JP2000176578A - Manufacture of fluid cooler - Google Patents

Manufacture of fluid cooler

Info

Publication number
JP2000176578A
JP2000176578A JP10358143A JP35814398A JP2000176578A JP 2000176578 A JP2000176578 A JP 2000176578A JP 10358143 A JP10358143 A JP 10358143A JP 35814398 A JP35814398 A JP 35814398A JP 2000176578 A JP2000176578 A JP 2000176578A
Authority
JP
Japan
Prior art keywords
pipe
inner tube
heat radiating
peripheral surface
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10358143A
Other languages
Japanese (ja)
Inventor
Haruyuki Katayama
晴之 片山
Tetsuhiro Hosokawa
哲寛 細川
Yasufumi Sakakibara
康文 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyasu Industries Co Ltd
Toyota Motor Corp
Original Assignee
Maruyasu Industries Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyasu Industries Co Ltd, Toyota Motor Corp filed Critical Maruyasu Industries Co Ltd
Priority to JP10358143A priority Critical patent/JP2000176578A/en
Publication of JP2000176578A publication Critical patent/JP2000176578A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a fluid cooler capable of improving heat exchanging efficiency and reliability. SOLUTION: An EGR cooler 10 is composed of a double piping structure of an inner pipe 11 and an outer pipe 12. A heat radiating fin 16 is housed and fixed into and to the inner pipe 11. The heat radiating fin 16 is manufactured by drawing a pipe stock of the outside diameter d1 with a roll and a die or the like. And the heat radiating fin 16 is inserted into the inner pipe 11, the inner pipe 11 is diametrically reduced and plastically worked to such an extent that the inner peripheral surface of the inner pipe 11 abuts on the outer peripheral surface of the heat radiating fin 16, and thereafter the heat radiating fin 16 is fixed to the inside of the inner pipe 11 by brazing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体冷却装置の製
造方法に係り、例えば内燃機関の排気ガス再循環装置に
おいて、排気系から取り出された高温の排気ガスを冷却
するための2重配管式熱交換器の製造に好適な製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a fluid cooling device, and more particularly to a double piping system for cooling high-temperature exhaust gas extracted from an exhaust system in an exhaust gas recirculation device of an internal combustion engine. The present invention relates to a manufacturing method suitable for manufacturing a heat exchanger.

【0002】[0002]

【従来の技術】従来、内燃機関の排気ガス中の窒素酸化
物を低減するために、排気ガスの一部を排気系(エキゾ
ーストマニホールド)から取り出し、吸気系(インテー
クマニホールド)へ再循環させる排気ガス再循環装置
(以下、「EGR装置」という。)が知られている。前
記EGR装置には排気系から取り出した高温の排気ガス
(以下、「EGRガス」という。)を吸気系に再導入す
る前に冷却するための2重配管式熱交換器(以下、「E
GRクーラ」という。)が設けられている。
2. Description of the Related Art Conventionally, in order to reduce nitrogen oxides in exhaust gas of an internal combustion engine, a part of the exhaust gas is taken out from an exhaust system (exhaust manifold) and recirculated to an intake system (intake manifold). A recirculation device (hereinafter, referred to as an “EGR device”) is known. The EGR device has a double-pipe heat exchanger (hereinafter, referred to as "EGR gas") for cooling high-temperature exhaust gas (hereinafter, referred to as "EGR gas") taken out of an exhaust system before re-introducing it into an intake system.
"GR cooler". ) Is provided.

【0003】図5及び図6に示すように、前記EGR装
置における排気環流路(図示略)の途中に配設されるE
GRクーラ50は、内側にEGRガスを流通させる内管
51と、同内管51の外周面を包囲すると共に両端が内
管51の外周面に閉塞し固定され、内管51との間に断
面環状の流通路52を区画する外管53との2重配管構
造となっている。前記内管51には図6に示すように熱
伝達を促進させるための放熱フィン54が収容固定され
ている。
[0005] As shown in FIGS. 5 and 6, an E is disposed in the exhaust passage (not shown) in the EGR device.
The GR cooler 50 has an inner pipe 51 through which EGR gas flows, and an outer peripheral surface of the inner pipe 51 which is enclosed and fixed at both ends to an outer peripheral surface of the inner pipe 51. It has a double piping structure with an outer pipe 53 that partitions the annular flow passage 52. As shown in FIG. 6, a radiation fin 54 for promoting heat transfer is housed and fixed in the inner tube 51.

