JP2000173021A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JP2000173021A
JP2000173021A JP10341345A JP34134598A JP2000173021A JP 2000173021 A JP2000173021 A JP 2000173021A JP 10341345 A JP10341345 A JP 10341345A JP 34134598 A JP34134598 A JP 34134598A JP 2000173021 A JP2000173021 A JP 2000173021A
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
magnetic
magnetoresistive
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341345A
Other languages
Japanese (ja)
Inventor
Kenichi Meguro
賢一 目黒
Katsuro Watanabe
克朗 渡辺
Yoshihiro Hamakawa
佳弘 濱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10341345A priority Critical patent/JP2000173021A/en
Publication of JP2000173021A publication Critical patent/JP2000173021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistance effect element for easily controlling an inter-layer connecting magnetic field acting between ferromagnetic films. SOLUTION: An Mn system alloy film containing at least one kind of elements among Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au as a base layer 11 is provided between a magnetoresistance effect film having at least two ferromagnetic films 12 isolated by non-magnetic films 13 and a substrate 10. Thus, ferromagnetic magnetostatic connection between the magnetic layers can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気信号を検出す
る磁気抵抗効果素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element for detecting a magnetic signal.

【0002】[0002]

【従来の技術】磁気記録再生装置における再生ヘッドを
はじめ、磁気信号を検出するセンサとして、異方性磁気
抵抗(AMR)効果を用いた磁気抵抗効果膜(以下、A
MR膜と呼ぶ)が広く利用されている。
2. Description of the Related Art A magnetoresistive film (hereinafter referred to as A) using an anisotropic magnetoresistance (AMR) effect is used as a sensor for detecting a magnetic signal, including a reproducing head in a magnetic recording / reproducing apparatus.
MR film) is widely used.

【0003】例えば、磁気記録再生装置の高密度化を実
現するためにも、磁気センサには、更に高感度な再生特
性が望まれている。
[0003] For example, in order to realize a higher density of a magnetic recording / reproducing apparatus, a magnetic sensor is desired to have higher sensitivity reproducing characteristics.

【0004】近年、このような要求に応える技術とし
て、巨大磁気抵抗(GMR)効果を利用した磁気抵抗効
果膜(以下、GMR膜と呼ぶ)の研究開発が進められて
いる。GMR効果とは、非磁性膜によって隔てられた磁
性膜の磁化の相対角度に応じて電気抵抗が変化する現象
である。GMR膜の電気抵抗変化量は、AMR膜のそれ
と比較して、非常に大きく、磁気センサとしての性能を
飛躍的に向上することができる。
In recent years, research and development of a magnetoresistive film (hereinafter, referred to as a GMR film) utilizing a giant magnetoresistance (GMR) effect has been promoted as a technique to meet such a demand. The GMR effect is a phenomenon in which the electric resistance changes according to the relative angle of the magnetization of the magnetic film separated by the non-magnetic film. The amount of change in electric resistance of the GMR film is extremely large as compared with that of the AMR film, and the performance as a magnetic sensor can be dramatically improved.

【0005】特開平2−61572号公報には、強磁性膜と非
磁性膜を交互に積層した、反強磁性的結合型多層膜を用
いた磁気センサが記載されている。この開示例に示され
た多層膜は、外部磁界がない場合に、非磁性膜によって
隔てられた強磁性膜が反強磁性的に結合し、磁化が反平
行配列している。
Japanese Patent Application Laid-Open No. 2-61572 describes a magnetic sensor using an antiferromagnetically coupled multilayer film in which ferromagnetic films and nonmagnetic films are alternately laminated. In the multilayer film disclosed in this disclosure, in the absence of an external magnetic field, the ferromagnetic films separated by the nonmagnetic film are antiferromagnetically coupled, and the magnetization is antiparallel arranged.

【0006】この多層膜に外部磁界が印加されると、磁
化が反平行配列から平行配列に遷移し、この過程で多層
膜の電気抵抗が変化する。従って、この多層膜に、電
極,電源,出力信号検出手段を取り付ければ、磁気信号
を電圧又は電流変化として出力する磁気センサとして動
作する。これまで、様々な系の多層膜において、強磁性
膜間に作用する反強磁性的結合と、これによって生じる
抵抗変化に関する検討がなされてきた。
When an external magnetic field is applied to the multilayer, the magnetization changes from an antiparallel arrangement to a parallel arrangement, and in this process, the electric resistance of the multilayer changes. Therefore, if an electrode, a power supply, and an output signal detecting means are attached to this multilayer film, it operates as a magnetic sensor that outputs a magnetic signal as a change in voltage or current. Until now, various types of multilayer films have been studied for antiferromagnetic coupling acting between ferromagnetic films and the resulting resistance change.

