JP2002230717A - Gmr head - Google Patents

Gmr head

Info

Publication number
JP2002230717A
JP2002230717A JP2001018817A JP2001018817A JP2002230717A JP 2002230717 A JP2002230717 A JP 2002230717A JP 2001018817 A JP2001018817 A JP 2001018817A JP 2001018817 A JP2001018817 A JP 2001018817A JP 2002230717 A JP2002230717 A JP 2002230717A
Authority
JP
Japan
Prior art keywords
layer
nifecr
head
centered cubic
gmr head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001018817A
Other languages
Japanese (ja)
Other versions
JP3947361B2 (en
Inventor
Takao Imagawa
尊雄 今川
Keishi Shigematsu
恵嗣 重松
Tatsumi Hirano
辰己 平野
Hiroyuki Hoshiya
裕之 星屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001018817A priority Critical patent/JP3947361B2/en
Publication of JP2002230717A publication Critical patent/JP2002230717A/en
Application granted granted Critical
Publication of JP3947361B2 publication Critical patent/JP3947361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the sensitivity of a reproducing head for enhancing recording density of a spin valve type GMR head. SOLUTION: In the GMR head constituted of a spin valve type reproducing head having a fixed layer 20 formed by laminating an anti-ferromagnetic body 21 and a ferromagnetic body 22, a separation layer 30 on the fixed layer and a free layer 40 consisting of a ferromagnetic body on the separation layer and an electromagnetic induction type recording head, a body-centered cubic crystal NiFeCr layer 10 is formed on a substrate 80 and the fixed layer 20 is formed on the body-centered cubic crystal NiFeCr layer. If the composition of the body-centered cubic crystal NiFeCr layer 10 as a base layer is expressed by (Ni1-xFex)1-yCry, 0<x<1, and 0.32<y<0.38 are satisfied in the GMR head. The MR ratio can be increased by 30-40% by using a body-centered cubic crystal NiFeCr film as a base to constitute a spin valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、巨大磁気抵抗効果
型(GMR)ヘッドに関し、特に磁気記録装置に適用さ
れるスピンバルブ型GMRヘッドのうち、再生感度が高
いGMRヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetoresistive (GMR) head, and more particularly to a spin valve type GMR head applied to a magnetic recording apparatus, which has a high reproduction sensitivity.

【0002】[0002]

【従来の技術】スピンバルブ高感度化には、固定層、分
離層、自由層の物理膜厚を減少させ、抵抗変化量を増加
させる手法、固定層内又は自由層界面に酸化層を設置
し、界面散乱を押さえて抵抗変化量を増加させる方法、
自由層に比抵抗の低い材料を接して積層し、抵抗変化率
を上げる方法等が提案されている。
2. Description of the Related Art To increase the sensitivity of a spin valve, a method of reducing the physical film thickness of a fixed layer, a separation layer, and a free layer to increase the resistance change amount, and installing an oxide layer in the fixed layer or at the interface of the free layer. , A method of increasing the resistance change amount by suppressing interface scattering,
A method has been proposed in which a material having a low specific resistance is brought into contact with and laminated on the free layer to increase the resistance change rate.

【0003】膜厚は、固定層が最も厚く、好ましい温度
特性を有する反強磁性体のうちPtMnで約10nmが
現在の限界となっており、限界がある。固定層への酸化
層設置は磁気抵抗変化量増加に有効であるが反強磁性体
と強磁性体の交換結合を低下させ、磁気ディスク装置内
での動作を不安定にする可能性があり、抵抗変化量増加
とは兼ね合いを計る必要がある。自由層への低抵抗膜設
置は、磁気抵抗変化率(MR比)増加に有効であるが、
その改善量は10%程度である。
The thickness of the pinned layer is the largest, and the present limit is about 10 nm in PtMn among antiferromagnetic materials having preferable temperature characteristics, and there is a limit. The provision of an oxide layer on the fixed layer is effective in increasing the amount of change in magnetoresistance, but may reduce the exchange coupling between the antiferromagnetic material and the ferromagnetic material, thereby making the operation in the magnetic disk device unstable. It is necessary to balance the increase in the resistance change amount. Installing a low-resistance film on the free layer is effective for increasing the magnetoresistance ratio (MR ratio).
The improvement is about 10%.

【0004】また、現在多く用いられているPtMn
は、下地配向膜の有無、従ってPtMn自身の結晶配向
によらず固定層に十分な交換結合を起こすことから、下
地にNiFe/Ta構成層を適用すると、全体の比抵抗
が低下し、この分感磁部MR高さを減少させ、感度を上
げても素子抵抗は変わらない効果がある。高感度化手法
を用いない従来構造を図6に示す。この構成のスピンバ
ルブでMR比は7%である。
Further, PtMn, which is widely used at present, is
Is that sufficient exchange coupling occurs in the fixed layer irrespective of the presence or absence of the underlying alignment film, that is, the crystal orientation of PtMn itself. Therefore, when the NiFe / Ta constituent layer is applied to the underlying layer, the overall specific resistance decreases. There is an effect that the element resistance does not change even if the sensitivity of the magneto-sensitive portion MR is reduced and the height is reduced. FIG. 6 shows a conventional structure that does not use the method of increasing sensitivity. The MR ratio of the spin valve having this configuration is 7%.

【0005】高感度化手法を全て取り入れた膜構成の実
施例を以下に示す。ガラス基板上にnm単位膜厚を付し
示した(以下に示す、例えば15PtMnにおける1
5)以下の構造のスピンバルブを形成した。ガラス/1
Ta/2NiFe/15PtMn/1.5CoFe/
0.8Ru/1.5CoFe/酸化処理/2CoFe/
2.1Cu/0.5CoFe/3NiFe/0.6Cu
/2Taの構成でスピンバルブを形成し、250℃、9
時間磁場中で熱処理した。この結果、MR比10%、固
定層結合磁界63.2×10A/m(800Oe)を
得た。
[0005] An embodiment of a film configuration incorporating all of the high sensitivity techniques will be described below. A unit thickness of nm is shown on a glass substrate (shown below, for example, 1 in 15 PtMn).
5) A spin valve having the following structure was formed. Glass / 1
Ta / 2NiFe / 15PtMn / 1.5CoFe /
0.8Ru / 1.5CoFe / oxidation treatment / 2CoFe /
2.1Cu / 0.5CoFe / 3NiFe / 0.6Cu
A spin valve is formed with a configuration of / 2Ta,
Heat treatment in magnetic field for hours. As a result, an MR ratio of 10% and a fixed layer coupling magnetic field of 63.2 × 10 3 A / m (800 Oe) were obtained.