【0004】そして、前記外管53には冷却水を前記流
通路52に導入するための導入管55と、流通路52内
の冷却水を排出するための排出管56とが設けられてい
る。前記流通路52内には内燃機関冷却用の冷却水が導
入管55を介して供給され、この冷却水は流通路52を
流れ、排出管56を介して内燃機関の冷却水循環回路
(図示略)に戻される。前記高温のEGRガスと冷却水
との間では内管51を介して熱交換が行われる。この結
果、EGRガスは冷却されて内燃機関の吸気系に再導入
される。
The outer pipe 53 is provided with an introduction pipe 55 for introducing cooling water into the flow passage 52 and a discharge pipe 56 for discharging cooling water in the flow passage 52. Cooling water for cooling the internal combustion engine is supplied into the flow passage 52 through an introduction pipe 55, and the cooling water flows through the flow passage 52, and a cooling water circulation circuit (not shown) of the internal combustion engine through a discharge pipe 56. Is returned to. Heat exchange is performed between the high-temperature EGR gas and the cooling water via the inner pipe 51. As a result, the EGR gas is cooled and re-introduced into the intake system of the internal combustion engine.

【0005】[0005]

【発明が解決しようとする課題】ところで、EGRクー
ラ50の製造において、まず、例えば特公平3−687
66号公報に開示された技術のように、放熱フィン54
を、パイプ材から引き抜いて縦断面略放射状(断面略星
形状)に製造してから、前記内管51内に挿入し内管5
1の内周面にろう付けで固着させる。この場合、放熱フ
ィン54を内管51内に挿入しやすくするために、放熱
フィン54の外径d1を内管51の内径d2よりやや小
さくしている。従って、放熱フィン54を内管51内に
挿入し内管51の内周面にろう付けで固着するとき、放
熱フィン54をその外周が内管51の内周と同心状態に
保ちながら固着するのは難しい。その結果、放熱フィン
54は内管51内に片寄るおそれがある。例えば図5に
おいて下方へ片寄った場合、上方では距離t(=d2−
d1)の隙間57が生じる。この状態で放熱フィン54
を内管51の内周面にろう付けで固着すると、上下ろう
付けの厚さのバラツキが生じるため、隙間57の大きい
上側のろう付け部分では放熱フィン54が内管51に直
接固着しないおそれがある。これは、EGRクーラ50
の熱交換効率及び信頼性の向上を図る上の問題点とな
る。
In the manufacture of the EGR cooler 50, first, for example, Japanese Patent Publication No. 3-687.
As disclosed in Japanese Patent Application Publication No.
Is drawn out of a pipe material to produce a substantially radial cross section (substantially star-shaped cross section), and then inserted into the inner tube 51 to insert the inner tube 5 into the inner tube 5.
1 is fixed to the inner peripheral surface by brazing. In this case, the outer diameter d1 of the radiating fin 54 is slightly smaller than the inner diameter d2 of the inner tube 51 so that the radiating fin 54 can be easily inserted into the inner tube 51. Therefore, when the radiation fin 54 is inserted into the inner tube 51 and fixed to the inner peripheral surface of the inner tube 51 by brazing, the radiation fin 54 is fixed while keeping its outer periphery concentric with the inner periphery of the inner tube 51. Is difficult. As a result, the radiation fins 54 may be offset in the inner tube 51. For example, in FIG. 5, when it is shifted downward, the distance t (= d2-
The gap 57 of d1) is generated. In this state, the radiation fins 54
Is fixed to the inner peripheral surface of the inner tube 51 by brazing, since the thickness of the upper and lower brazings varies, the radiation fins 54 may not be directly fixed to the inner tube 51 in the upper brazing portion having a large gap 57. is there. This is the EGR cooler 50
This is a problem in improving the heat exchange efficiency and the reliability.