【0007】[0007]

【発明が解決しようとする課題】上述した反強磁性的結
合型多層膜においては、外部磁界がない場合に、非磁性
膜によって隔てられた強磁性膜間に反強磁性的結合が実
現されている必要がある。一般に、強磁性膜と非磁性膜
を交互に積層した多層膜の強磁性膜間には、2つのモー
ドで生じる層間結合が存在する。一つは、伝導電子を介
して作用する層間結合である。これは、強磁性膜,非磁
性膜の材質及び膜厚によって反強磁性的であったり、強
磁性的であったりする。もう一つは、膜の界面の凹凸等
によって作り出される強磁性的な静磁結合である。
In the antiferromagnetically coupled multilayer film described above, in the absence of an external magnetic field, antiferromagnetic coupling is realized between ferromagnetic films separated by a nonmagnetic film. Need to be. In general, there is an interlayer coupling that occurs in two modes between ferromagnetic films of a multilayer film in which ferromagnetic films and nonmagnetic films are alternately stacked. One is an interlayer bond that acts via conduction electrons. This is antiferromagnetic or ferromagnetic depending on the material and thickness of the ferromagnetic film and the nonmagnetic film. The other is ferromagnetic magnetostatic coupling created by unevenness at the interface of the film.

【0008】多層膜の形成条件が不適切で、後者の強磁
性的な静磁結合が支配的である場合には、強磁性膜,非
磁性膜の材質及び膜厚を最適化しても、反強磁性的な層
間結合が得られない場合がある。この強磁性的な静磁結
合を再現性良く制御するのは非常に困難で、多大なる努
力を強いられる場合が少なくない。
In the case where the conditions for forming the multilayer film are inappropriate and the latter ferromagnetic magnetostatic coupling is dominant, even if the materials and film thicknesses of the ferromagnetic film and the non-magnetic film are optimized, it is not In some cases, ferromagnetic interlayer coupling cannot be obtained. It is extremely difficult to control the ferromagnetic magnetostatic coupling with good reproducibility, and a great deal of effort is often required.

【0009】本発明の目的は、強磁性膜間の強磁性的な
静磁結合を抑制し、伝導電子を介して強磁性膜間に作用
する反強磁性的結合を、容易に、かつ、再現性良く実現
することが可能な磁気抵抗効果素子を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to suppress the ferromagnetic magnetostatic coupling between ferromagnetic films and easily and reproduce the antiferromagnetic coupling acting between ferromagnetic films via conduction electrons. An object of the present invention is to provide a magnetoresistive element that can be realized with good performance.

【0010】[0010]

【課題を解決するための手段】上記課題は、適切な下地
膜を設けることによって解決される。
The above object can be attained by providing an appropriate base film.

【0011】具体的には、下地膜として、Ru,Rh,
Pd,Ag,Os,Ir,Pt,Auのうち少なくとも
1種類以上の元素を含有するMn系合金膜を設けること
によって、磁性層間の強磁性的な静磁結合を抑制するこ
とで解決される。
More specifically, Ru, Rh,
This problem can be solved by providing a Mn-based alloy film containing at least one element among Pd, Ag, Os, Ir, Pt, and Au to suppress ferromagnetic magnetostatic coupling between magnetic layers.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を追って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1に、本発明の磁気抵抗効果素子の断面
を略示する。基板10上に、下地膜11を設け、強磁性
膜12/非磁性膜13を順次複数回形成した磁気抵抗効
果膜と、電極14と、電源及び信号検出手段15とから
構成される。勿論、積層順は、非磁性膜13/強磁性膜
12としても構わない。また、強磁性膜12/非磁性膜
13の積層は、少なくとも強磁性膜12が2層以上含ま
れていれば良く、強磁性膜12/非磁性膜13/強磁性
膜12のいわゆるサンドイッチ膜構成としても良い。
FIG. 1 schematically shows a cross section of a magnetoresistive element according to the present invention. It comprises a magnetoresistive film in which a base film 11 is provided on a substrate 10 and a ferromagnetic film 12 and a nonmagnetic film 13 are sequentially formed a plurality of times, an electrode 14, and a power supply and signal detecting means 15. Of course, the order of lamination may be the nonmagnetic film 13 / ferromagnetic film 12. The ferromagnetic film 12 / non-magnetic film 13 may be laminated as long as the ferromagnetic film 12 includes at least two layers, and a so-called sandwich film structure of the ferromagnetic film 12 / non-magnetic film 13 / ferromagnetic film 12 is formed. It is good.

