-less solid oxide fuel cells are housed in a power generation chamber, an air supply chamber and an air discharge chamber are formed above the power generation chamber, and a fuel supply chamber is formed below the power generation chamber. Surrounding each of the chambers with a heat insulating material, electrically connecting each of the fuel electrodes to a fuel electrode side current collecting member disposed at a lower portion of the power generation chamber, and electrically connecting the fuel electrodes to an upper portion of each of the air supply pipes. And a fitting part for inserting an upper end of the conductive connecting rod and electrically connecting the conductive connecting rod to the fuel electrode side current collecting member.

【0011】請求項3の発明の固体電解質型燃料電池ブ
ロックでは、これを複数段に積層し、各下側の固体電解
質型燃料電池ブロックの空気供給管それぞれに接合され
た導電性連結棒の上端部それぞれを各上側の固体電解質
型燃料電池ブロックの燃料極側集電部材それぞれの底面
に形成された嵌合部それぞれに挿入して電気的に直列接
続することによって固体電解質型燃料電池モジュールを
簡単に組立てることができ、また発電電力の内部損失を
小さくして、効率良く取り出すことができる。
In the solid electrolyte fuel cell block according to the third aspect of the present invention, the solid electrolyte fuel cell blocks are stacked in a plurality of stages, and the upper ends of the conductive connecting rods joined to the respective air supply pipes of the lower solid electrolyte fuel cell blocks. The solid electrolyte fuel cell module can be simplified by inserting each part into each fitting part formed on the bottom surface of each fuel electrode side current collecting member of the solid electrolyte fuel cell block on the upper side and electrically connecting them in series. In addition, the internal loss of the generated power can be reduced and the power can be efficiently extracted.

【0012】請求項4の発明は、請求項3の発明の固体
電解質型燃料電池ブロックにおいて、前記燃料極側集電
部材をNi系材料で形成し、当該空気極側集電部材の底
面に形成された嵌合部の内周面にLaCrO系酸化物の
保護層を形成し、前記導電性連結棒を耐酸化処理を表面
に施したSUS、Ni又はNi系合金の緻密な材料で形
成したものであり、高温度条件での燃料電池発電におけ
る熱膨張率の差に起因して各部にクラックや亀裂が発生
するのを抑制し、長期の使用に耐えるものとなる。
According to a fourth aspect of the present invention, in the solid oxide fuel cell block according to the third aspect of the present invention, the fuel electrode side current collecting member is formed of a Ni-based material and formed on the bottom surface of the air electrode side current collecting member. A protective layer of LaCrO-based oxide is formed on the inner peripheral surface of the fitting portion thus formed, and the conductive connecting rod is formed of a dense material of SUS, Ni or Ni-based alloy which has been subjected to oxidation-resistant surface. In addition, cracks and cracks are suppressed from being generated in each part due to the difference in the coefficient of thermal expansion in the fuel cell power generation under high temperature conditions, and the device can withstand long-term use.

【0013】請求項5の発明の固体電解質型燃料電池モ
ジュールは、請求項1又は2に記載の固体電解質型燃料
電池ブロックを複数段に積層し、各下側の固体電解質型
燃料電池ブロックの前記燃料供給管それぞれに接合され
た導電性連結棒の上端部それぞれを各上側の固体電解質
型燃料電池ブロックの前記空気極側集電部材それぞれの
底面に形成された嵌合部それぞれに挿入して電気的に直
列接続したものであり、発電電力の内部損失を少なくし
て、効率良く取り出すことができる。
According to a fifth aspect of the present invention, there is provided a solid oxide fuel cell module according to the first or second aspect, wherein the solid oxide fuel cell blocks according to the first or second aspect are stacked in a plurality of stages. The upper ends of the conductive connecting rods joined to the respective fuel supply pipes are inserted into respective fitting portions formed on the bottom surfaces of the air electrode side current collecting members of the solid oxide fuel cell blocks on the upper side, respectively, to thereby supply electricity. Are connected in series, so that the internal loss of the generated power can be reduced and the power can be extracted efficiently.

【0014】請求項6の発明の固体電解質型燃料電池モ
ジュールは、請求項3又は4に記載の固体電解質型燃料
電池ブロックを複数段に積層し、各下側の固体電解質型
燃料電池ブロックの前記空気供給管それぞれに接合され
た導電性連結棒の上端部それぞれを各上側の固体電解質
型燃料電池ブロックの前記燃料極側集電部材それぞれの
底面に形成された嵌合部それぞれに挿入して電気的に直
列接続したものであり、発電電力の内部損失を少なくし
て、効率良く取り出すことができる。
According to a sixth aspect of the present invention, there is provided a solid oxide fuel cell module wherein the solid oxide fuel cell blocks according to the third or fourth aspects are stacked in a plurality of stages, and each of the solid electrolyte fuel cell blocks on the lower side is provided. The upper ends of the conductive connecting rods joined to the respective air supply pipes are inserted into respective fitting portions formed on the bottom surfaces of the fuel electrode side current collecting members of the solid electrolyte fuel cell blocks on the upper side, respectively, and electric power is supplied. Are connected in series, so that the internal loss of the generated power can be reduced and the power can be extracted efficiently.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。図1〜図3は本発明の1つの実施の
形態を示している。図1に示す構造の固体電解質型燃料
電池ブロック10は、図4に示したインターコネクタレ
ス構造の固体電解質型燃料電池100を所定数本、例え
ば数本〜数10本を発電室11に収容し、この発電室1
1の上方に絶縁性仕切部材12,13を設置することに
よって燃料排出室14、燃料供給室15を形成し、また
発電室11の下方にグリッド16を設置し、さらにその
下方に絶縁性仕切部材17を設置することによって空気
供給室18を形成し、これらの固体電解質型燃料電池1
00と各室11,14,15,17の周囲を断熱材19
で包囲した構造である。なお、断熱材19は、上下に多
段に積層できる形状である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 3 show one embodiment of the present invention. The solid oxide fuel cell block 10 having the structure shown in FIG. 1 accommodates a predetermined number, for example, several to several tens, of the solid electrolyte fuel cells 100 having no interconnector structure shown in FIG. , This power generation room 1
A fuel discharge chamber 14 and a fuel supply chamber 15 are formed by installing insulating partition members 12 and 13 above the grid 1, a grid 16 is installed below the power generation chamber 11, and an insulating partition member is further provided below the grid 16. 17 are provided to form an air supply chamber 18, and these solid oxide fuel cells 1
00 and a heat insulating material 19 around each of the chambers 11, 14, 15, and 17.
The structure is surrounded by. In addition, the heat insulating material 19 has a shape that can be stacked in multiple layers vertically.