【0006】本発明は上記問題点を解決するためになさ
れたものであって、その目的は、熱交換効率及び信頼性
の向上を図ることができる流体冷却装置の製造方法を提
供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a fluid cooling device capable of improving heat exchange efficiency and reliability. .

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、請求項1に記載の発明は、内側に被冷却媒体を流
通させる筒部材と、前記筒部材内に収容固定される放熱
部材とを備えた流体冷却装置の製造方法において、前記
放熱部材を筒部材内に挿入し、筒部材の内周面が放熱部
材の外周面と当接する程度まで筒部材を縮径塑性加工さ
せてから、放熱部材を筒部材内に固着したことを要旨と
する。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a tubular member through which a medium to be cooled flows, and a heat radiating member housed and fixed in the tubular member. In the method for manufacturing a fluid cooling device provided with, the heat dissipating member is inserted into the cylindrical member, and the cylindrical member is reduced in diameter plastic working until the inner peripheral surface of the cylindrical member comes into contact with the outer peripheral surface of the heat dissipating member. The gist is that the heat radiating member is fixed in the cylindrical member.

【0008】(作用)従って、請求項1に記載の発明に
よれば、筒部材の内周と放熱部材の外周との間には、放
熱部材は筒部材内において一側に片寄ることが防止され
る。従って、放熱部材を筒部材の内周面に例えばろう付
けで固着するときのろう付け厚さのバラツキがなくな
り、そのバラツキるによる放熱部材が筒部材に直接固着
しない箇所がなくなる。その結果、放熱部材と筒部材の
ろう付けが安定することから、流体冷却装置の熱交換率
及び信頼性の向上を図ることができる。
According to the first aspect of the present invention, between the inner periphery of the tubular member and the outer periphery of the radiating member, the radiating member is prevented from being biased to one side in the tubular member. You. Therefore, there is no variation in brazing thickness when the heat radiation member is fixed to the inner peripheral surface of the cylindrical member by, for example, brazing, and there is no place where the heat radiation member does not directly adhere to the cylindrical member due to the fluctuation. As a result, since the brazing of the heat radiating member and the cylindrical member is stabilized, the heat exchange rate and the reliability of the fluid cooling device can be improved.

【0009】[0009]

【発明の実施の形態】以下、本発明を内燃機関の排気ガ
ス再循環装置(以下、「EGR装置」という。)に具体
化した一実施形態を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in an exhaust gas recirculation device for an internal combustion engine (hereinafter, referred to as an "EGR device") will be described with reference to the drawings.

【0010】図1及び図2に示すように、内燃機関のE
GR装置における排気環流路(図示略)の途中に配設さ
れる流体冷却装置としての2重配管式熱交換器(以下、
「EGRクーラ」という。)10は、内側に内燃機関の
排気系から取り出した被冷却媒体としての高温の排気ガ
ス(以下、「EGRガス」という。)を流通させる筒部
材としての内管11を備えている。
As shown in FIG. 1 and FIG.
A double-pipe type heat exchanger (hereinafter, referred to as a fluid cooling device) provided in the middle of an exhaust circulation channel (not shown) in the GR device.
It is called “EGR cooler”. ) 10 is provided with an inner pipe 11 as a cylindrical member through which a high-temperature exhaust gas (hereinafter, referred to as “EGR gas”) as a medium to be cooled taken out of an exhaust system of the internal combustion engine flows.