【0006】更に、酸化処理のない、ガラス/1Ta/
2NiFe/15PtMn/1.5CoFe/0.8R
u/2CoFe/2.1Cu/0.5CoFe/3Ni
Fe/0.6Cu/2Ta構成のスピンバルブはMR比
8〜9%で固定層結合磁界は118.5×10A/m
(1,500Oe)であった。
Further, glass / 1 Ta /
2NiFe / 15PtMn / 1.5CoFe / 0.8R
u / 2CoFe / 2.1Cu / 0.5CoFe / 3Ni
The spin valve having the Fe / 0.6Cu / 2Ta structure has an MR ratio of 8 to 9% and a fixed layer coupling magnetic field of 118.5 × 10 3 A / m.
(1,500 Oe).

【0007】感度向上の別な手法として、薄膜内の伝導
現象が結晶粒径に依存することから、結晶粒径を増大さ
せ異方的磁気抵抗効果(AMR)を増加させる技術がア
イ・イイー・イイ・トランザクション・オン・マグネテ
ィックス第36巻第1号381頁(2000年1月刊、
IEEE.Trans.MAG−36、vol.1、p
381、2000)に示されている(公知例1)。
As another technique for improving the sensitivity, since the conduction phenomenon in the thin film depends on the crystal grain size, a technique of increasing the crystal grain size and increasing the anisotropic magnetoresistance effect (AMR) has been proposed. II Transaction on Magnetics, Vol. 36, No. 1, p. 381 (January 2000,
IEEE. Trans. MAG-36, vol. 1, p
381, 2000) (known example 1).

【0008】前記公知例1は、NiFeCrを下地膜と
し、Ni0.81Fe0.19を積層し、AMR効果を
はかり、Cr量40原子%付近でMR比最大となり、3
5原子%以下と55原子%以上では効果がないと示され
ている。一方、同一著者により、ジェイ・エイ・ピー第
87巻、第9号、6992頁(2000年1月刊、JA
P87vol9、p6992、2000)には44原子
%付近でMR比最大となると開示されている(公知例
2)。しかし、これらはAMR効果であるため、MR比
は最大でも3.5%とGMR効果に比し極めて小さい。
In the above-mentioned known example 1, NiFeCr is used as a base film, Ni0.81Fe0.19 is laminated, the AMR effect is measured, and the MR ratio becomes maximum when the Cr content is around 40 atomic%.
It is shown that there is no effect at 5 atomic% or less and 55 atomic% or more. On the other hand, by the same author, JAAP, Vol. 87, No. 9, pp. 6992 (January 2000, JA
P87 vol 9, p 6992, 2000) discloses that the MR ratio becomes maximum at around 44 atomic% (known example 2). However, since these are AMR effects, the MR ratio is at most 3.5%, which is extremely smaller than the GMR effect.

【0009】また、公知例1には高MR比となる下地N
iFeCrは、欠陥の多い体心立方格子であり、この上
に面心立方格子のNiFeが積層されることで面心立方
格子に変化し、NiFeの結晶粒を粗大化させるので、
NiFeCrは配向を揃えないことが重要と記述されて
いる。
[0009] Further, in the known example 1, a base N having a high MR ratio is provided.
iFeCr is a body-centered cubic lattice with many defects, and is transformed into a face-centered cubic lattice by stacking NiFe of the face-centered cubic lattice on top of this, so that the crystal grains of NiFe are coarsened.
It is described that it is important for NiFeCr not to align the orientation.

【0010】また、NiFeCrを下地としたスピンバ
ルブ膜の開示例は特開平2000−57535号公報に
示されている(公知例3)。前記公知例3は、Cr25
原子%のNiFeCrをTa下地とMnPt又は自由層
との中間に配置し、配向性を制御するとしている。
A disclosure of a spin valve film based on NiFeCr is disclosed in Japanese Patent Application Laid-Open No. 2000-57535 (known example 3). Known example 3 is Cr25
Atomic% of NiFeCr is arranged between the Ta base and MnPt or the free layer to control the orientation.

【0011】本発明者らの検討で、前記のNiFeCr
/Taは、上述したNiFe/Taとほぼ同様の効果で
NiFeCr厚さを20〜70nmと厚くしてもMR比
が低下しない効果があることがわかっている。また、前
記公知例3ではCr組成と磁気抵抗変化量との関係は明
らかでない。
The present inventors have studied and found that the above-mentioned NiFeCr
It has been found that / Ta is almost the same effect as the above-mentioned NiFe / Ta, and has an effect that the MR ratio does not decrease even if the thickness of NiFeCr is increased to 20 to 70 nm. Further, in the above-mentioned known example 3, the relationship between the Cr composition and the amount of change in magnetoresistance is not clear.

【0012】[0012]

【発明が解決しようとする課題】本発明のGMRヘッド
が使用される、主に磁気ディスク装置又は磁気テープ装
置等磁気記録の分野では、磁気記録装置の大容量化、小
型化が常に要求されこれを実現するため恒常的な記録密
度の増大が課題となっている。
In the field of magnetic recording, such as a magnetic disk drive or a magnetic tape drive, in which the GMR head of the present invention is used, it is always required to increase the capacity and reduce the size of the magnetic recording device. In order to realize the above, there is a problem that the recording density is constantly increased.