【0014】各膜の具体的な構成要素とその膜厚の一例
として、基板/Ta(5)/MnPt(15)/CoFe
(2)/Cu(2.1)/CoFe(1)/NiFe
(3)/Ta(5)を挙げる。()内数値は、膜厚を示
し、単位はnmである。各合金膜の組成は、Mn60−
Pt40,Co90−Fe10,Ni81−Fe19で
あり、組成単位はat%である。尚、非磁性膜Cu(2.
1)によって隔てられた強磁性膜の構成が、CoFe
(2)及びCoFe(1)/NiFe(3)と異なって
いるが、何ら支障をもたらすことはない。更に、表面酸
化防止のため、例えばTa(3)のような保護膜を最上
層に形成しても良い。
Substrates / Ta (5) / MnPt (15) / CoFe
(2) / Cu (2.1) / CoFe (1) / NiFe
(3) / Ta (5). The numerical value in parentheses indicates the film thickness, and the unit is nm. The composition of each alloy film is Mn60-
Pt40, Co90-Fe10, Ni81-Fe19, and the composition unit is at%. The non-magnetic film Cu (2.
The structure of the ferromagnetic film separated by 1) is CoFe
Although different from (2) and CoFe (1) / NiFe (3), they do not cause any problem. Further, in order to prevent surface oxidation, a protective film such as Ta (3) may be formed on the uppermost layer.

【0015】図1に示した磁気抵抗効果膜は、DCマグ
ネトロンスパッタリング装置を用いて、Ar雰囲気中で
作製した。磁気抵抗効果膜を形成する際には、基板の両
端に設置した一対の永久磁石により、基板面内に基板中
心で約100Oeの直流磁界を印加して、強磁性膜に一
軸異方性を誘導した。また、各膜厚は、あらかじめ製膜
レートを測定しておき、ターゲットと基板間に設置した
シャッターの開閉タイミングで制御した。
The magnetoresistive film shown in FIG. 1 was formed in an Ar atmosphere using a DC magnetron sputtering apparatus. When forming a magnetoresistive film, a pair of permanent magnets installed at both ends of the substrate apply a DC magnetic field of about 100 Oe at the center of the substrate to induce uniaxial anisotropy in the ferromagnetic film. did. Each film thickness was controlled in advance by measuring a film formation rate and opening and closing a shutter provided between the target and the substrate.

【0016】図2に、下地膜として、(a)Ta(5),
(b)Ta(5)/MnPt(15)をそれぞれ用いた磁
気抵抗効果膜CoFe(2)/Cu(2.1)/CoFe
(1)/NiFe(3)/Ta(3)の磁気抵抗効果曲
線を示す。従来からTi,Zr,Hf,Nb,Ta等
は、NiFe,CoFe,Cu等の配向制御の効果があ
ることが知られており、下地膜としてよく用いられてい
るが、図2に示したようにTa(5)を下地膜とした磁
気抵抗効果膜は磁気抵抗変化率が非常に小さい。
FIG. 2 shows that (a) Ta (5),
(B) Magnetoresistive film CoFe (2) / Cu (2.1) / CoFe using Ta (5) / MnPt (15) respectively
3 shows a magnetoresistance effect curve of (1) / NiFe (3) / Ta (3). Conventionally, Ti, Zr, Hf, Nb, Ta, and the like are known to have an effect of controlling the orientation of NiFe, CoFe, Cu, and the like, and are often used as a base film, as shown in FIG. The magnetoresistance effect film using Ta (5) as a base film has a very small magnetoresistance change rate.

【0017】これは、強磁性膜間に、強磁性的な静磁結
合が強く作用した結果、伝導電子を介した反強磁性的な
結合による磁化の反平行配列が十分に実現されていない
ためである。この原因の一つとして、結晶粒界等に発生
する積層膜の界面の凹凸が影響しているためではないか
と推察される。
This is because the ferromagnetic magnetostatic coupling between the ferromagnetic films strongly acts, so that the antiparallel arrangement of magnetization due to the antiferromagnetic coupling via conduction electrons is not sufficiently realized. It is. It is presumed that one of the causes is that the unevenness of the interface of the laminated film generated at the crystal grain boundary or the like is affecting.