【0011】前記内管11は、耐熱・耐腐食性の高い材
質例えばステンレススチール材からなり、その外周に
は、同内管11の外周を離間して包囲するように外管1
2が配置されている。前記外管12の両端は徐々に縮径
され、内管11の外周面に溶接等により固定されてい
る。そして、前記内管11の外周面と外管12の内周面
との間には断面環状の冷却媒体としての冷却水を流通さ
せる流通路(ウォータジャケット)13が形成されてい
る。即ち、前記EGRクーラ10は前記内管11と外管
12との2重配管構造として構成されている。
The inner tube 11 is made of a material having high heat and corrosion resistance, for example, a stainless steel material, and has an outer tube 1 on its outer periphery so as to surround the outer periphery of the inner tube 11 at a distance.
2 are arranged. Both ends of the outer tube 12 are gradually reduced in diameter, and are fixed to the outer peripheral surface of the inner tube 11 by welding or the like. A flow passage (water jacket) 13 is formed between the outer peripheral surface of the inner tube 11 and the inner peripheral surface of the outer tube 12 for flowing cooling water as a cooling medium having an annular cross section. That is, the EGR cooler 10 is configured as a double pipe structure of the inner pipe 11 and the outer pipe 12.

【0012】前記外管12には冷却水を流通路13内に
導入するための導入管14と、流通路13内の冷却水を
排出するための排出管15とが設けられている。前記流
通路13には導入管14を介して内燃機関冷却用の冷却
水が供給され、この冷却水は流通路13を流れた後、排
出管15を介して内燃機関の冷却水循環回路(図示略)
に戻される。前記EGRクーラ10は流通路13を流れ
る冷却水と内管11の外周面とが接触する冷却可能区間
を通過するEGRガスを冷却可能となっている。
The outer pipe 12 is provided with an introduction pipe 14 for introducing cooling water into the flow path 13 and a discharge pipe 15 for discharging cooling water in the flow path 13. Cooling water for cooling the internal combustion engine is supplied to the flow passage 13 through an introduction pipe 14, and the cooling water flows through the flow passage 13, and then flows through a discharge pipe 15 to a cooling water circulation circuit (not shown in the drawing) of the internal combustion engine. )
Is returned to. The EGR cooler 10 is capable of cooling the EGR gas passing through a coolable section where the cooling water flowing through the flow passage 13 and the outer peripheral surface of the inner pipe 11 are in contact.

【0013】前記内管11には放熱部材としての放熱フ
ィン16が収容固定されている。放熱フィン16は、耐
熱・耐腐食性の高い材質例えばステンレススチール材か
らなり、本実施形態では図2に示すように、内管11の
径方向に断面略放射状(断面略星形状)に形成されてい
る。
A radiating fin 16 as a radiating member is housed and fixed to the inner tube 11. The radiation fins 16 are made of a material having high heat and corrosion resistance, for example, a stainless steel material. In the present embodiment, as shown in FIG. 2, the radiation fins 16 are formed in a substantially radial cross section (substantially star-shaped cross section) in the radial direction of the inner tube 11. ing.

【0014】放熱フィン16を収容固定する内管11の
製造においては、まず、放熱フィン16を、外径d1の
パイプ材をロールやダイス等にて図3に示す形状に引き
抜くことにより製造させる。そして、内径d2(ここで
は、d2>d1)のパイプ材からなる内管11内の所定
位まで放熱フィン16を挿入してから、内管11におけ
る放熱フィン16を内在した範囲(図1及び図4におい
て範囲C)にわたって、内管11の内周面が放熱フィン
16の外周面と当接する程度まで内管11を縮径塑性加
工させる。最後に、放熱フィン16を、ろう付けにて内
管11内に固着させる。
In manufacturing the inner tube 11 for accommodating and fixing the radiating fins 16, first, the radiating fins 16 are manufactured by extracting a pipe material having an outer diameter d1 into a shape shown in FIG. 3 by using a roll or a die. Then, after inserting the radiation fins 16 to a predetermined position in the inner tube 11 made of a pipe material having an inner diameter d2 (here, d2> d1), a range in which the radiation fins 16 are present in the inner tube 11 (FIG. 1 and FIG. 4, the diameter of the inner tube 11 is reduced and plastically processed to the extent that the inner peripheral surface of the inner tube 11 comes into contact with the outer peripheral surface of the radiation fin 16 over the range C). Finally, the radiation fins 16 are fixed in the inner tube 11 by brazing.