【0013】図4に磁気ディスク装置の概要を示す。装
置は、記録媒体である磁気ディスク、回転モータ、アー
ム先端に取り付けた磁気ヘッド、アーム駆動部、電気
系、から構成される。記録密度の増大は、記録幅、最短
記録波長の縮小によるが、これは磁気ヘッドでの再生出
力低下を招き、このため巨大磁気抵抗効果型(GMR)
ヘッドがスピンバルブ構造として提案され現在の主流技
術となっている。
FIG. 4 shows an outline of a magnetic disk drive. The apparatus includes a magnetic disk as a recording medium, a rotary motor, a magnetic head attached to the tip of an arm, an arm driving unit, and an electric system. The increase in the recording density is due to the reduction in the recording width and the shortest recording wavelength, but this leads to a decrease in the reproduction output of the magnetic head, and therefore the giant magnetoresistive (GMR) type.
The head has been proposed as a spin valve structure and has become the current mainstream technology.

【0014】従来、スピンバルブヘッドは、主に固定
層、分離層、自由層の3要素から成る。固定層はFeM
n、NiO、CrMnPt、PtMn、PtMnRh等
反強磁性体と主にCo、CoFe等の強磁性体を積層し
たもので、分離層は主にCu等から、自由層はCo、C
oFeから、あるいはそれにNiFeを積層して構成さ
れる。
Conventionally, a spin valve head mainly comprises three elements: a fixed layer, a separation layer, and a free layer. The fixed layer is FeM
An antiferromagnetic material such as n, NiO, CrMnPt, PtMn, PtMnRh and a ferromagnetic material such as Co and CoFe are mainly laminated. The separation layer is mainly made of Cu or the like, and the free layer is made of Co, C
It is composed of oFe or laminated with NiFe.

【0015】固定層、分離層、自由層の積層順は、反強
磁性膜の種類、スピンバルブヘッドの構造設計等により
選択される。PtMnはいずれの構成も実施可能であ
る。スピンバルブヘッドは高感度化のため、MR高さ方
向120(図5参照)の寸法縮小が求められており、こ
れに伴う再生信号の歪みを低減するため、固定層は、反
強磁性体上に、主にCo/Ru/CoあるいはCoFe
/Ru/CoFe等強磁性体の積層構造とし(この積層
構造が全体として強磁性体層として機能するものであ
る)、実質的に固定層磁化を減少させる構造である積層
フェリ構造とするのが良い。
The order of lamination of the fixed layer, the separation layer, and the free layer is selected depending on the type of the antiferromagnetic film, the structure design of the spin valve head, and the like. PtMn can have any configuration. The spin valve head is required to have a reduced dimension in the MR height direction 120 (see FIG. 5) for higher sensitivity. To reduce the distortion of the reproduced signal accompanying this, the fixed layer is made of an antiferromagnetic material. Mainly Co / Ru / Co or CoFe
/ Ru / CoFe ferromagnetic material such as a laminated structure (the laminated structure functions as a ferromagnetic layer as a whole), and a laminated ferrimagnetic structure that substantially reduces the magnetization of the fixed layer. good.

【0016】また、再生感度向上のため、自由層はCo
又はCoFeを分離層界面に配置し、NiFeを積層さ
せる。さらなる感度向上にはCo、CoFeを単独で用
いる場合とこれら強磁性体とRuで積層フェリ構造とし
ても良い。
The free layer is made of Co for improving the reproduction sensitivity.
Alternatively, CoFe is disposed at the interface of the separation layer, and NiFe is laminated. In order to further improve the sensitivity, a case where Co or CoFe is used alone or a stacked ferrimagnetic structure using these ferromagnetic materials and Ru may be used.

【0017】また、固定層を上下2層とし、自由層を中
心に置く2重スピンバルブ構造も有効である。
It is also effective to use a double spin valve structure in which the fixed layer has two upper and lower layers and the free layer is located at the center.

【0018】しかしながら、これらの技術はスピンバル
ブ感磁部のMR高さ方向の縮小を前提として高感度化を
達成するもので、最近の0.2μm(マイクロメート
ル)前後の値は機械加工で決まる加工限界に近づきつつ
ある。従来技術では、大幅なMR比向上は期待できず、
高感度なGMRヘッドの実現に支障があった。
However, these techniques achieve high sensitivity on the premise that the spin valve magneto-sensitive portion is reduced in the MR height direction, and the recent value of about 0.2 μm (micrometer) is determined by machining. It is approaching the processing limit. With the conventional technology, a significant improvement in the MR ratio cannot be expected.
There was a problem in realizing a highly sensitive GMR head.

【0019】[0019]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。反強
磁性体と強磁性体とを積層した固定層、前記固定層上の
分離層、前記分離層上の強磁性体からなる自由層、を形
成するスピンバルブ型再生ヘッドと、電磁誘導型記録ヘ
ッドと、から構成されるGMRヘッドであって、基板上
に体心立方晶NiFeCr層を形成し、前記体心立方晶
NiFeCr層上に前記固定層を形成するGMRヘッ
ド。
In order to solve the above problems, the present invention mainly employs the following configuration. A spin-valve reproducing head for forming a fixed layer in which an antiferromagnetic material and a ferromagnetic material are stacked, a separation layer on the fixed layer, and a free layer of the ferromagnetic material on the separation layer; A GMR head comprising: a body-centered cubic NiFeCr layer formed on a substrate; and the fixed layer formed on the body-centered cubic NiFeCr layer.

【0020】また、前記GMRヘッドにおいて、前記体
心立方晶NiFeCr層の組成が、(Ni1−xFe
x)1−yCryと表記すると、0<x<1、且つ0.
32<y<0.38 であるGMRヘッド。
In the GMR head, the composition of the body-centered cubic NiFeCr layer is (Ni1-xFe
x) When expressed as 1-yCry, 0 <x <1 and 0.
A GMR head in which 32 <y <0.38.