【0018】一方、Ta(5)/MnPt(15)を下
地膜とした磁気抵抗効果膜においては、零磁界付近で、
非磁性膜を介した強磁性膜の磁化を互いに反平行配列さ
せるのに十分な反強磁性的結合が強磁性膜間に作用して
おり、7%程度の磁気抵抗変化率が得られている。即
ち、下地膜を代えることで、積層膜の界面の凹凸が小さ
くなり、強磁性膜間の、強磁性的な静磁結合を抑制する
ことができたためと予想される。
On the other hand, in a magnetoresistive effect film having Ta (5) / MnPt (15) as a base film, near zero magnetic field,
Antiferromagnetic coupling sufficient to cause the magnetizations of the ferromagnetic films via the nonmagnetic film to be antiparallel to each other acts between the ferromagnetic films, and a magnetoresistance ratio of about 7% is obtained. . That is, it is expected that by replacing the underlayer film, the unevenness of the interface of the laminated film was reduced, and the ferromagnetic magnetostatic coupling between the ferromagnetic films could be suppressed.

【0019】図3に、下地膜のMnPt合金の組成を変
化させた時の結果として、MnPt中のMn含有量に対
する抵抗変化率ΔR/Rの変化を示す。膜構成は、前述
したものと同様に、Ta(5)/MnPt(15)/C
oFe(2)/Cu(2.1)/CoFe(1)/NiF
e(3)/Ta(3)である。MnPt合金の広い組成
範囲で、安定に反強磁性的な結合が得られており、Mn
含有量を増加させていくに伴って、抵抗変化率ΔR/R
が大きくなっている。
FIG. 3 shows the change in the resistance change rate ΔR / R with respect to the Mn content in MnPt as a result of changing the composition of the MnPt alloy of the underlayer. The film configuration is Ta (5) / MnPt (15) / C, as described above.
oFe (2) / Cu (2.1) / CoFe (1) / NiF
e (3) / Ta (3). Antiferromagnetic coupling is obtained stably over a wide composition range of the MnPt alloy.
As the content increases, the rate of change in resistance ΔR / R
Is getting bigger.

【0020】これは、Mn含有量を増加させていくと、
MnPt合金の電気抵抗率が増大して、下地膜による分
流損が小さくなることが原因の一つである。また、同時
に、Mn含有量を増加させていくと、飽和磁界が増大し
ていく傾向も見られ、反強磁性的な結合が大きくなって
いるように見受けられる。MnPt合金の組成に関して
は、磁気抵抗効果素子に要求される再生感度の仕様によ
って、任意に選択可能である。
This is because as the Mn content is increased,
One of the causes is that the electrical resistivity of the MnPt alloy increases and the shunt loss due to the underlying film decreases. At the same time, when the Mn content is increased, the saturation magnetic field tends to increase, and the antiferromagnetic coupling seems to increase. The composition of the MnPt alloy can be arbitrarily selected depending on the specification of the reproduction sensitivity required for the magnetoresistive element.

【0021】また、MnPt下地膜厚は、2nm以上と
することで、安定に反強磁性的な結合が得られることを
確認した。しかし、MnPt下地膜厚を過度に厚くしす
ぎると、分流損が大きくなり、出力が低下するため、下
地膜厚は30nm以下とすることが望ましい。
Further, it has been confirmed that antiferromagnetic coupling can be stably obtained by setting the MnPt underlayer thickness to 2 nm or more. However, if the thickness of the MnPt underlayer is excessively large, the shunt loss increases and the output decreases, so the underlayer thickness is desirably 30 nm or less.