【0015】さて、前記EGRクーラ10の内管11内
に高温のEGRガスが流入し、同EGRガスが放熱フィ
ン16に接触すると、高温のEGRガスの熱は放熱フィ
ン16に奪われ、内管11に伝達される。そして、前記
内管11に伝達された熱は流通路13を流れる冷却水に
伝達されて排熱される。即ち、高温のEGRガスは、同
EGRガスと冷却水との間で放熱フィン16及び内管1
1を介して熱交換が行われることにより冷却される。
When high-temperature EGR gas flows into the inner tube 11 of the EGR cooler 10 and the EGR gas comes into contact with the radiating fins 16, heat of the high-temperature EGR gas is taken by the radiating fins 16 and 11 is transmitted. Then, the heat transmitted to the inner pipe 11 is transmitted to the cooling water flowing through the flow passage 13 and is discharged. That is, the high-temperature EGR gas flows between the radiation fin 16 and the inner pipe 1 between the EGR gas and the cooling water.
The heat is exchanged through 1 to be cooled.

【0016】次に、本実施形態の2重配管式熱交換器
(EGRクーラ)10の特徴を以下に記載する。 (1)本実施形態では、放熱フィン16を内管11内に
挿入し、内管11の内周面が放熱フィン16の外周面と
当接する程度まで内管11を縮径塑性加工させてから、
放熱フィン16をろう付けにて内管11内に固着した。
従って、内管11の内周と放熱フィン16の外周との間
には、放熱フィン16は内管11内に片寄ることが防止
され一様に当接する。つまり、放熱フィン16を内管1
1の内周面にろう付けで固着するときのろう付け厚さの
バラツキがなくなり、そのバラツキるによる放熱フィン
16が内管11に直接固着しない箇所がなくなる。その
結果、放熱フィン16と内管11のろう付けが安定する
ことから、EGRクーラ10の熱交換率及び信頼性の向
上を図ることができる。
Next, the features of the double-pipe heat exchanger (EGR cooler) 10 of the present embodiment will be described below. (1) In this embodiment, the radiating fins 16 are inserted into the inner tube 11, and the inner tube 11 is subjected to diameter-reducing plastic working until the inner peripheral surface of the inner tube 11 comes into contact with the outer peripheral surface of the radiating fin 16. ,
The radiation fins 16 were fixed in the inner tube 11 by brazing.
Therefore, between the inner periphery of the inner tube 11 and the outer periphery of the radiating fins 16, the radiating fins 16 are prevented from being biased into the inner tube 11 and uniformly contact. That is, the radiation fin 16 is connected to the inner tube 1.
Variations in the brazing thickness when brazing to the inner peripheral surface of the inner tube 1 are eliminated, and there is no place where the radiation fins 16 do not directly adhere to the inner tube 11 due to the variation. As a result, since the brazing between the radiation fins 16 and the inner tube 11 is stabilized, the heat exchange rate and the reliability of the EGR cooler 10 can be improved.

【0017】(2)本実施形態では、放熱フィン16
を、外径d1のパイプ材をロールやダイス等にて図3に
示す形状に引き抜くことにより製造させた。従って、放
熱フィン16の外径精度が向上される。その結果、放熱
フィン16は内管11との密着度が向上されることか
ら、EGRクーラ10の信頼性の向上を更に図ることが
できる。
(2) In this embodiment, the radiation fins 16
Was manufactured by drawing a pipe material having an outer diameter d1 into a shape shown in FIG. 3 using a roll or a die. Therefore, the accuracy of the outer diameter of the radiation fin 16 is improved. As a result, the degree of adhesion between the radiation fins 16 and the inner tube 11 is improved, so that the reliability of the EGR cooler 10 can be further improved.