【0021】また、反強磁性体と強磁性体とを積層した
固定層、前記固定層上の分離層、前記分離層上の強磁性
体からなる自由層、を形成するスピンバルブ型再生ヘッ
ドと、電磁誘導型記録ヘッドと、から構成されるGMR
ヘッドであって、基板上に体心立方晶NiFeCr層と
補助層を形成し、前記補助層上に前記固定層を形成する
GMRヘッド。
A spin-valve reproducing head for forming a fixed layer in which an antiferromagnetic material and a ferromagnetic material are stacked, a separation layer on the fixed layer, and a free layer of the ferromagnetic material on the separation layer; GMR comprising: an electromagnetic induction type recording head
A GMR head comprising: a body-centered cubic NiFeCr layer and an auxiliary layer formed on a substrate; and the fixed layer formed on the auxiliary layer.

【0022】また、強磁性体からなる自由層、前記自由
層上の分離層、前記分離層上で強磁性体と反強磁性体と
を積層した固定層、を形成するスピンバルブ型再生ヘッ
ドと、電磁誘導型記録ヘッドと、から構成されるGMR
ヘッドであって、基板上に体心立方晶NiFeCr層を
形成し、前記体心立方晶NiFeCr層上に前記自由層
を形成するGMRヘッド。
A spin-valve reproducing head for forming a free layer made of a ferromagnetic material, a separating layer on the free layer, and a fixed layer on which a ferromagnetic material and an antiferromagnetic material are laminated on the separating layer; GMR comprising: an electromagnetic induction type recording head
A GMR head comprising: a body-centered cubic NiFeCr layer formed on a substrate; and the free layer formed on the body-centered cubic NiFeCr layer.

【0023】[0023]

【発明の実施の形態】本発明の実施形態に係る高感度の
GMRヘッドについて図面を用いて以下説明する。図
1、図2及び図3に本発明の基本的な実施形態に係るス
ピンバルブヘッドの構成例を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-sensitivity GMR head according to an embodiment of the present invention will be described below with reference to the drawings. 1, 2 and 3 show examples of the configuration of a spin valve head according to a basic embodiment of the present invention.

【0024】まず、本発明の特徴的な構成、機能乃至作
用について、その概要を説明する。即ち、本発明の構成
上の特徴は、反強磁性体及び強磁性体からなる固定層
と、自由層と、固定層と自由層間の分離層と、から形成
されるスピンバルブ膜の主構成要素の下地膜にNiFe
Cr単独膜を適用することであり、また、そのNiFe
Cr単独膜の組成を特定範囲とすることに特有の効果が
存することを新たに見出したことにある。
First, an outline of a characteristic configuration, function or operation of the present invention will be described. That is, the constitutional feature of the present invention is that a main component of a spin valve film formed of a fixed layer made of an antiferromagnetic material and a ferromagnetic material, a free layer, and a separation layer between the fixed layer and the free layer. NiFe
A Cr-only film.
It has been newly found that there is a special effect in setting the composition of the Cr-only film in a specific range.

【0025】第1の構成例として、従来の高感度化の手
法を取り入れた構成のスピンバルブ膜であって、更にN
iFeCrを下地膜とし、そのCr組成を変化させMR
比(磁気抵抗変化率であり、磁場を印加したときの抵抗
変化率を抵抗値で除した比率である)を調べた結果を図
7に示す。膜構成は図7に示す通りであり、ガラス基板
とPtMnとの間にはNiFeCrが介在しているもの
である。実験にはRFマグネトロンスパッタを用い、組
成はNi0.82Fe0.18ターゲット上にCrチッ
プを乗せ、チップ数を変えて変化させた。
As a first configuration example, a spin-valve film having a configuration incorporating a conventional method of increasing sensitivity is used.
Using iFeCr as a base film, changing the Cr composition and
FIG. 7 shows the result of examining the ratio (the rate of change in magnetoresistance, which is the ratio of the rate of change of resistance when a magnetic field is applied divided by the resistance value). The film configuration is as shown in FIG. 7, and NiFeCr is interposed between the glass substrate and PtMn. In the experiment, RF magnetron sputtering was used, and the composition was changed by placing a Cr chip on a Ni0.82Fe0.18 target and changing the number of chips.

【0026】図7に示すように、組成約30原子%から
Cr組成を増加させていくと、MR比は増大し、35〜
37原子%で最大となる。38原子%を超えると急激に
MR比は低下し、それ以上の組成ではMR比は6%程度
となり、下地膜をTaとしたものより低下してしまう。
従って、この膜構成のスピンバルブは、Cr量32〜3
8原子%迄がMR比10%以上となり有効である。ま
た、本構成例の固定層CoFeを、1.5nmCoFe
/酸化/2.0nmCoFeとしても、2.0nmCo
Fe単層としても、実験の結果でMR比は変わらず、ス
ピンバルブヘッドとしての動作も同じであった。
As shown in FIG. 7, when the Cr composition is increased from about 30 atomic%, the MR ratio increases, and
It becomes the maximum at 37 atomic%. When it exceeds 38 atomic%, the MR ratio sharply decreases, and when the composition is more than 38 atomic%, the MR ratio becomes about 6%, which is lower than that when the base film is Ta.
Therefore, the spin valve having this film configuration has a Cr content of 32 to 3 times.
Up to 8 atomic% is effective because the MR ratio becomes 10% or more. In addition, the fixed layer CoFe of this configuration example is
/Oxidation/2.0 nm CoFe
Even with the Fe single layer, the MR ratio did not change as a result of the experiment, and the operation as the spin valve head was the same.

【0027】次に、第2の構成例として、下地膜である
NiFeCrとPtMnとの間にNiFe層を置き、N
iFeCrのCr組成を変化させた実験結果を図8に示
す。膜構成は図8中に記述した通りである。図8に示す
ように、Cr組成30原子%から増加すると、前記第1
の構成例と同様にMR比は増加していく。
Next, as a second configuration example, a NiFe layer is placed between NiFeCr and PtMn as base films,
FIG. 8 shows the results of experiments in which the Cr composition of iFeCr was changed. The film configuration is as described in FIG. As shown in FIG. 8, when the Cr composition increases from 30 atomic%, the first
As in the configuration example, the MR ratio increases.