【0016】燃料供給室14に対しては燃料ガス20を
供給するための燃料供給配管21が接続され、また燃料
排出室15には燃料排ガス及び未反応ガスを排出燃料ガ
ス22として外部へ排出するための燃料排出配管23が
接続されている。他方、空気供給室17には酸化性ガス
24を供給するための空気供給配管25が接続され、ま
た発電室11には排出酸化性ガス26のための空気排出
配管27が接続されている。
A fuel supply pipe 21 for supplying a fuel gas 20 is connected to the fuel supply chamber 14, and a fuel exhaust gas and unreacted gas are discharged to the outside as a discharged fuel gas 22 to a fuel discharge chamber 15. Exhaust pipe 23 is connected to the fuel tank. On the other hand, an air supply pipe 25 for supplying an oxidizing gas 24 is connected to the air supply chamber 17, and an air discharge pipe 27 for a discharged oxidizing gas 26 is connected to the power generation chamber 11.

【0017】この実施の形態に使用される固体電解質型
燃料電池100は、図4に示したように、内側から順に
燃料極101、固体電解質102、空気極103を形成
し、中心部に燃料噴出のために燃料極101との対向部
を多孔質にした集電兼用の燃料供給管104を挿入し、
この燃料供給管104と燃料極101との間に燃料改質
機能を持つ導電性ニッケルフェルト105を充填し、そ
して燃料供給管104に燃料ガス20を供給し、外周に
酸化性ガス24を流通させるようにした構造である。こ
の固体電解質型燃料電池100の発電部の長さは、多段
積層が可能なように10〜30cm程度である。燃料供
給管104はSUS、Ni又はNi系合金製であり、こ
の燃料供給管104の上端部には中実のSUS製の導電
性連結棒106が接続してある。
As shown in FIG. 4, the solid oxide fuel cell 100 used in this embodiment has a fuel electrode 101, a solid electrolyte 102, and an air electrode 103 which are formed in this order from the inside, and the fuel is ejected to the center. For this purpose, the fuel supply pipe 104 for collecting current, which has a porous portion facing the fuel electrode 101, is inserted.
A conductive nickel felt 105 having a fuel reforming function is filled between the fuel supply pipe 104 and the fuel electrode 101, and the fuel gas 20 is supplied to the fuel supply pipe 104, and the oxidizing gas 24 flows around the outer circumference. The structure is as described above. The length of the power generation section of the solid oxide fuel cell 100 is about 10 to 30 cm so that multi-stage stacking is possible. The fuel supply pipe 104 is made of SUS, Ni or a Ni-based alloy, and a solid SUS conductive connecting rod 106 is connected to the upper end of the fuel supply pipe 104.

【0018】図1に示すように、固体電解質型燃料電池
100それぞれの最外殻をなす空気極101の上端部
は、発電室11と燃料排出室15とを仕切る絶縁性仕切
部材13に固定、支持されており、また各固体電解質型
燃料電池100の燃料供給管104は、燃料排出室15
と燃料供給室14とを仕切る絶縁性仕切部材12に固
定、支持されている。そしてこの燃料供給管104の上
部の導電性連結棒106の部分は断熱材19よりも上方
に突出する長さになっている。
As shown in FIG. 1, the upper end of the air electrode 101 which forms the outermost shell of each of the solid oxide fuel cells 100 is fixed to an insulating partition member 13 which separates the power generation chamber 11 and the fuel discharge chamber 15 from each other. The fuel supply pipe 104 of each solid oxide fuel cell 100 is supported by a fuel discharge chamber 15.
The fuel supply chamber 14 is fixed and supported by an insulating partition member 12 which partitions the fuel supply chamber 14. The portion of the conductive connecting rod 106 above the fuel supply pipe 104 has a length protruding above the heat insulating material 19.

