JP2000173936A - Member for thin film manufacture apparatus by vapor growth deposition - Google Patents

Member for thin film manufacture apparatus by vapor growth deposition

Info

Publication number
JP2000173936A
JP2000173936A JP34963498A JP34963498A JP2000173936A JP 2000173936 A JP2000173936 A JP 2000173936A JP 34963498 A JP34963498 A JP 34963498A JP 34963498 A JP34963498 A JP 34963498A JP 2000173936 A JP2000173936 A JP 2000173936A
Authority
JP
Japan
Prior art keywords
thin film
carbon material
fluoride gas
chlorine fluoride
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34963498A
Other languages
Japanese (ja)
Inventor
Mitsuaki Dosono
充昭 堂薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP34963498A priority Critical patent/JP2000173936A/en
Publication of JP2000173936A publication Critical patent/JP2000173936A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate a deposition or an extraneous matter formed in each member or tool of an apparatus for manufacturing a thin film by vapor growth deposition, at high utility factor and high efficiency. SOLUTION: This member for a thin film manufacturing apparatus is composed of a glassy carbon material provided with properties of surface roughness Ra of 0.05 μm or less and porosity of 3% or less. Since reactivity with chlorine fluoride gas is restricted, it is possible to make to react with the chlorine fluoride gas at high temperatures without damaging a member, and it becomes possible to eliminate a deposit or an extraneous matter with high utility factor and efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、半導体製造用のア
モルファスシリコン、GaAs、GaNなどの薄膜、S
iO2 、Si3 4 などの絶縁膜、あるいはTiC、S
iCなどのコーティング膜、などの薄膜を気相蒸着によ
り作製する装置用の部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film of amorphous silicon, GaAs,
an insulating film such as iO 2 , Si 3 N 4 or TiC, S
The present invention relates to a member for an apparatus for producing a thin film such as a coating film such as iC by vapor deposition.

【0002】[0002]

【従来の技術】気相からセラミックスなどの薄膜を作製
する方法は、気相化学反応法(CVD法)と物理蒸着法
(PVD法)とに大別され、PVD法は真空蒸着法、ス
パッター法、イオンプレーティング法などに細分され
る。現在広く利用されているCVD法により例えばSi
3 4 薄膜を作製する場合には、SiCl4 などのハロ
ゲン化珪素化合物とアンモニアガスとを高温で還元熱分
解反応させて基材面にSi 3 4 を析出させることによ
り膜を形成するものである。したがって、反応系の原料
ガスや雰囲気を選択することにより、例えばAl
2 3 、TiN、TiCなど酸化物、窒化物、炭化物な
どの膜形成が可能となる。
2. Description of the Related Art Thin films such as ceramics are produced from a gas phase
The methods used are gas-phase chemical reaction (CVD) and physical vapor deposition.
(PVD method).
Subdivided into putter method, ion plating method, etc.
You. At present, for example, by the CVD method widely used, Si
ThreeNFourWhen forming a thin film, SiClFourSuch as halo
The heat of reduction of a silicon gemide compound and ammonia gas at high temperature
Dissolve and react to Si ThreeNFourBy precipitating
It forms a film. Therefore, the raw materials of the reaction system
By selecting the gas and atmosphere, for example, Al
TwoOThreeOxides, nitrides and carbides such as TiN, TiC
Which film can be formed.

【0003】しかしながら、この気相蒸着により薄膜を
作製する場合には、目的とする基材面以外の薄膜作製装
置の各部材や治具の露出面にも薄膜が形成されることと
なるので、長時間の運転後には装置部材や治具面に反応
生成物が多量に堆積したり、付着することとなる。そこ
で、これらの堆積物、付着物は適宜除去してクリーニン
グする必要がある。
However, when a thin film is formed by this vapor deposition, the thin film is formed on the exposed surface of each member or jig of the thin film forming apparatus other than the target substrate surface. After the operation for a long time, a large amount of the reaction product accumulates on or adheres to the apparatus members and the jig surface. Therefore, it is necessary to appropriately remove these deposits and deposits for cleaning.