【0028】高いMR比を示すのは34〜37原子%と
広い。また、40原子%を超えてもMR比の低下は緩や
かで、50原子%までMR比9%を維持している。MR
比10%以上となるのは32〜42原子%である。ま
た、第1構成例と同様、固定層CoFeを、1.5nm
CoFe/酸化/2.0nmCoFeとしても、2.0
nmCoFe単層としてもMR比は変わらず、スピンバ
ルブヘッドとしての動作も同じであった。
A high MR ratio is as wide as 34 to 37 atomic%. Further, even if the atomic ratio exceeds 40 atomic%, the decrease in the MR ratio is gradual, and the MR ratio is maintained at 9% up to 50 atomic%. MR
The ratio of 10% or more is 32 to 42 atomic%. Further, similarly to the first configuration example, the fixed layer CoFe is
As CoFe / oxidized / 2.0 nm CoFe, 2.0
The MR ratio did not change even with the nmCoFe single layer, and the operation as the spin valve head was the same.

【0029】次に、第3の構成例として、NiFeCr
を下地膜とし、PtMnを上部に、自由層を下部に置い
たスピンバルブのNiFeCr中のCr組成を変化させ
た実験結果を図9に示す。図9に示すように、基板のガ
ラスと自由層のNiFeとの間にNiFeCrの下地膜
が介在している。ここで、MR比は図8と同様なCr組
成依存を示す。この第3の構成例は前述した図7と図8
に示す2つの構造と異なり、酸化処理していないため、
MR比8%以上が有効な範囲である。これより有効Cr
組成は、32〜42原子%となる。本構成例でもCr量
増減によるMR比の急激な減少は見られない。
Next, as a third configuration example, NiFeCr
FIG. 9 shows the results of an experiment in which the Cr composition in NiFeCr of a spin valve in which PtMn was provided on the upper portion and the free layer was provided on the lower portion was used as a base film. As shown in FIG. 9, a base film of NiFeCr is interposed between glass of the substrate and NiFe of the free layer. Here, the MR ratio shows the same Cr composition dependency as in FIG. This third configuration example is described with reference to FIGS.
Unlike the two structures shown in the above, since it is not oxidized,
An MR ratio of 8% or more is an effective range. Effective Cr
The composition will be 32-42 atomic%. Also in this configuration example, no sharp decrease in the MR ratio due to the increase or decrease in the Cr amount is observed.

【0030】以上のような構成例は、スピンバルブの下
地という意味で公知例1,2とは異なり、組成範囲に関
しても、公知例1に見られる40原子%中心又は公知例
2の40〜53%範囲とは明らかに異なっており、公知
例1に示された格子変態による結晶粒粗大化効果とは別
の現象が作用していると考えられる。
The above configuration example is different from the known examples 1 and 2 in terms of the base of the spin valve, and the composition range is also 40 atomic% center found in the known example 1 or 40 to 53% in the known example 2. % Range clearly, and it is considered that a phenomenon different from the crystal grain coarsening effect due to the lattice transformation shown in Known Example 1 is acting.

【0031】図10に、下地膜である(Ni0.82F
e0.18)65Cr35単層膜5nmの広角X線回折
パターンAと面内X線回折パターンBを示す。図10で
それぞれ試料回転角度はθ,Φと表記した(検出器回転
角度は2θ,2Φとなる)。膜面に垂直方向の回折結果
である広角X線回折パターンA(試料面である下地膜の
面垂直方向の配向状況が分かる)より、NiFeCrは
膜面垂直に結晶配向していることがわかる。しかし、単
一ピークであるため結晶構造は同定できない。
FIG. 10 shows a base film (Ni0.82F).
e0.18) A wide-angle X-ray diffraction pattern A and an in-plane X-ray diffraction pattern B of a 65Cr35 single layer film of 5 nm are shown. In FIG. 10, the sample rotation angles are shown as θ and Φ, respectively (the detector rotation angles are 2θ and 2Φ). From the wide-angle X-ray diffraction pattern A (the orientation of the underlayer film, which is the sample surface, in the direction perpendicular to the surface), which is the result of diffraction in the direction perpendicular to the film surface, it can be seen that NiFeCr is crystal-oriented perpendicular to the film surface. However, since it is a single peak, the crystal structure cannot be identified.

【0032】そこで、図10の下段に示す、面内X線回
折を行い、膜面内の結晶構造を調べた。パターンBよ
り、Aとほぼ同じ位置と、75°付近に回折線があるこ
とから、膜は体心立方格子で、膜面垂直に(011)配
向していることがわかった。これは公知例1のNiFe
Cr膜(偏向した体心立方格子ではない構造である)と
は構造が異なり、組成範囲による差は明らかである。
Therefore, the in-plane X-ray diffraction shown in the lower part of FIG. 10 was performed to examine the crystal structure in the film plane. From the pattern B, it can be seen that the film is a body-centered cubic lattice and is oriented (011) perpendicular to the film surface, since there are diffraction lines at almost the same position as in A and around 75 °. This is known from NiFe
The structure is different from that of the Cr film (which is not a deflected body-centered cubic lattice), and the difference depending on the composition range is obvious.

【0033】また、NiFeCrの下に5〜20AのT
aを設置するとともに、NiFeCrのCr量の原子%
を35〜38にすると(本発明の組成範囲と共通す
る)、PtMnとCoFeの交換結合が著しく低下し、
スピンバルブの評価はできなかった。これにより公知例
3とも異なる。
Further, a T of 5 to 20 A is placed under NiFeCr.
a and the atomic% of the Cr content of NiFeCr
Is 35 to 38 (common to the composition range of the present invention), the exchange coupling between PtMn and CoFe is significantly reduced,
The spin valve could not be evaluated. This is different from known example 3.