【0022】ここでは、下地膜にMnPt合金を用いた
場合の結果のみ示したが、下地膜がRu,Rh,Pd,
Ag,Os,Ir,Pt,Auのうち少なくとも1種類
以上の元素を含有するMn系合金膜で構成される場合
も、同様の効果が得られる。いずれのMn系合金膜も、
電気抵抗率が100から250μΩ−cmと大きいため、
下地膜の分流損による出力低下を最小限に抑えることが
できる。また、再生感度を更に大きくする必要がある場
合には、前述したサンドイッチ膜構成ではなく、強磁性
膜/非磁性膜を複数回積層した多層膜構成にすれば良
い。
Here, only the results when the MnPt alloy is used for the underlayer are shown, but Ru, Rh, Pd,
The same effect can be obtained when a Mn-based alloy film containing at least one element of Ag, Os, Ir, Pt, and Au is used. Any Mn-based alloy film,
Because the electrical resistivity is as large as 100 to 250 μΩ-cm,
It is possible to minimize the output reduction due to the shunt loss of the base film. If it is necessary to further increase the reproduction sensitivity, a multilayer film structure in which a ferromagnetic film / non-magnetic film is stacked a plurality of times may be used instead of the sandwich film structure described above.

【0023】本発明の磁気抵抗効果素子は、微弱な磁気
信号をS/N比の高い電気信号に変換して出力できるた
め、そのまま位置センサや、方位センサとして利用でき
る。更に、磁気ディスク装置や磁気テープ装置等のよう
な磁気記録再生装置に搭載する再生ヘッドとしての応用
も可能である。
The magnetoresistive element of the present invention can convert a weak magnetic signal into an electric signal having a high S / N ratio and output it, and can be used as it is as a position sensor or a direction sensor. Further, the present invention can be applied as a reproducing head mounted on a magnetic recording / reproducing device such as a magnetic disk device or a magnetic tape device.

【0024】[0024]

【発明の効果】上述の通り、本発明によれば、非磁性膜
によって隔てられ、少なくても2層以上の強磁性膜を有
する磁気抵抗効果膜と、基板との間に、下地膜として、
Ru,Rh,Pd,Ag,Os,Ir,Pt,Auのう
ち少なくとも1種類以上の元素を含有するMn系合金膜
を設けることによって、強磁性膜間の強磁性的な静磁結
合を抑制することができ、磁性膜間に作用する反強磁性
的結合を容易に実現することが可能となる。
As described above, according to the present invention, a base film is provided between a substrate and a magnetoresistive film having at least two or more ferromagnetic films separated by a nonmagnetic film.
By providing a Mn-based alloy film containing at least one of Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au, ferromagnetic magnetostatic coupling between the ferromagnetic films is suppressed. Therefore, antiferromagnetic coupling acting between the magnetic films can be easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の磁気抵抗効果素子の構成
を示す側断面図である。
FIG. 1 is a side sectional view showing a configuration of a magnetoresistive element according to an embodiment of the present invention.

【図2】下地膜をTa及びTa/MnPtとした時の磁
気抵抗効果曲線を示した特性図である。
FIG. 2 is a characteristic diagram showing a magnetoresistive effect curve when a base film is made of Ta and Ta / MnPt.

【図3】下地膜MnPt中のMn含有量に対する抵抗変
化率ΔR/Rの変化を示した特性図である。
FIG. 3 is a characteristic diagram showing a change in a resistance change rate ΔR / R with respect to a Mn content in a base film MnPt.

【符号の説明】[Explanation of symbols]

10…基板、11…下地膜、12…強磁性膜、13…非
磁性膜、14…電極、15…電源及び信号検出手段。
10: substrate, 11: base film, 12: ferromagnetic film, 13: non-magnetic film, 14: electrode, 15: power supply and signal detecting means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱川 佳弘 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D034 BA04 BA21 CA08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihiro Hamakawa 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5D034 BA04 BA21 CA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】強磁性膜と非磁性膜を交互に積層してな
り、少なくても強磁性膜を2層以上有する磁気抵抗効果
膜と、該磁気抵抗効果膜における抵抗変化を検出するた
めの一対の電極とを有する磁気抵抗効果素子において、
基板と該磁気抵抗効果膜の間に、下地膜として、Ru,
Rh,Pd,Ag,Os,Ir,Pt,Auのうち少な
くとも1種類以上の元素を含有するMn系合金膜を設け
たことを特徴とする磁気抵抗効果素子。
A magnetoresistive film having at least two ferromagnetic films alternately laminated with a ferromagnetic film and a non-magnetic film; and a magnetoresistive film for detecting a resistance change in the magnetoresistive film. In a magnetoresistive element having a pair of electrodes,
Between the substrate and the magnetoresistive film, Ru,
A magnetoresistive element comprising a Mn-based alloy film containing at least one of Rh, Pd, Ag, Os, Ir, Pt, and Au.
【請求項2】請求項1に記載の磁気抵抗効果素子であっ
て、前記Mn系合金膜のMn含有量が、20at%〜80
at%であることを特徴とする磁気抵抗効果素子。
2. The magnetoresistance effect element according to claim 1, wherein the Mn content of the Mn-based alloy film is 20 at% to 80 at%.
A magnetoresistance effect element characterized by at%.
【請求項3】請求項1に記載の磁気抵抗効果素子であっ
て、前記Mn系合金膜の膜厚が、2nm〜30nmであ
ることを特徴とする磁気抵抗効果素子。
3. The magnetoresistance effect element according to claim 1, wherein said Mn-based alloy film has a thickness of 2 nm to 30 nm.
JP10341345A 1998-12-01 1998-12-01 Magnetoresistance effect element Pending JP2000173021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341345A JP2000173021A (en) 1998-12-01 1998-12-01 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341345A JP2000173021A (en) 1998-12-01 1998-12-01 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JP2000173021A true JP2000173021A (en) 2000-06-23