【0019】次に、電気的接続構造について説明する。
図2に詳しいように、発電室11の下部のグリッド16
上には、各燃料電池100の外殻をなす空気極101の
底部を支持すると共に電気的に接続するLaSrMnO
系酸化物製の空気極側集電部材31が設置されている。
両者の間には導電性を良くするためにPtペースト32
が介挿されている。空気極側集電部材31の底面側には
嵌合部としての凹部33が形成されており、その内周面
にはLaSrCrO系酸化物製の保護層34が形成され
ている。この凹部33の内径は、下側の燃料電池ブロッ
ク10から上方に突き出している導電性連結棒106の
外径にほぼ一致する大きさにして、導電性連結棒106
の上端を挿入することによって電気的に接続できる設定
である。
Next, the electrical connection structure will be described.
As shown in detail in FIG.
On the top, LaSrMnO that supports and electrically connects the bottom of the air electrode 101 that forms the outer shell of each fuel cell 100
An air electrode side current collecting member 31 made of a system oxide is provided.
Pt paste 32 between them to improve conductivity
Is inserted. A concave portion 33 as a fitting portion is formed on the bottom surface side of the air electrode side current collecting member 31, and a protective layer made of LaSrCrO-based oxide is formed on the inner peripheral surface thereof. The inner diameter of the recess 33 is set to a size substantially matching the outer diameter of the conductive connecting rod 106 projecting upward from the lower fuel cell block 10, and the conductive connecting rod 106
It is a setting that can be electrically connected by inserting the upper end of the.

【0020】上記の構造の固体電解質型燃料電池ブロッ
ク10は、図3に示すように取出し電力の必要に応じた
段数だけ多段に積層することによって固体電解質型燃料
電池モジュールが組立てられる。この積層に当たり、各
下側の燃料電池ブロック10から上方に突き出している
導電性連結棒106それぞれの上端部を、各上側の燃料
電池ブロック10の空気極側集電部材31の凹部33そ
れぞれの内部に挿入する。これによって多段の積層と同
時に、同じ垂直線上に位置する最下段の燃料電池ブロッ
ク10の空気極から最上段の燃料電池ブロック10の燃
料供給管104までが直列接続されることになる。した
がって、各燃料電池100単体の起電圧Vとし、段数を
Nとすると、各垂直線上で接続される燃料電池100全
体の起電圧はN×Vとなる。
As shown in FIG. 3, the solid oxide fuel cell block 10 having the above-described structure is assembled in multiple stages by the number of stages required for the output power, thereby assembling a solid oxide fuel cell module. In this stacking, the upper ends of the conductive connecting rods 106 protruding upward from the lower fuel cell blocks 10 are respectively inserted into the recesses 33 of the air electrode side current collecting member 31 of each upper fuel cell block 10. Insert Thus, simultaneously with the multi-stage lamination, the air electrode of the lowermost fuel cell block 10 located on the same vertical line to the fuel supply pipe 104 of the uppermost fuel cell block 10 are connected in series. Therefore, when the electromotive voltage V of each fuel cell 100 alone is N and the number of stages is N, the electromotive voltage of the entire fuel cell 100 connected on each vertical line is N × V.

【0021】次に、上記構成の固体電解質型燃料電池モ
ジュールの発電動作を説明する。図1に示した各固体電
解質型燃料電池ブロック10ごとに、燃料ガス20が燃
料供給室14に供給され、燃料供給管104それぞれか
ら各固体電解質型燃料電池100内に供給され、発電に
使用される。そして発電に使用された後、燃料排出室1
5に集められ、排出燃料22として系外に排気される。
一方、酸化性ガス24は空気供給室18からグリッド1
6を経て発電室11に供給される。ここで、酸化性ガス
24は発電室11内で発電に供され、その後、排出酸化
性ガス26は空気排出配管27に集められ、外部に排気
される。
Next, the power generation operation of the solid oxide fuel cell module having the above configuration will be described. For each solid oxide fuel cell block 10 shown in FIG. 1, fuel gas 20 is supplied to the fuel supply chamber 14, supplied from each fuel supply pipe 104 into each solid oxide fuel cell 100, and used for power generation. You. After being used for power generation, the fuel discharge chamber 1
And is exhausted out of the system as exhaust fuel 22.
On the other hand, the oxidizing gas 24 is supplied from the air supply chamber 18 to the grid 1.
6 and is supplied to the power generation chamber 11. Here, the oxidizing gas 24 is used for power generation in the power generation chamber 11, and thereafter, the discharged oxidizing gas 26 is collected in the air discharge pipe 27 and exhausted to the outside.

【0022】最終的な発電電力の取出しをどのように設
定するかは、用途により異なる。例として、固体電解質
型燃料電池ブロック10内に収容されている数本〜数1
0本の燃料電池100を1又は複数のグループに分け、
最下段の燃料電池ブロック10における各グループに属
する燃料電池100の空気極側集電部材31間を予め並
列接続しておき、また最上段の燃料電池ブロック10に
おける同じグループに属する燃料電池100の燃料供給
管104を予め並列接続しておき、各グループごとに電
力取出し端子41,42それぞれを接続して外部に電力
を取出す構成にする。これにより、適宜の起電圧、電流
の直流電力を取出すことができる。
How to set the final output of the generated power depends on the application. As an example, several to several 1 are accommodated in the solid oxide fuel cell block 10.
The zero fuel cells 100 are divided into one or more groups,
The air electrode side current collecting members 31 of the fuel cells 100 belonging to each group in the lowermost fuel cell block 10 are connected in parallel in advance, and the fuel of the fuel cells 100 belonging to the same group in the uppermost fuel cell block 10 is also connected. The supply pipes 104 are connected in parallel in advance, and the power take-out terminals 41 and 42 are connected to each group to take out power outside. As a result, it is possible to take out DC power of appropriate electromotive voltage and current.