【0004】除去する方法としては、化学的に分解する
方法、例えば強酸や強アルカリを用いて洗浄する方法、
あるいは機械的に研磨する方法、などがあるが効率よく
堆積物や付着物を除去するためには充分でない。またC
4 、SF6 、NF3 などのフッ化物のプラズマ中で除
去する方法もあるが、装置部材や治具が炭素質材料など
で構成されている場合には、フッ素ラジカルと炭素材が
反応して損傷する難点がある。
[0004] As a removing method, a method of chemically decomposing, for example, a method of washing with a strong acid or a strong alkali,
Alternatively, there is a method of mechanical polishing, etc., but it is not enough to efficiently remove deposits and deposits. Also C
There is also a method of removing in a plasma of a fluoride such as F 4 , SF 6 , NF 3, etc. However, when the equipment members and jigs are made of a carbonaceous material, the fluorine radicals react with the carbon material. There is a difficulty to be damaged.

【0005】これらの難点を解消するために、100〜
350℃の温度範囲内で、ClF、ClF3 、ClF5
のうち、少なくとも1種以上を含有するフッ化塩素ガス
を炭素材料と接触させることを特徴とするフッ化塩素ガ
スによる炭素材料のクリーニング方法(特開平3−4119
9 号公報)が提案されている。
[0005] In order to solve these difficulties, 100-
ClF, ClF 3 , ClF 5 within a temperature range of 350 ° C.
A method of cleaning a carbon material with a chlorine fluoride gas, comprising contacting a chlorine material containing at least one of them with a carbon material (JP-A-3-4119)
No. 9) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】特開平3−41199
号公報は、フッ化塩素ガスを用いることで効率的かつ損
傷を与えることなく炭素成形体をクリーニングするもの
であり、フッ化塩素ガスで処理する際の温度条件を10
0〜350℃の範囲に設定する必要がある。すなわち、
温度が100℃以下の場合には炭素材料はフッ化塩素ガ
スと反応して層間化合物を生成し、一方350℃以上の
場合には炭素材料はフッ化塩素ガスと反応してフッ化黒
鉛を生成するためである。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 3-41199
Japanese Patent Application Laid-Open Publication No. HEI 9-107555 is directed to cleaning a carbon molded body efficiently and without damage by using chlorine fluoride gas.
It is necessary to set in the range of 0 to 350 ° C. That is,
When the temperature is lower than 100 ° C, the carbon material reacts with chlorine fluoride gas to generate an intercalation compound, while when the temperature is higher than 350 ° C, the carbon material reacts with chlorine fluoride gas to generate graphite fluoride. To do that.

【0007】クリーニング効率、すなわち堆積物や付着
物を効率よく除去するためにはフッ化塩素ガスによる処
理温度を高くすることが有効であるが、上記の理由のよ
うにフッ化黒鉛が生成するために350℃以上の高温で
処理することが困難なため、処理時間が長くなり処理効
率、処理能率が低下する問題点がある。
To increase the cleaning efficiency, that is, to efficiently remove deposits and deposits, it is effective to increase the processing temperature with chlorine fluoride gas. However, as described above, graphite fluoride is generated. In addition, since it is difficult to perform the treatment at a high temperature of 350 ° C. or more, there is a problem that the treatment time is increased and the treatment efficiency and the treatment efficiency are reduced.

【0008】そこで、本発明者はフッ化塩素ガスによる
処理温度を高く設定することのできる炭素材料の材質性
状について研究を重ねた結果、炭素材料としてガラス状
カーボン材を対象とし、その表面平滑性がフッ化塩素ガ
スとの反応性に大きく影響することを見出した。
Accordingly, the present inventor has conducted research on the material properties of a carbon material which can be set at a high processing temperature with chlorine fluoride gas. Has a great influence on the reactivity with chlorine fluoride gas.