Family

ID=18345353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341345A Pending JP2000173021A (en) 1998-12-01 1998-12-01 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JP2000173021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282054A (en) * 2003-02-26 2004-10-07 Alps Electric Co Ltd Magnetism detection element
JP2005294453A (en) * 2004-03-31 2005-10-20 Alps Electric Co Ltd Magnetic detection element
US7362546B2 (en) 2003-02-26 2008-04-22 Alps Electric Co., Ltd Spin-valve magnetoresistive element having fixed magnetic layer of epitaxal laminate including magnetic layer and nonmagnetic layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282054A (en) * 2003-02-26 2004-10-07 Alps Electric Co Ltd Magnetism detection element
US7362546B2 (en) 2003-02-26 2008-04-22 Alps Electric Co., Ltd Spin-valve magnetoresistive element having fixed magnetic layer of epitaxal laminate including magnetic layer and nonmagnetic layer
JP2005294453A (en) * 2004-03-31 2005-10-20 Alps Electric Co Ltd Magnetic detection element
JP4506242B2 (en) * 2004-03-31 2010-07-21 Tdk株式会社 Magnetic detection element

Similar Documents

Publication Publication Date Title
US7336451B2 (en) Magnetic sensing element containing half-metallic alloy
US7551409B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with improved ferromagnetic free layer structure
JP4177954B2 (en) Magnetic tunnel junction stacked head and method of manufacturing the same
JP3291208B2 (en) Magnetoresistive sensor, method of manufacturing the same, and magnetic head equipped with the sensor
US7583481B2 (en) FCC-like trilayer AP2 structure for CPP GMR EM improvement
US7580229B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-free layer structure and low current-induced noise
US20060061914A1 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
JP2003152243A (en) Magnetoresistive effect sensor laminate, magnetoresistive effect reproducing head, and manufacturing method therefor
JP2003309305A (en) Magnetic detection element
JP2000340858A (en) Magnetoresistive effect film and magnetoresistive effect head
JP2003067904A (en) Magneto-resistance effect magnetic head and its manufacturing method
JP2007081126A (en) Magnetoresistance effect element and thin-film magnetic head
US6621666B2 (en) Magnetoresistive-effect element having electrode layers oppositely disposed on main surfaces of a magnetoresistive-effect thin film having hard magnetic bias layers with a particular resistivity
JP2001014616A (en) Magnetic conversion element, thin-film magnetic head and their production
US7957107B2 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with antiparallel-free layer structure and low current-induced noise
JP3227128B2 (en) Thin film conductor layer, magnetoresistive element using the thin film conductor layer, and method of manufacturing thin film conductor layer
JP2006139886A (en) Magnetoresistive effect magnetic head and its manufacturing method
US20080007877A1 (en) Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
JP3137598B2 (en) Magnetoresistive element, magnetic transducer and antiferromagnetic film
US7433162B2 (en) Magnetoresistive sensor with antiferromagnetic exchange-coupled structure formed by use of chemical-ordering enhancement layer
JP2000173021A (en) Magnetoresistance effect element
JP2002289946A (en) Magnetism detection element, manufacturing method therefor and thin-film magnetic head using the magnetism detection element
JP2002232039A (en) Spin valve type huge magnetoresistance effect element, magnetoresistance effect type magnetic head and their manufacturing methods
US20030129454A1 (en) Spin valve magnetoresistive sensor
JP2002230717A (en) Gmr head