【0023】例えば、1グループに属する燃料電池を各
燃料電池ブロック10でM本ずつとし、上記と同様に直
列接続の段数をN段とし、燃料電池100の起電圧V、
電流Iとすれば、1グループでの出力電圧はN×V、出
力電流はM×Iである。
For example, the number of fuel cells belonging to one group is M in each fuel cell block 10, and the number of stages connected in series is N in the same manner as described above.
Assuming the current I, the output voltage in one group is N × V, and the output current is M × I.

【0024】また、1燃料電池モジュールにLグループ
設けられている場合、各グループごとの電力取出し端子
41,42間を直列接続することにより、1燃料電池モ
ジュール全体での出力電圧はN×V×L、出力電流はM
×Iである。逆に、各グループごとの電流取出し端子4
1,42間を並列接続することにより、1燃料電池モジ
ュール全体での出力電圧はN×V、出力電流はM×I×
Lである。したがって、各グループの電力取出し端子4
1,42間の接続の態様によって、出力電圧Vo、出力
電流Ioはそれぞれ、N×V×L≧Vo≧N×V;M×
I≦Io≦M×I×Lの範囲で適宜の出力が取り出せる
ことになる。
When L groups are provided in one fuel cell module, the output voltage of the whole fuel cell module is N × V × by connecting the power extraction terminals 41 and 42 of each group in series. L, output current is M
× I. Conversely, the current extraction terminals 4 for each group
1 and 42, the output voltage of one fuel cell module as a whole is N × V and the output current is M × I ×
L. Therefore, the power extraction terminals 4 of each group
The output voltage Vo and the output current Io are respectively N × V × L ≧ Vo ≧ N × V; M ×
An appropriate output can be taken out in the range of I ≦ Io ≦ M × I × L.

【0025】このようにして、この実施の形態の固体電
解質型燃料電池ブロック10は容易に多段積層によって
固体電解質型燃料電池モジュールを組立てることがで
き、その燃料電池モジュールでは、インターコネクタレ
ス構造の固体電解質型燃料電池100を用いても適宜の
電圧の直流電力を取り出すことができ、しかもインター
コネクタレスの燃料電池が使用できるために燃料電池単
体が発電時の高温度条件下でも熱膨張率の差に起因する
損傷を受けにくく、長時間の連続運転が可能となる。
In this manner, the solid oxide fuel cell block 10 of this embodiment can easily assemble a solid oxide fuel cell module by multi-layer stacking. Even if the electrolyte type fuel cell 100 is used, DC power of an appropriate voltage can be taken out, and since a fuel cell without an interconnector can be used, the difference in thermal expansion coefficient between the fuel cell itself and the high temperature condition during power generation can be obtained. It is less susceptible to damages due to, and long-term continuous operation is possible.

【0026】なお、上記の実施の形態では、図4に示し
たように、外側が空気極101、内側が燃料極103と
なった固体電解質型燃料電池100を使用したが、図5
に示すように、これとは積層構造が逆である、外側から
順に燃料極111、固体電解質112、空気極113と
なり、さらに空気極113内に空気供給管114を基体
管として内挿した構造の固体電解質型燃料電池110を
使用することもできる。そしてこの場合には、上記の図
1及び図2に示した実施の形態の固体電解質型燃料電池
ブロック10の構造とは異なり、燃料ガス20、酸化性
ガス24の供給系統が逆転した構造となる。すなわち、
図1及び図2に示した燃料電池ブロック10において、
燃料供給室14が空気供給室に、燃料排出室15が空気
排出室となり、また下部の空気供給室18を燃料供給室
として燃料ガス20を発電室11に導入する構造とす
る。また、導電性連結棒106を空気供給管114の上
部に接続し、空気極側集電部材31に代えて燃料極側集
電部材を同じ場所に設ける。しかしながら、断熱材19
の構造、また図3に示した多段積みによる固体電解質型
燃料電池モジュールを組み立てる構造は基本的に同じで
ある。
In the above embodiment, as shown in FIG. 4, a solid oxide fuel cell 100 having an air electrode 101 on the outside and a fuel electrode 103 on the inside is used.
As shown in the figure, the laminated structure is opposite to this, the fuel electrode 111, the solid electrolyte 112, and the air electrode 113 are arranged in this order from the outside, and the air supply pipe 114 is inserted into the air electrode 113 as a base tube. A solid oxide fuel cell 110 can also be used. In this case, unlike the structure of the solid oxide fuel cell block 10 of the embodiment shown in FIGS. 1 and 2, the fuel gas 20 and the oxidizing gas 24 supply system is reversed. . That is,
In the fuel cell block 10 shown in FIG. 1 and FIG.
The fuel supply chamber 14 serves as an air supply chamber, the fuel discharge chamber 15 serves as an air discharge chamber, and the lower air supply chamber 18 serves as a fuel supply chamber to introduce fuel gas 20 into the power generation chamber 11. Further, the conductive connecting rod 106 is connected to the upper part of the air supply pipe 114, and the fuel electrode side current collecting member is provided at the same place instead of the air electrode side current collecting member 31. However, insulation 19
And the structure for assembling the solid oxide fuel cell module by multi-stacking shown in FIG. 3 is basically the same.