【0009】本発明は上記の知見に基づいて開発された
ものであり、その目的は高温においてもフッ化塩素ガス
との反応性が抑制され、気相蒸着による薄膜を作製する
装置の各部材や治具の露出面に生成した堆積物や付着物
を高効率、高能率で除去処理することのできる気相蒸着
による薄膜作製装置用部材を提供することにある。
The present invention has been developed based on the above findings, and its object is to suppress the reactivity with chlorine fluoride gas even at a high temperature and to provide various members of an apparatus for producing a thin film by vapor deposition. It is an object of the present invention to provide a member for a thin film manufacturing apparatus by vapor deposition that can remove deposits and deposits generated on an exposed surface of a jig with high efficiency and high efficiency.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の気相蒸着による薄膜作製装置用部材は、表
面粗さRaが0.05μm 以下、気孔率が3%以下の性
状を備えるガラス状カーボン材からなることを構成上の
特徴とする。
In order to achieve the above object, the present invention provides a member for a thin film forming apparatus by vapor deposition, which has a surface roughness Ra of 0.05 μm or less and a porosity of 3% or less. It is characterized by comprising a glassy carbon material provided.

【0011】[0011]

【発明の実施の形態】本発明の薄膜作製装置用部材を構
成するガラス状カーボン材は、熱硬化性樹脂を焼成炭化
して得られる無定形で均質緻密な組織を備える高強度の
炭素質材料であり、低化学反応性、ガス不透過性などに
優れ、不純物が少ないなど黒鉛材や他の炭素材に比べて
異質な炭素材である。また、微細な炭素質粒子が組織中
から離脱し難い利点を有しているので汚染を嫌う半導体
製造分野、例えばプラズマエッチング処理用装置部材な
どとして有用されている。
BEST MODE FOR CARRYING OUT THE INVENTION A glassy carbon material constituting a member for a thin film producing apparatus of the present invention is a high-strength carbonaceous material having an amorphous, homogeneous and dense structure obtained by calcining a thermosetting resin. It is a carbon material which is different from graphite material and other carbon materials in that it has excellent low chemical reactivity, gas impermeability, etc., and has few impurities. Further, it has an advantage that fine carbonaceous particles are hardly detached from the tissue, and thus is useful as a semiconductor manufacturing field which is resistant to contamination, for example, as an apparatus member for plasma etching.

【0012】このような特徴を有するガラス状カーボン
材を気相蒸着法により薄膜を作製する際の装置用部材と
して用いるために、フッ化塩素ガスとの反応性を追究し
た結果、ガラス状カーボン材の表面の凹凸が激しい程反
応性が増大することが判明した。その理由はフッ化塩素
ガスが凹部に滞留し易く、滞留したフッ化塩素ガスによ
って反応が促進するためと推定される。
In order to use the glassy carbon material having such characteristics as a member for an apparatus for producing a thin film by a vapor deposition method, the reactivity with chlorine fluoride gas was investigated. It was found that the greater the surface irregularities, the greater the reactivity. It is presumed that the reason is that chlorine fluoride gas tends to stay in the concave portions, and the staying chlorine fluoride gas accelerates the reaction.

【0013】したがって、ガラス状カーボン材の表面が
平滑で凹凸の程度が小さく、すなわち表面粗さが小さく
なる程フッ化塩素ガスとの反応性が低下することとな
る。しかしながら、表面の凹凸を減少させて表面粗さを
小さくするためには、通常バフ研磨あるいはダイヤモン
ドラッピングなどの研磨処理によって行われるので、反
応性が実用上許容される程度にまで研磨すればよいこと
になる。この抑制される上限として、表面粗さRaの値
を0.05μm 、すなわちガラス状カーボン材の表面粗
さRaを0.05μm 以下に設定するものである。な
お、表面粗さRaはJIS B0601−1994によって
測定された値である。
Therefore, as the surface of the glassy carbon material is smooth and the degree of irregularities is small, that is, the smaller the surface roughness, the lower the reactivity with the chlorine fluoride gas. However, in order to reduce surface irregularities and reduce surface roughness, polishing is usually performed by buffing or diamond lapping, so that the polishing should be performed to an extent that reactivity is practically acceptable. become. As an upper limit of the suppression, the value of the surface roughness Ra is set to 0.05 μm, that is, the surface roughness Ra of the glassy carbon material is set to 0.05 μm or less. The surface roughness Ra is a value measured according to JIS B0601-1994.