【0018】尚、上記実施形態は以下のように変更して
実施してもよい。 ○上記実施形態においては、放熱フィン16は、内管1
1の径方向に断面略放射状(断面略星形状)に形成され
て実施したが、放熱フィン16の断面形状が略放射状
(略星形状)に限定されず、例えば、断面略瓢箪状等に
形成されて実施してもよい。この場合、上記実施形態と
ほぼ同様な効果を得ることができる。
The above embodiment may be modified as follows. In the above embodiment, the radiation fins 16 are
1, the radiation fins 16 are not limited to a substantially radial shape (substantially star-shaped), but are formed into, for example, a substantially gourd-shaped cross-section. It may be implemented. In this case, substantially the same effects as in the above embodiment can be obtained.

【0019】○上記実施形態においては、内管11の管
軸方向に所定の長さにて1つの放熱フィン16を配置し
たが、2個以上放熱フィンを配置して実施してもよい。
この場合、上記実施形態とほぼ同様な効果を得ることが
できる。
In the above-described embodiment, one radiating fin 16 is arranged at a predetermined length in the axial direction of the inner tube 11, but two or more radiating fins may be arranged.
In this case, substantially the same effects as in the above embodiment can be obtained.

【0020】○上記実施形態においては、放熱フィン1
6における内管11の中心方向に突出する各山部には、
乱流発生手段としての複数の穴又はスリットを設けて実
施してもよい。この場合、上記実施形態の効果に加え
て、EGRクーラ10に流入したEGRガスは、各穴又
はスリットを介して各通り道間を相互に出入りすること
により乱される。このため、高温のEGRガスと冷却水
との間では放熱フィン16及び内管11を介して効率的
な熱交換が行われる。その結果、EGRクーラ10の熱
交換率の向上を更に図ることができる。
In the above embodiment, the radiation fins 1
In each ridge protruding toward the center of the inner tube 11 in 6,
A plurality of holes or slits may be provided as turbulence generating means. In this case, in addition to the effect of the above-described embodiment, the EGR gas flowing into the EGR cooler 10 is disturbed by mutually entering and exiting each road through each hole or slit. Therefore, efficient heat exchange is performed between the high-temperature EGR gas and the cooling water via the radiation fins 16 and the inner pipe 11. As a result, the heat exchange rate of the EGR cooler 10 can be further improved.

【0021】○上記実施形態においては、放熱フィン1
6を、外径d1のパイプ材をロールやダイス等にて引き
抜くことにより製造させて実施したが、上記方法に限定
されず、例えば放熱フィン16を、外径d1のパイプ材
をハブのギアなどを加工するフローフォーミングという
塑性加工方法にて製造させて実施してもよい。この場
合、上記実施形態とほぼ同様な効果を得ることができ
る。
In the above embodiment, the radiation fins 1
6 was manufactured by extracting a pipe material having an outer diameter d1 by using a roll or a die, but the invention is not limited to the above method. May be carried out by a plastic working method called flow forming. In this case, substantially the same effects as in the above embodiment can be obtained.

【0022】○上記実施形態においては、内管11及び
放熱フィン16をステンレススチール材にて実施した
が、ステンレススチール材に限定されず、熱伝導性の高
い材質であれば、例えば、銅合金、亜鉛合金又はアルミ
合金等にて実施してもよい。この場合、上記実施形態と
ほぼ同様な効果を得ることができる。
In the above embodiment, the inner tube 11 and the radiating fins 16 are made of stainless steel. However, the material is not limited to stainless steel. You may implement with a zinc alloy, an aluminum alloy, etc. In this case, substantially the same effects as in the above embodiment can be obtained.

【0023】○上記実施形態においては、放熱フィン1
6をろう付けにより内管11の内周面に固着したが、ろ
う付けに限定されず、例えば溶接等により固着してもよ
い。この場合、上記実施形態とほぼ同様な効果を得るこ
とができる。
In the above embodiment, the radiation fins 1
6 was fixed to the inner peripheral surface of the inner tube 11 by brazing, but is not limited to brazing, and may be fixed by, for example, welding. In this case, substantially the same effects as in the above embodiment can be obtained.