【0027】[0027]

【発明の効果】以上のように請求項1の発明の固体電解
質型燃料電池ブロックによれば、これを複数段に積層
し、各下側の固体電解質型燃料電池ブロックの燃料供給
管それぞれに接合された導電性連結棒の上端部それぞれ
を各上側の固体電解質型燃料電池ブロックの空気極側集
電部材それぞれの底面に形成された嵌合部それぞれに挿
入して電気的に直列接続することによって固体電解質型
燃料電池モジュールを簡単に組立てることができ、また
発電電力の内部損失を小さくして、効率良く取り出すこ
とができる。
As described above, according to the solid oxide fuel cell block of the first aspect of the present invention, the solid oxide fuel cell blocks are stacked in a plurality of stages and joined to the respective fuel supply pipes of the lower solid oxide fuel cell blocks. By inserting the upper end portions of the conductive connecting rods into the fitting portions formed on the bottom surfaces of the air electrode side current collecting members of the solid oxide fuel cell blocks on the upper side, respectively, and electrically connecting them in series. The solid oxide fuel cell module can be easily assembled, and the internal loss of the generated electric power can be reduced and the electric power can be efficiently extracted.

【0028】請求項2の発明の固体電解質型燃料電池ブ
ロックによれば、請求項1の発明の効果に加えて、空気
極側集電部材をLaMnO系酸化物で形成し、当該空気
極側集電部材の底面に形成された嵌合部の内周面にLa
CrO系酸化物の保護層を形成し、導電性連結棒をSU
S、Ni又はNi系合金の緻密な材料で形成しているの
で、高温度条件での燃料電池発電における熱膨張率の差
に起因して各部に破損が発生するのを抑制し、長期の使
用に耐えるものとなる。
According to the solid oxide fuel cell block of the second aspect of the invention, in addition to the effect of the first aspect, the air electrode side current collecting member is formed of LaMnO-based oxide, and La on the inner peripheral surface of the fitting portion formed on the bottom surface of the electrical member
A protective layer of CrO-based oxide is formed, and the conductive connecting rod is made of SU.
Since it is formed of a dense material of S, Ni or a Ni-based alloy, it is possible to suppress the occurrence of breakage in each part due to the difference in the coefficient of thermal expansion in fuel cell power generation under high temperature conditions, and to use it for a long time. To withstand.

【0029】請求項3の発明の固体電解質型燃料電池ブ
ロックによれば、これを複数段に積層し、各下側の固体
電解質型燃料電池ブロックの空気供給管それぞれに接合
された導電性連結棒の上端部それぞれを各上側の固体電
解質型燃料電池ブロックの燃料極側集電部材それぞれの
底面に形成された嵌合部それぞれに挿入して電気的に直
列接続することによって固体電解質型燃料電池モジュー
ルを簡単に組立てることができ、また発電電力の内部損
失を小さくして、効率良く取り出すことができる。
According to the solid electrolyte fuel cell block of the third aspect of the present invention, the solid electrolyte fuel cell blocks are stacked in a plurality of stages, and the conductive connecting rods are joined to the respective air supply pipes of the lower solid electrolyte fuel cell blocks. The solid electrolyte fuel cell module is inserted by inserting each upper end of the solid electrolyte fuel cell block into a fitting portion formed on the bottom surface of each fuel electrode side current collecting member of each upper solid fuel cell block and electrically connecting them in series. Can be easily assembled, the internal loss of the generated power can be reduced, and the power can be extracted efficiently.

【0030】請求項4の発明の固体電解質型燃料電池ブ
ロックによれば、請求項3の発明の効果に加えて、燃料
極側集電部材をNi系材料で形成し、当該空気極側集電
部材の底面に形成された嵌合部の内周面にLaCrO系
酸化物の保護層を形成し、導電性連結棒を耐酸化処理を
表面に施したSUS、Ni又はNi系合金の緻密な材料
で形成しているので、高温度条件での燃料電池発電にお
ける熱膨張率の差に起因して各部に破損が発生するのを
抑制し、長期の使用に耐えるものとなる。
According to the solid oxide fuel cell block of the invention of claim 4, in addition to the effect of the invention of claim 3, the fuel electrode side current collecting member is formed of a Ni-based material, A dense material of SUS, Ni or Ni-based alloy in which a protective layer of LaCrO-based oxide is formed on the inner peripheral surface of the fitting portion formed on the bottom surface of the member, and the surface of the conductive connecting rod is subjected to oxidation resistance treatment. Therefore, it is possible to suppress the occurrence of breakage in each part due to the difference in the coefficient of thermal expansion in fuel cell power generation under high temperature conditions, and to endure long-term use.

【0031】請求項5の発明の固体電解質型燃料電池モ
ジュールによれば、請求項1又は2の発明の固体電解質
型燃料電池ブロックを複数段に積層し、各下側の固体電
解質型燃料電池ブロックの前記燃料供給管それぞれに接
合された導電性連結棒の上端部それぞれを各上側の固体
電解質型燃料電池ブロックの前記空気極側集電部材それ
ぞれの底面に形成された嵌合部それぞれに挿入して電気
的に直列接続した構造なので、その組立が容易であり、
また発電電力の内部損失を少なくして、効率良く取り出
すことができる。
According to the solid oxide fuel cell module of the fifth invention, the solid oxide fuel cell blocks of the first or second invention are stacked in a plurality of stages, and each solid electrolyte fuel cell block on the lower side is stacked. The upper ends of the conductive connecting rods joined to the respective fuel supply pipes are respectively inserted into fitting portions formed on the bottom surfaces of the air electrode side current collecting members of the solid oxide fuel cell blocks on the upper side. And the structure is electrically connected in series, so its assembly is easy,
Further, the internal loss of the generated power can be reduced and the power can be efficiently extracted.