【0014】また、ガラス状カーボン材は製造時に原料
である熱硬化性樹脂が硬化する際や焼成炭化する際に縮
合水や低揮発性成分が揮散除去されるが、極一部が内部
組織中に残留し、クローズド化された微細な内部気孔を
形成する。これらの気孔の一部は表面粗さを小さくする
ために行う研磨処理時に表面に露出して、上述の表面の
凹凸部のように作用してフッ化塩素ガスの滞留を助長す
る。したがって、気孔が多い程反応性が増大することと
なる。本発明はフッ化塩素ガスとの反応性が許容される
限度として気孔率を3%以下に設定するものである。な
お、気孔率はアルキメデス法によって測定された値であ
る。
In the glassy carbon material, condensed water and low-volatile components are volatilized and removed when the thermosetting resin as a raw material is cured or calcined during production, but a very small portion of the material is contained in the internal structure. And form closed internal fine pores. Some of these pores are exposed to the surface during the polishing treatment performed to reduce the surface roughness, and act like the above-mentioned irregularities on the surface to promote the retention of chlorine fluoride gas. Therefore, the reactivity increases as the number of pores increases. In the present invention, the porosity is set to 3% or less as a limit at which the reactivity with chlorine fluoride gas is allowed. The porosity is a value measured by the Archimedes method.

【0015】本発明は、このように表面粗さRaが0.
05μm 以下、気孔率が3%以下の性状を備えたガラス
状カーボン材により気相蒸着による薄膜作製装置の部材
や治具を形成するものであるから、フッ化塩素ガスとの
反応性を抑制することが可能となり、気相蒸着による薄
膜を作製する装置の各部材や治具の露出面に生成した堆
積物や付着物をより高温で除去処理することができる。
According to the present invention, as described above, the surface roughness Ra is set at 0.1.
Since a member or a jig of a thin film forming apparatus is formed by vapor deposition using a glassy carbon material having a property of not more than 05 μm and a porosity of not more than 3%, the reactivity with chlorine fluoride gas is suppressed. This makes it possible to remove deposits and deposits formed on exposed surfaces of members and jigs of an apparatus for producing a thin film by vapor deposition at a higher temperature.

【0016】これらの性状を備えたガラス状カーボン材
は、例えば次の方法により製造することができる。原料
として予め精製処理した残炭率が少なくとも40%以上
のフェノール系、フラン系またはポリイミド系あるいは
これらを混合した熱硬化性樹脂液をモールド成形、射出
成形、注型成形などの適宜な成形手段により所望の形状
に成形する。
The glassy carbon material having these properties can be produced, for example, by the following method. As a raw material, a phenol-based, furan-based or polyimide-based liquid having a residual carbon ratio of at least 40% or a thermosetting resin liquid obtained by mixing these, which is previously purified, is subjected to appropriate molding means such as molding, injection molding, casting molding or the like. Form into the desired shape.