【0024】○上記実施形態においては、2重配管式熱
交換器10を内燃機関のEGRガスを冷却するために使
用したが、EGRガス等の気体ではなく、液体などの冷
却のために使用してもよい。このようにしても、上記実
施形態と同様の効果を得ることができる。
In the above embodiment, the double-pipe heat exchanger 10 is used for cooling the EGR gas of the internal combustion engine. You may. Even in this case, the same effect as in the above embodiment can be obtained.

【0025】○上記実施形態においては、EGRクーラ
10を円筒状の内管11及び外管12にて構成したが、
例えば四角筒状又は楕円筒状等の形状の内管11及び外
管12にて構成してもよい。このようにしても、上記実
施形態と同様の効果を得ることができる。
In the above embodiment, the EGR cooler 10 is constituted by the cylindrical inner tube 11 and the outer tube 12.
For example, the inner tube 11 and the outer tube 12 may have a rectangular or elliptical cylindrical shape. Even in this case, the same effect as in the above embodiment can be obtained.

【0026】○上記実施形態においては、本発明を2重
配管式熱交換器に具体化して実施したが、2重配管式熱
交換器に限定されず、本発明を、例えば外管なしで空気
等にて冷却する流体冷却装置に具体化して実施してもよ
い。この場合、上記実施形態とほぼ同様な効果を得るこ
とができる。
In the above embodiment, the present invention is embodied in a double-pipe heat exchanger, but the present invention is not limited to a double-pipe heat exchanger. For example, the present invention may be embodied in a fluid cooling device that cools by a method such as the above. In this case, substantially the same effects as in the above embodiment can be obtained.

【0027】次に、前記実施形態及び別例から把握でき
る請求項に記載した発明以外の技術的思想について、そ
れらの効果と共に以下に記載する。 (1)請求項1に記載の流体冷却装置の製造方法におい
て、前記放熱部材は、引き抜く成形加工にて製造されて
いることを特徴とする流体冷却装置の製造方法。
Next, technical ideas other than those described in the claims which can be understood from the embodiment and other examples will be described below together with their effects. (1) The method for manufacturing a fluid cooling device according to claim 1, wherein the heat radiating member is manufactured by a drawing process.

【0028】従って、請求項1に記載の発明の効果に加
えて、流体冷却装置の信頼性の向上を更に図ることがで
きる。
Therefore, in addition to the effect of the first aspect, the reliability of the fluid cooling device can be further improved.

【0029】[0029]

【発明の効果】請求項1に記載の発明によれば、流体冷
却装置の熱交換効率及び信頼性の向上を図ることができ
る。
According to the first aspect of the present invention, the heat exchange efficiency and reliability of the fluid cooling device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のEGRクーラの正断面図。FIG. 1 is a front sectional view of an EGR cooler according to the present invention.

【図2】 図1におけるA−A線断面図。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】 放熱フィンの斜視図。FIG. 3 is a perspective view of a radiation fin.

【図4】 放熱フィンを固着した内管の斜視図。FIG. 4 is a perspective view of an inner tube to which radiation fins are fixed.

【図5】 従来のEGRクーラの正断面図。FIG. 5 is a front sectional view of a conventional EGR cooler.

【図6】 図5におけるB−B線断面図。FIG. 6 is a sectional view taken along line BB in FIG. 5;

【符号の説明】[Explanation of symbols]

10…流体冷却装置としてのEGRクーラ(2重配管式
熱交換器)、11…筒部材としての内管、12…外管、
13…流通路、16…放熱部材としての放熱フィン。
10: EGR cooler (double pipe type heat exchanger) as a fluid cooling device, 11: inner pipe as a cylindrical member, 12 ... outer pipe,
Reference numeral 13 denotes a flow passage, and reference numeral 16 denotes a radiation fin as a radiation member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細川 哲寛 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 榊原 康文 愛知県岡崎市橋目町北山1番地 マルヤス 工業 株式会社内 Fターム(参考) 3G062 ED08 GA08 GA10 GA23 3L103 AA01 BB17 CC27 DD08 DD33 DD38  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuhiro Hosokawa 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Yasufumi Sakakibara 1 1 Kitayama, Hashimecho Town, Okazaki City, Aichi F Terms (reference) 3G062 ED08 GA08 GA10 GA23 3L103 AA01 BB17 CC27 DD08 DD33 DD38