【0032】請求項6の発明の固体電解質型燃料電池モ
ジュールによれば、請求項3又は4の発明の固体電解質
型燃料電池ブロックを複数段に積層し、各下側の固体電
解質型燃料電池ブロックの前記空気供給管それぞれに接
合された導電性連結棒の上端部それぞれを各上側の固体
電解質型燃料電池ブロックの前記燃料極側集電部材それ
ぞれの底面に形成された嵌合部それぞれに挿入して電気
的に直列接続した構造なので、その組立が容易であり、
また発電電力の内部損失を少なくして、効率良く取り出
すことができる。
According to the solid oxide fuel cell module of the sixth aspect, the solid oxide fuel cell block of the third or fourth aspect is stacked in a plurality of stages, and each solid electrolyte fuel cell block on the lower side is stacked. The upper ends of the conductive connecting rods joined to the respective air supply pipes are respectively inserted into fitting portions formed on the bottom surfaces of the fuel electrode side current collecting members of the solid electrolyte fuel cell blocks on the upper side. And the structure is electrically connected in series, so its assembly is easy,
Further, the internal loss of the generated power can be reduced and the power can be efficiently extracted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1つの実施の形態の固体電解質型燃料
電池ブロックの構造断面図。
FIG. 1 is a structural sectional view of a solid oxide fuel cell block according to one embodiment of the present invention.

【図2】上記の実施の形態における上下段の固体電解質
型燃料電池ブロック間での燃料電池間の電気的接続構造
を示す分解断面図。
FIG. 2 is an exploded cross-sectional view showing an electrical connection structure between fuel cells between upper and lower solid oxide fuel cell blocks in the embodiment.

【図3】上記の実施の形態の固体電解質型燃料電池ブロ
ックを多段積みして構成される固体電解質型燃料電池モ
ジュールの分解正面図。
FIG. 3 is an exploded front view of a solid oxide fuel cell module configured by stacking the solid oxide fuel cell blocks of the above embodiment in multiple stages.

【図4】上記の実施の形態に用いる固体電解質型燃料電
池の断面図。
FIG. 4 is a cross-sectional view of a solid oxide fuel cell used in the above embodiment.

【図5】本発明の他の実施の形態で用いる固体電解質型
燃料電池の断面図。
FIG. 5 is a cross-sectional view of a solid oxide fuel cell used in another embodiment of the present invention.

【図6】従来例の固体電解質型燃料電池の斜視図。FIG. 6 is a perspective view of a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

10 燃料電池ブロック 11 発電室 12 絶縁性仕切部材 13 絶縁性仕切部材 14 燃料供給室 15 燃料排出室 16 グリッド 17 絶縁性仕切部材 18 空気供給室 19 断熱材 20 燃料ガス 21 燃料供給配管 22 排出燃料 23 燃料排出配管 24 酸化性ガス 25 空気供給配管 26 排出酸化性ガス 27 空気排出配管 31 空気極側集電部材 32 Ptペースト 33 凹部 34 保護層 41 電力取出し端子 42 電力取出し端子 100 固体電解質型燃料電池 101 空気極 102 固体電解質 103 燃料極 104 燃料供給管 105 導電性ニッケルフェルト 106 導電性連結棒 110 固体電解質型燃料電池 111 燃料極 112 固体電解質 113 空気極 114 空気供給管 Reference Signs List 10 fuel cell block 11 power generation chamber 12 insulating partition member 13 insulating partition member 14 fuel supply chamber 15 fuel discharge chamber 16 grid 17 insulating partition member 18 air supply chamber 19 heat insulating material 20 fuel gas 21 fuel supply pipe 22 discharged fuel 23 Fuel discharge pipe 24 Oxidizing gas 25 Air supply pipe 26 Discharged oxidizing gas 27 Air discharge pipe 31 Air electrode side current collecting member 32 Pt paste 33 Concave part 34 Protective layer 41 Power extraction terminal 42 Power extraction terminal 100 Solid oxide fuel cell 101 Air electrode 102 Solid electrolyte 103 Fuel electrode 104 Fuel supply pipe 105 Conductive nickel felt 106 Conductive connecting rod 110 Solid electrolyte fuel cell 111 Fuel electrode 112 Solid electrolyte 113 Air electrode 114 Air supply pipe