【0034】「第1の実施形態」図1に示す本発明の第
1の実施形態において、基板80上に下地層10として
NiFeCr膜を3〜6nm形成する。次に真空の下で
引き続き、反強磁性体(PtMn)21を10〜15n
m、強磁性体(CoFe)22を2nm形成し、設計に
応じてRuを6〜8AとCoFeを2〜3A形成して固
定層20とし、更に連続して分離膜30としてCuを2
nm、自由層40としてCoFe、NiFe合わせて2
〜4nm形成後、保護層50としてCu及びTa合わせ
て3nm形成する。
[First Embodiment] In the first embodiment of the present invention shown in FIG. 1, a NiFeCr film is formed as a base layer 10 on a substrate 80 to a thickness of 3 to 6 nm. Next, the antiferromagnetic material (PtMn) 21 is continuously applied under vacuum to 10 to 15 n.
m, a ferromagnetic material (CoFe) 22 is formed to a thickness of 2 nm, Ru is formed to 6 to 8 A and CoFe is formed to 2 to 3 A according to design to form a fixed layer 20, and further, a Cu film is formed continuously as a separation film 30.
nm, as the free layer 40, a total of 2
After the formation of 44 nm, the protection layer 50 is formed to a total thickness of 3 nm with Cu and Ta.

【0035】その後、ハードバイアスプロセスとして知
られる手法により、永久磁石層60、電極層70、保護
膜90を形成しスピンバルブヘッドとした。下地層とし
て、従来のNiFe/Taに比べて、従来7%程度のM
R比が10%へと大きく改善し、再生出力が40%向上
した。
Thereafter, the permanent magnet layer 60, the electrode layer 70, and the protective film 90 were formed by a method known as a hard bias process to obtain a spin valve head. As an underlayer, the conventional NiFe / Ta has a M of about 7% in the related art.
The R ratio was greatly improved to 10%, and the reproduction output was improved by 40%.

【0036】「第2の実施形態」前記第1の実施形態に
おいて、NiFeCrのCr量を32〜38原子%の組
成範囲とすることで図7に示すような従来例を超えた特
有な効果を奏した。この際、Ni、Feの比はFeが0
〜1の広い範囲で効果は変わらない。
[Second Embodiment] In the first embodiment, by setting the Cr content of NiFeCr to a composition range of 32 to 38 atomic%, a unique effect exceeding the conventional example as shown in FIG. 7 is obtained. Played. At this time, the ratio of Ni and Fe is
The effect does not change in a wide range of 11.

【0037】「第3の実施形態」図2に示す本発明の第
3の実施形態において、基板80上に下地層10として
NiFeCr膜を2〜5nm形成する(第1の実施形態
に比べて次に示す補助層の厚さ分だけ薄くなってい
る)。引き続いて補助層15としてNiFeを1〜3n
m形成する。次に真空の下で引き続き反強磁性体(Pt
Mn)21を10〜15nm、強磁性体(CoFe)2
2を2nm形成し、設計に応じてRuを6〜8AとCo
Feを2〜3A(オングストローム)形成して固定層2
0とし、更に連続して分離膜30としてCuを2nm、
自由層40としてCoFe、NiFeあわせて2〜4n
m形成後、保護層50としてCu及びTa合わせて3n
m形成する。
[Third Embodiment] In the third embodiment of the present invention shown in FIG. 2, a NiFeCr film is formed as a base layer 10 on a substrate 80 to a thickness of 2 to 5 nm (compared to the first embodiment, The thickness is reduced by the thickness of the auxiliary layer shown in FIG. Subsequently, NiFe is used as the auxiliary layer 15 for 1 to 3 n.
m. Then the antiferromagnetic material (Pt
Mn) 21 to 10 to 15 nm, ferromagnetic substance (CoFe) 2
2 is formed to a thickness of 2 nm, and Ru is set to 6 to 8 A and Co
2 to 3 A (Angstrom) of Fe to form fixed layer 2
0, and 2 nm of Cu as the separation film 30 continuously.
2-4n of CoFe and NiFe as the free layer 40
After the formation of the protective layer 50, the total thickness of Cu and Ta is 3n.
m.

【0038】その後、ハードバイアスプロセスにより、
永久磁石層60、電極層70、保護膜90を形成しスピ
ンバルブヘッドとした。下地層として、図6に示すNi
Fe/Taの7%程度のMR比が10%へと改善し、再
生出力が40%向上した。また、第1の実施形態よりN
iFeCrが薄くできる効果がある。
Thereafter, by a hard bias process,
The permanent magnet layer 60, the electrode layer 70, and the protective film 90 were formed to obtain a spin valve head. As the underlayer, Ni shown in FIG.
The MR ratio of about 7% of Fe / Ta was improved to 10%, and the reproduction output was improved by 40%. Further, N from the first embodiment
There is an effect that iFeCr can be made thin.

【0039】「第4の実施形態」前記第3の実施形態に
おいて、NiFeCrのCr量を32〜42原子%の組
成範囲とすることで図8に示すような従来例を超えた特
有な効果を奏した。この際、Ni、Feの比はFeが0
〜1の広い範囲で効果は変わらない。ここで、補助層1
5を採用したことにより、Cr量の組成範囲を32〜3
8から32〜42原子%に拡大することができた。
"Fourth Embodiment" In the third embodiment, by setting the Cr content of NiFeCr to a composition range of 32 to 42 atomic%, a unique effect exceeding the conventional example as shown in FIG. 8 can be obtained. Played. At this time, the ratio of Ni and Fe is
The effect does not change in a wide range of 11. Here, the auxiliary layer 1
By adopting No. 5, the composition range of the Cr content is 32 to 3
8 to 32 to 42 atomic%.

【0040】また、補助層はNiFeの他Co、CoF
e、CoNiFe等、面心立方又は最密六方晶系材料で
も良い。
The auxiliary layer is made of Co, CoF in addition to NiFe.
e, CoNiFe, etc., may be a face-centered cubic or close-packed hexagonal material.