【0017】成形体は大気中100〜250℃の温度で
硬化処理を施し、硬化した樹脂成形体を黒鉛坩堝に詰
め、窒素、アルゴン等の不活性雰囲気に保たれた電気
炉、あるいはリードハンマー炉に詰め、800℃以上の
温度に加熱することにより焼成炭化処理する。更に炭化
処理した焼成体を雰囲気置換可能な真空炉に入れ、ハロ
ゲン系の精製ガスを流しながら、所定の温度まで昇温し
て高純度化処理することが好ましい。
The molded body is subjected to a curing treatment in the atmosphere at a temperature of 100 to 250 ° C., and the cured resin molded body is filled in a graphite crucible, and is heated in an electric furnace or a lead hammer furnace maintained in an inert atmosphere such as nitrogen or argon. And calcined by heating to a temperature of 800 ° C. or more. Furthermore, it is preferable that the carbonized fired body is placed in a vacuum furnace capable of replacing the atmosphere and heated to a predetermined temperature while flowing a halogen-based purified gas to perform a high-purity treatment.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0019】参考例 反応温度と堆積物の除去効果を調査するために、以下の
ような実験を行った。表面粗さRaが0.5μm 、気孔
率が2%、嵩密度が1.49 g/cm3のガラス状カーボン
材(直径30mm、厚さ3mm )の上に、プラズマCVD法に
より厚さ20000オングストロームのSi3 4 を堆
積させてテストピースとし、ClF3 :Arの混合比の
異なるガスを用いて100Torrの圧力下で温度を変えて
反応させ、Si3 4 の堆積物が反応によりエッチング
される速度を測定した。得られた結果は表1に示すよう
に反応温度が高い程エッチング速度が大きく、とくに反
応温度が400℃程度になるとエッチング速度が極めて
速くなり、短時間で除去可能であることが判る。なお、
反応温度が高くなるにつれてガラス状カーボン材の表面
がClF3 と反応して表面に白色の粉末が生成し、Cl
3 の濃度、反応時間が長くなるほど生成量も多くなる
ことが認められた。なお、X線回折の結果、白色物質は
フッ化黒鉛であることが確認された。
Reference Example In order to investigate the reaction temperature and the effect of removing deposits, the following experiment was conducted. On a glassy carbon material (diameter 30 mm, thickness 3 mm) having a surface roughness Ra of 0.5 μm, a porosity of 2%, and a bulk density of 1.49 g / cm 3 , a thickness of 20,000 Å by a plasma CVD method. Of Si 3 N 4 is deposited as a test piece, and reacted by changing the temperature at a pressure of 100 Torr using gases having different mixing ratios of ClF 3 : Ar, and the Si 3 N 4 deposit is etched by the reaction. Speed was measured. The obtained results show that as shown in Table 1, the higher the reaction temperature, the higher the etching rate. In particular, when the reaction temperature is about 400 ° C., the etching rate becomes extremely high, and it can be removed in a short time. In addition,
As the reaction temperature increases, the surface of the glassy carbon material reacts with ClF 3 to form a white powder on the surface,
It was recognized that the longer the concentration of F 3 and the longer the reaction time, the larger the production amount. As a result of X-ray diffraction, it was confirmed that the white substance was fluorinated graphite.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例1〜4、比較例1〜3 表面粗さRaおよび気孔率が異なるガラス状カーボン材
(直径30mm、厚さ3mm)をClF3 :Arの混合ガス(混
合比 30:70)中、80Torrの圧力下で温度を変えて20
分間反応させ、その重量増加率を測定した。得られた結
果を表2に示した。
Examples 1-4, Comparative Examples 1-3 Vitreous carbon materials having different surface roughness Ra and porosity
(Diameter 30 mm, thickness 3 mm) in ClF 3 : Ar mixed gas (mixing ratio 30:70) under a pressure of 80 Torr while changing the temperature to 20
The reaction was carried out for one minute, and the weight increase was measured. Table 2 shows the obtained results.

【0022】[0022]

【表2】 [Table 2]

【0023】表2の結果から、本発明により特定した性
状、すなわち表面粗さRaが0.05μm 以下、気孔率
が3%以下の性状を備えた実施例のガラス状カーボン材
は、この特性要件を外れる比較例のガラス状カーボン材
に比較してClF3 と反応してフッ化黒鉛を生成するこ
とによる重量増加率が少なく、とくに400℃程度の高
温においても重量増加率が極めて低いレベルにあること
が判明する。したがって、表1に示した結果も含めて考
察すれば約400℃の処理温度で反応させることによ
り、ガラス状カーボン材を損傷することなく、速いエッ
チング速度で堆積物や付着物を除去することが可能とな
る。
From the results shown in Table 2, the glassy carbon material of the embodiment having the properties specified by the present invention, that is, the properties having a surface roughness Ra of 0.05 μm or less and a porosity of 3% or less, is required to satisfy the above-mentioned requirements. In comparison with the glassy carbon material of the comparative example, the rate of weight increase due to the reaction with ClF 3 to produce fluorinated graphite is small, and especially at a high temperature of about 400 ° C., the rate of weight increase is extremely low. It turns out that. Therefore, considering the results shown in Table 1, it is possible to remove deposits and deposits at a high etching rate without damaging the glassy carbon material by reacting at a processing temperature of about 400 ° C. It becomes possible.