フロントページの続き (72)発明者 西村 正義 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 岩澤 力 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 望月 正孝 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 永田 雅克 東京都江東区木場1−5−1 株式会社フ ジクラ内 Fターム(参考) 5H026 AA06 CC06 CV02 CV08 CX06 CX09 CX10 EE02 EE08 EE13Continuing from the front page (72) Inventor Masayoshi Nishimura 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Inside Kansai Electric Power Company (72) Inventor Riki Iwasawa 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Co., Ltd. (72) Inventor Masataka Mochizuki 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Masakatsu Nagata 1-5-1 Kiba, Koto-ku, Tokyo F-Terminal Co., Ltd. F-term (reference) 5H026 AA06 CC06 CV02 CV08 CX06 CX09 CX10 EE02 EE08 EE13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 外側から内側へ順に空気極、固体電解
質、燃料極が積層され、燃料極の内側に集電兼用の燃料
供給管が挿入された、インターコネクタレスの固体電解
質型燃料電池の所定数体を発電室に収容し、前記発電室
の上方に燃料排出室と燃料供給室とを形成し、前記発電
室の下方に空気供給室を形成し、それらの各室の周囲を
断熱材で包囲し、 前記空気極それぞれを前記発電室の下部に配置された空
気極側集電部材に電気的に接続し、 前記燃料供給管それぞれの上部に導電性連結棒を接合
し、 前記空気極側集電部材の底面に、前記導電性連結棒の上
端部を挿入して電気的に接続するための嵌合部を形成し
て成る固体電解質型燃料電池ブロック。
1. An interconnector-less solid electrolyte fuel cell in which an air electrode, a solid electrolyte, and a fuel electrode are laminated in order from the outside to the inside, and a fuel supply pipe for current collection is inserted inside the fuel electrode. Several bodies are accommodated in a power generation chamber, a fuel discharge chamber and a fuel supply chamber are formed above the power generation chamber, an air supply chamber is formed below the power generation chamber, and the periphery of each of these chambers is covered with a heat insulating material. Surrounding, electrically connecting each of the air electrodes to an air electrode side current collecting member arranged at a lower portion of the power generation chamber, joining a conductive connecting rod to an upper portion of each of the fuel supply pipes, A solid oxide fuel cell block in which a fitting portion for inserting an upper end of the conductive connecting rod and electrically connecting the conductive connecting rod is formed on a bottom surface of the current collecting member.
【請求項2】 前記空気極側集電部材をLaMnO系酸
化物で形成し、当該空気極側集電部材の底面に形成され
た嵌合部の内周面にLaCrO系酸化物の保護層を形成
し、 前記導電性連結棒をSUS、Ni又はNi系合金の緻密
な材料で形成したことを特徴とする請求項1に記載の固
体電解質型燃料電池ブロック。
2. The air electrode-side current collecting member is made of LaMnO-based oxide, and a LaCrO-based oxide protective layer is formed on an inner peripheral surface of a fitting portion formed on a bottom surface of the air electrode-side current collecting member. The solid oxide fuel cell block according to claim 1, wherein the conductive connecting rod is formed of a dense material of SUS, Ni, or a Ni-based alloy.
【請求項3】 内側から外側へ順に空気極、固体電解
質、燃料極が積層され、空気極の内側に集電兼用の空気
供給管が挿入された、インターコネクタレスの固体電解
質型燃料電池の所定数体を発電室に収容し、前記発電室
の上方に空気供給室と空気排出室とを形成し、前記発電
室の下方に燃料供給室を形成し、それら各室の周囲を断
熱材で包囲し、 前記燃料極それぞれを前記発電室の下部に配置された燃
料極側集電部材に電気的に接続し、 前記空気供給管それぞれの上部に導電性連結棒を接合
し、 前記燃料極側集電部材の底面に、前記導電性連結棒の上
端部を挿入して電気的に接続するための嵌合部を形成し
て成る固体電解質型燃料電池ブロック。
3. A predetermined solid electrolyte fuel cell without an interconnector, wherein an air electrode, a solid electrolyte, and a fuel electrode are stacked in order from the inside to the outside, and an air supply pipe for current collection is inserted inside the air electrode. Several bodies are accommodated in a power generation chamber, an air supply chamber and an air discharge chamber are formed above the power generation chamber, a fuel supply chamber is formed below the power generation chamber, and the periphery of each of these chambers is surrounded by a heat insulating material. Electrically connecting each of the fuel electrodes to a fuel electrode-side current collecting member disposed at a lower portion of the power generation chamber; joining a conductive connecting rod to an upper portion of each of the air supply pipes; A solid oxide fuel cell block in which a fitting portion for inserting an upper end portion of the conductive connecting rod and electrically connecting the conductive connecting rod is formed on a bottom surface of the electric member.
【請求項4】 前記燃料極側集電部材をNi系材料で形
成し、当該空気極側集電部材の底面に形成された嵌合部
の内周面にLaCrO系酸化物の保護層を形成し、 前記導電性連結棒を耐酸化処理を表面に施したSUS、
Ni又はNi系合金の緻密な材料で形成したことを特徴
とする請求項3に記載の固体電解質型燃料電池ブロッ
ク。
4. The fuel electrode-side current collecting member is formed of a Ni-based material, and a LaCrO-based oxide protective layer is formed on an inner peripheral surface of a fitting portion formed on a bottom surface of the air electrode-side current collecting member. SUS wherein the surface of the conductive connecting rod is subjected to an oxidation-resistant treatment,
The solid oxide fuel cell block according to claim 3, wherein the solid electrolyte fuel cell block is formed of a dense material of Ni or a Ni-based alloy.
【請求項5】 請求項1又は2に記載の固体電解質型燃
料電池ブロックを複数段に積層し、各下側の固体電解質
型燃料電池ブロックの前記燃料供給管それぞれに接合さ
れた導電性連結棒の上端部それぞれを各上側の固体電解
質型燃料電池ブロックの前記空気極側集電部材それぞれ
の底面に形成された嵌合部それぞれに挿入して電気的に
直列接続して成る固体電解質型燃料電池モジュール。
5. A conductive connecting rod which is formed by stacking the solid oxide fuel cell blocks according to claim 1 or 2 in a plurality of stages and joined to the fuel supply pipes of each lower solid oxide fuel cell block. Solid-state fuel cells, each having an upper end portion inserted into a fitting portion formed on the bottom surface of each of the air electrode-side current collecting members of the upper solid oxide fuel cell block and electrically connected in series. module.
【請求項6】 請求項3又は4に記載の固体電解質型燃
料電池ブロックを複数段に積層し、各下側の固体電解質
型燃料電池ブロックの前記空気供給管それぞれに接合さ
れた導電性連結棒の上端部それぞれを各上側の固体電解
質型燃料電池ブロックの前記燃料極側集電部材それぞれ
の底面に形成された嵌合部それぞれに挿入して電気的に
直列接続して成る固体電解質型燃料電池モジュール。
6. A conductive connecting rod which is formed by laminating the solid oxide fuel cell blocks according to claim 3 or 4 in a plurality of stages, and which is joined to each of the air supply pipes of each lower solid oxide fuel cell block. Solid-state fuel cells, each having an upper end inserted into a fitting portion formed on the bottom surface of each of the fuel-electrode-side current collecting members of the upper solid oxide fuel cell block and electrically connected in series. module.
JP10356729A 1998-12-15 1998-12-15 Solid electrolyte fuel cell block and solid electrolyte fuel cell module Pending JP2000182653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10356729A JP2000182653A (en) 1998-12-15 1998-12-15 Solid electrolyte fuel cell block and solid electrolyte fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10356729A JP2000182653A (en) 1998-12-15 1998-12-15 Solid electrolyte fuel cell block and solid electrolyte fuel cell module