【0041】「第5の実施形態」図3に示す本発明の第
5の実施形態において、基板80上に下地層10とし
て、NiFeCrを3〜7nm形成し真空の下で引き続
き、自由層40として、NiFe膜、CoFe膜を合計
4nm形成し、続いて分離層30として2nmのCu
を、強磁性体22にCoFe2〜3nmと、設計に応じ
てRuを6〜8AとCoFeを2Aとを形成し、反強磁
性体21にPtMnを15nm形成して固定層20と
し、保護層50にTaを2nm形成し、ハードバイアス
プロセスによりスピンバルブヘッドを形成した。下地膜
にTa2nmを用いた場合8%であったMR比がNiF
eCrでは10%と20%程度向上する。
[Fifth Embodiment] In a fifth embodiment of the present invention shown in FIG. 3, NiFeCr is formed as a base layer 10 on a substrate 80 to a thickness of 3 to 7 nm, and the free layer 40 is continuously formed under vacuum. , A NiFe film and a CoFe film are formed in a total thickness of 4 nm.
Is formed on the ferromagnetic body 22 by forming CoFe2 to 3 nm, Ru is formed by 6 to 8 A and CoFe is formed by 2 A, and PtMn is formed on the antiferromagnetic body 21 by 15 nm to form the fixed layer 20. Was formed to a thickness of 2 nm, and a spin valve head was formed by a hard bias process. When Ta2 nm was used for the base film, the MR ratio was 8%, which was 8%.
With eCr, it is improved by about 10% and about 20%.

【0042】「第6の実施形態」図3に示す本発明の第
5の実施形態において、NiFeCrのCr量を32〜
42原子%の組成範囲とすることで図9に示すような従
来例を超えた特有な効果を奏した。この際、Ni、Fe
の比はFeが0〜1の広い範囲で効果は変わらない。
[Sixth Embodiment] In the fifth embodiment of the present invention shown in FIG.
By setting the composition range to 42 at%, a unique effect exceeding the conventional example as shown in FIG. 9 was obtained. At this time, Ni, Fe
The effect does not change over a wide range of Fe from 0 to 1.

【0043】「第7の実施形態」前記第5の実施形態に
おいて、下地層のNiFeCrと、自由層のNiFe及
び/又はCoFeと、の間に緩衝層を設けることによ
り、自由層の磁歪定数を調節することもできる。例え
ば、NiFeと下地層との間に、緩衝層としてPdを4
〜6A(オングストローム)設けると、自由層の磁歪定
数を1×10−6〜1×10−7まで低下させることが
できる。更に、Pdを厚くすると磁歪が負となる。同様
の磁歪調節効果は、Pdに代えてPt、Ru、Rh、I
r、Re、Os、Cu、Ag、Au又はそれらの合金で
も得られる。
Seventh Embodiment In the fifth embodiment, the buffer layer is provided between NiFeCr of the underlayer and NiFe and / or CoFe of the free layer to reduce the magnetostriction constant of the free layer. It can also be adjusted. For example, between NiFe and the underlayer, Pd is used as a buffer layer.
When the thickness is set to 6 A (angstrom), the magnetostriction constant of the free layer can be reduced to 1 × 10 −6 to 1 × 10 −7. Further, when Pd is thickened, the magnetostriction becomes negative. The same magnetostriction adjusting effect is obtained by replacing Pd with Pt, Ru, Rh, I
r, Re, Os, Cu, Ag, Au or an alloy thereof can also be obtained.

【0044】以上説明したスピンバルブ膜の構成におい
て、固定層は図1に示すような反強磁性体層と強磁性体
層(単層でも多層でも可)の積層体として説明し、前記
強磁性体層が図7に示すようにCoFeの強磁性体をR
uを挟んで積層して実質的にフェリ磁性体(反強磁性体
の一種)として機能する積層フェリ構造となっている。
ここで、各CoFeの膜厚を1対1にすると積層フェリ
構造は反強磁性体の属性を示し、1対1でなくて膜厚に
差を持たせると実質的なフェリ磁性体となるが、いずれ
の積層フェリ構造でも反強磁性体と相俟って固定層とし
ての機能を奏するものである。
In the structure of the spin valve film described above, the fixed layer is described as a laminate of an antiferromagnetic layer and a ferromagnetic layer (single layer or multilayer) as shown in FIG. As shown in FIG. 7, the ferromagnetic material of CoFe
It has a laminated ferri structure that functions as a ferrimagnetic material (a kind of antiferromagnetic material) by being laminated with u interposed therebetween.
Here, when the film thickness of each CoFe is set to 1: 1, the laminated ferrimagnetic structure shows an attribute of an antiferromagnetic material, and when the film thickness is not 1: 1 but has a difference in film thickness, the ferrimagnetic material becomes substantially ferrimagnetic. Any of the laminated ferrimagnetic structures can function as a fixed layer in combination with the antiferromagnetic material.

【0045】また、図1に示す自由層は、強磁性体の単
層でも多層でも良いが、多層の場合に、CoFe又はN
iFeの強磁性体をRuを介在させて積層し各強磁性体
の膜厚に差を持たせて実質的なフェリ磁性体として機能
させる積層構造であっても良い。
The free layer shown in FIG. 1 may be a single layer or a multilayer of a ferromagnetic material.
A stacked structure may be adopted in which the ferromagnetic materials of iFe are stacked with Ru interposed and the thickness of each ferromagnetic material is made different to function as a substantial ferrimagnetic material.

【0046】因みに、積層フェリ構造とは、一般的に云
えば、積層した2つの強磁性層を中間膜を用いて反強磁
性的に結合させて実質的な磁気モーメントを減少させる
構成を指称し、強磁性層はCo,CoFe,NiFeや
それらの合金のいずれでも良く、中間膜はRuの外にI
r,Rh,Cr,Cuでも良い。スピンバルブ膜に用い
る場合、固定層に使用する際にはCoFe/Ru/Co
Fe/PtMn等の構成で積層フェリ固定層と称し、自
由層に使用する際にはCoFe/NiFe/Ru/Ni
Fe等の構成で積層フェリ自由層と称する。
Incidentally, the laminated ferri structure generally refers to a configuration in which two laminated ferromagnetic layers are antiferromagnetically coupled by using an intermediate film to reduce a substantial magnetic moment. The ferromagnetic layer may be made of any of Co, CoFe, NiFe and alloys thereof, and the intermediate film is made of I, in addition to Ru.
r, Rh, Cr, Cu may be used. When used for a spin valve film, CoFe / Ru / Co
Fe / PtMn or the like is referred to as a laminated ferri-fixed layer. When used as a free layer, CoFe / NiFe / Ru / Ni
The structure of Fe or the like is referred to as a laminated ferri-free layer.