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内側に被冷却媒体を流通させる筒部材
と、 前記筒部材内に収容固定される放熱部材と、を備えた流
体冷却装置の製造方法において、 前記放熱部材を筒部材内に挿入し、筒部材の内周面が放
熱部材の外周面と当接する程度まで筒部材を縮径塑性加
工させてから、放熱部材を筒部材内に固着したことを特
徴とする流体冷却装置の製造方法。
1. A method for manufacturing a fluid cooling device, comprising: a tubular member through which a medium to be cooled is circulated; and a heat radiating member housed and fixed in the cylindrical member, wherein the heat radiating member is inserted into the cylindrical member. A method of manufacturing a fluid cooling device, comprising: reducing the diameter of a cylindrical member so that an inner peripheral surface of the cylindrical member comes into contact with an outer peripheral surface of the heat radiating member; and fixing the heat radiating member to the cylindrical member. .
JP10358143A 1998-12-16 1998-12-16 Manufacture of fluid cooler Pending JP2000176578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358143A JP2000176578A (en) 1998-12-16 1998-12-16 Manufacture of fluid cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358143A JP2000176578A (en) 1998-12-16 1998-12-16 Manufacture of fluid cooler

Publications (1)

Publication Number Publication Date
JP2000176578A true JP2000176578A (en) 2000-06-27

Family

ID=18457773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358143A Pending JP2000176578A (en) 1998-12-16 1998-12-16 Manufacture of fluid cooler

Country Status (1)

Country Link
JP (1) JP2000176578A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478216B1 (en) * 2001-12-18 2005-03-24 삼성공조 주식회사 Heat exchanger for exhaust gas recirculation
JP2009186063A (en) * 2008-02-05 2009-08-20 Tokyo Forming Kk Heat exchanger and its manufacturing method
JP2011007486A (en) * 2009-06-02 2011-01-13 Valeo Systemes Thermiques Heat exchange unit, heat exchanger, and method of manufacturing heat exchange unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478216B1 (en) * 2001-12-18 2005-03-24 삼성공조 주식회사 Heat exchanger for exhaust gas recirculation
JP2009186063A (en) * 2008-02-05 2009-08-20 Tokyo Forming Kk Heat exchanger and its manufacturing method
JP2011007486A (en) * 2009-06-02 2011-01-13 Valeo Systemes Thermiques Heat exchange unit, heat exchanger, and method of manufacturing heat exchange unit

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
JP2007046890A (en) Tubular heat exchanger for egr gas cooler
US20150292812A1 (en) Heat exchanger
JP2007064514A (en) Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
JPH11108578A (en) Egr gas cooler
JP2002054511A (en) Egr cooler
JP2006046846A (en) Double pipe heat exchanger
JP2000111277A (en) Double piping type heat exchanger
JP2002295987A (en) Heat transfer pipe and production for it and multitubular heat exchanger using heat transfer pipe and radiator contained oil cooler
JP2006118436A (en) Bonnet for egr gas cooling device
JP2000176578A (en) Manufacture of fluid cooler
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JPH0988730A (en) Egr gas cooling system
US20160363380A1 (en) Heat exchanger
JP2000045884A (en) Egr cooler
JP2000161873A (en) Heat exchanger
JP2001272193A (en) Core section of egr gas cooler and method of manufacturing the same
JP2002180915A (en) Egr cooler
JP2000161871A (en) Double piping type heat exchanger
JP2000161872A (en) Double piping type heat exchanger
JP2001248980A (en) Multitubular heat exchanger
JP2001342912A (en) Egr cooler
JP2000265908A (en) Egr gas cooling device
JP2000146462A (en) Double-pipe heat exchanger
JP2000130964A (en) Double-pipe heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629