Publications (1)

Publication Number Publication Date
JP2000182653A true JP2000182653A (en) 2000-06-30

Family

ID=18450490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10356729A Pending JP2000182653A (en) 1998-12-15 1998-12-15 Solid electrolyte fuel cell block and solid electrolyte fuel cell module

Country Status (1)

Country Link
JP (1) JP2000182653A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387426A2 (en) * 2001-04-12 2004-02-04 Zakrytoe Aktsionernoe Obschestvo Independent Power Technologies "IPT" Combustion cell module and battery based thereon
JP2006220746A (en) * 2005-02-08 2006-08-24 Rohm Co Ltd Light controller and structural body used therefor
JP2009048848A (en) * 2007-08-20 2009-03-05 Sony Corp Fuel cell
US7894115B2 (en) 2005-01-20 2011-02-22 Rohm Co., Ltd. Light control apparatus having light modulating film
JP2016115629A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel battery, and electrical connection method for fuel battery
JP2020112038A (en) * 2019-01-08 2020-07-27 トヨタ自動車株式会社 Electrochemical reactor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387426A2 (en) * 2001-04-12 2004-02-04 Zakrytoe Aktsionernoe Obschestvo Independent Power Technologies "IPT" Combustion cell module and battery based thereon
EP1387426A4 (en) * 2001-04-12 2008-01-23 Obschestvo S Ogranichennoi Otv Fuel cell module and battery based thereon
US7894115B2 (en) 2005-01-20 2011-02-22 Rohm Co., Ltd. Light control apparatus having light modulating film
JP2006220746A (en) * 2005-02-08 2006-08-24 Rohm Co Ltd Light controller and structural body used therefor
JP2009048848A (en) * 2007-08-20 2009-03-05 Sony Corp Fuel cell
JP2016115629A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel battery, and electrical connection method for fuel battery
JP2020112038A (en) * 2019-01-08 2020-07-27 トヨタ自動車株式会社 Electrochemical reactor
JP7183796B2 (en) 2019-01-08 2022-12-06 トヨタ自動車株式会社 electrochemical reactor

Similar Documents

Publication Publication Date Title
RU2415498C2 (en) Configurations of batteries of tubular solid-oxide fuel elements
JP5234554B2 (en) Solid oxide fuel cell stack structure
WO2007076440A2 (en) Solid oxide fuel cell and stack configuration
JPH0159705B2 (en)
US20070148523A1 (en) Interconnection of bundled solid oxide fuel cells
EP2424028A2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
JPH0850914A (en) Cylindrical layer-built fuel cell
JP2000182642A (en) Solid electrolyte fuel cell module
JP2000182653A (en) Solid electrolyte fuel cell block and solid electrolyte fuel cell module
JPH0660905A (en) Collected fuel cell
JP2000182652A (en) Solid electrolyte fuel cell assemby and solid electrolyte fuel cell module
JP2000182645A (en) Solid electrolyte fuel cell module
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2000182650A (en) Solid electrolyte fuel cell block and solid electrolyte fuel cell module
JP2000182655A (en) Solid electrolyte fuel cell module
JP2000182654A (en) Solid electrolyte fuel cell module
KR101155375B1 (en) Combined flat-tube anode support solid oxide fuel cell and stack structure using the same
KR101694144B1 (en) Flat tubular solid oxide fuel cell and method of manufacturing the same
JP5125376B2 (en) Fuel cell
JP4141555B2 (en) Solid oxide fuel cell assembly and solid oxide fuel cell module
JP2000182649A (en) Solid electrolyte fuel cell module
CN216213599U (en) Solid oxide fuel cell stack structure
JPH0260063A (en) Stacked fuel cell
JP3437857B2 (en) Solid oxide fuel cell
JP2000182644A (en) Solid electrolyte fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028