【0024】[0024]

【発明の効果】以上のとおり、本発明の気相蒸着による
薄膜作製装置用部材によれば、表面粗さRaを0.05
μm 以下、気孔率を3%以下の性状に特定した表面平滑
なガラス状カーボン材により形成されているので、フッ
化塩素ガスとの反応を効果的に抑制することができる。
とくに400℃程度の高温においてもフッ化塩素ガスと
の反応によるフッ化黒鉛の生成が低位にあるので、気相
蒸着による薄膜を作製する装置の各部材や治具の露出面
に生成した堆積物や付着物を高効率、高能率で除去処理
することが可能となる。したがって、CVD法やPVD
法により薄膜を作製する装置に使用される各種部材や治
具として極めて有用である。
As described above, according to the member for a thin film forming apparatus by vapor phase deposition of the present invention, the surface roughness Ra is 0.05%.
Since it is formed of a glassy carbon material having a smooth surface and having a porosity of 3 μm or less and a property of 3 μm or less, the reaction with chlorine fluoride gas can be effectively suppressed.
Even at a high temperature of about 400 ° C., the generation of graphite fluoride by the reaction with chlorine fluoride gas is at a low level. Therefore, the deposits formed on the exposed surfaces of the members and jigs of the apparatus for producing a thin film by vapor deposition. It is possible to carry out the removal treatment with high efficiency and high efficiency for deposits and adhered substances. Therefore, CVD or PVD
It is extremely useful as various members and jigs used in an apparatus for producing a thin film by a method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面粗さRaが0.05μm 以下、気孔
率が3%以下の性状を備えるガラス状カーボン材からな
ることを特徴とする気相蒸着による薄膜作製装置用部
材。
1. A member for an apparatus for producing a thin film by vapor deposition, comprising a glassy carbon material having properties of a surface roughness Ra of 0.05 μm or less and a porosity of 3% or less.
JP34963498A 1998-12-09 1998-12-09 Member for thin film manufacture apparatus by vapor growth deposition Pending JP2000173936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34963498A JP2000173936A (en) 1998-12-09 1998-12-09 Member for thin film manufacture apparatus by vapor growth deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34963498A JP2000173936A (en) 1998-12-09 1998-12-09 Member for thin film manufacture apparatus by vapor growth deposition

Publications (1)

Publication Number Publication Date
JP2000173936A true JP2000173936A (en) 2000-06-23

Family

ID=18405069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34963498A Pending JP2000173936A (en) 1998-12-09 1998-12-09 Member for thin film manufacture apparatus by vapor growth deposition

Country Status (1)

Country Link
JP (1) JP2000173936A (en)

Similar Documents

Publication Publication Date Title
CN1119385C (en) Gas for removing deposit and removal method using same
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
US20040235231A1 (en) Method for treating semiconductor processing components and components formed thereby
CN1716522A (en) A method for the treatment of a surface of a metal-carbide substrate as well as such a metal-carbide substrate
TWI505990B (en) Cleaning gas and cleaning methods
JPH1012692A (en) Dummy wafer
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JPH11157916A (en) Corrosion-resistant member
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2539917B2 (en) Method for cleaning carbon material with chlorine fluoride gas
KR100633966B1 (en) Component of glass-like carbon for cvd apparatus and process for production thereof
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JP2000173936A (en) Member for thin film manufacture apparatus by vapor growth deposition
JPH11279761A (en) Corrosion resistant member
JP2009161858A (en) CORROSION RESISTANT CVD-SiC COATING MATERIAL, AND FIXTURE FOR CVD SYSTEM
JPH04333570A (en) Method for cleaning silicon nitiride with gaseous hf
JP3555737B2 (en) Cleaning gas
JP3262696B2 (en) Silica glass member having glassy carbon coating
RU2538358C1 (en) METHOD FOR MICROWAVE PLASMA FORMATION OF CUBIC SILICON CARBIDE FILMS ON SILICON (3C-SiC)
JP4386663B2 (en) Carbon composite material
JP2002184765A (en) Cleaning gas
JP2000038675A (en) Cleaning gas
JP3468412B2 (en) Cleaning gas
JP2000026166A (en) High purity silicon nitride-base corrosion resistant member and its production
JP2003277933A (en) Method of purifying silicon carbide-coated member