【0047】また、本発明の実施形態に係るスピンバル
ブ膜は図1に示すような、反強磁性体、強磁性体、分離
層、自由層からなる主構成層について説明したが、これ
に限らず、反強磁性体、強磁性体、分離層、自由層、C
u層、強磁性体、反強磁性体からなる主構成層を形成す
るデュアルスピンバルブ膜についても、本発明の実施形
態となり得るものである。
Further, the spin valve film according to the embodiment of the present invention has been described with reference to the main constituent layer including the antiferromagnetic material, the ferromagnetic material, the separation layer, and the free layer as shown in FIG. 1, but is not limited thereto. , Antiferromagnetic material, ferromagnetic material, separation layer, free layer, C
The dual spin valve film forming the main constituent layer composed of the u layer, the ferromagnetic material, and the antiferromagnetic material can also be an embodiment of the present invention.

【0048】[0048]

【発明の効果】本発明のNiFeCr下地を用いること
により、著しい技術的困難さを伴う薄膜化を追求せず、
スピンバルブの高感度化を達成できた。これにより高記
録密度のGMRヘッドが実現できた。
By using the NiFeCr underlayer of the present invention, it is not necessary to pursue a thin film accompanied by remarkable technical difficulties,
High sensitivity of the spin valve was achieved. As a result, a high recording density GMR head was realized.

【0049】また、NiFeCrは2重スピンバルブの
下地、トンネル型GMRヘッドの下地としてもMR比向
上に効果がある。
NiFeCr is also effective for improving the MR ratio as a base for a double spin valve and a base for a tunnel type GMR head.

【0050】また、NiFeCr下地は、MR膜との重
なり部(アバット部等と称する)でハードバイアス膜の
保磁力が低下するのを防ぎ、MR膜の磁化方向安定化し
てバルクハウゼンノイズを減少させる効果がある。
The NiFeCr underlayer prevents the coercive force of the hard bias film from decreasing at the overlapping portion (referred to as an abutment portion) with the MR film, stabilizes the magnetization direction of the MR film, and reduces Barkhausen noise. effective.

【0051】また、NiFeCrは媒体材料の下地とす
ると、Cr等に比べ保磁力を低下させず低ノイズ化でき
る効果がある。
When NiFeCr is used as a base material of the medium, it has the effect of reducing the noise without lowering the coercive force as compared with Cr or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1及び第2の実施形態に係るスピン
バルブヘッドの構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of a spin valve head according to first and second embodiments of the present invention.

【図2】本発明の第3及び第4の実施形態に係るスピン
バルブヘッドの構成例を示す図である。
FIG. 2 is a diagram showing a configuration example of a spin valve head according to third and fourth embodiments of the present invention.

【図3】本発明の第5〜第7の実施形態に係るスピンバ
ルブヘッドの構成例を示す図である。
FIG. 3 is a diagram showing a configuration example of a spin valve head according to fifth to seventh embodiments of the present invention.

【図4】磁気ディスク装置の概要構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of a magnetic disk device.

【図5】GMRヘッドにおけるスピンバルブ部の構成図
である。
FIG. 5 is a configuration diagram of a spin valve unit in the GMR head.

【図6】従来構造のスピンバルブヘッドのMR膜の構成
を示す図である。
FIG. 6 is a diagram showing a configuration of an MR film of a spin valve head having a conventional structure.

【図7】第1及び第2の実施形態におけるMR比とCr
組成の関係図である。
FIG. 7 shows the MR ratio and Cr in the first and second embodiments.
FIG. 3 is a diagram showing the relationship between compositions.

【図8】第3及び第4の実施形態におけるMR比とCr
組成の関係図である。
FIG. 8 shows the MR ratio and Cr in the third and fourth embodiments.
FIG. 3 is a diagram showing the relationship between compositions.

【図9】第5〜第7の実施形態におけるMR比とCr組
成の関係図である。
FIG. 9 is a diagram showing the relationship between the MR ratio and the Cr composition in the fifth to seventh embodiments.

【図10】NiFeCr膜構造のX線回折分析結果を示
す図である。
FIG. 10 is a diagram showing an X-ray diffraction analysis result of a NiFeCr film structure.

【符号の説明】[Explanation of symbols]

10 下地層 15 補助層 20 スピンバルブ固定層 21 反強磁性膜 22 強磁性膜 30 分離層 40 自由層 50 保護層 60 永久磁石層 70 電極 100 シールド層1 110 再生ヘッドトラック幅 120 MR高さ 130,140 ギャップ膜 150 シールド2 201 ベース 202 スピンドル 203 磁気ディスク 204 磁気ヘッド 205 サスペンション DESCRIPTION OF SYMBOLS 10 Underlayer 15 Auxiliary layer 20 Spin valve pinned layer 21 Antiferromagnetic film 22 Ferromagnetic film 30 Separation layer 40 Free layer 50 Protective layer 60 Permanent magnet layer 70 Electrode 100 Shield layer 1 110 Reproducing head track width 120 MR height 130, 140 Gap film 150 Shield 2 201 Base 202 Spindle 203 Magnetic disk 204 Magnetic head 205 Suspension

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 43/08 G01R 33/06 R (72)発明者 平野 辰己 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 星屋 裕之 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 2G017 AA01 AB07 AD54 AD65 5D034 BA04 BA05 BA12 BA16 BA21 BB12 CA08 5E049 AA07 AA09 AC05 BA12 CB02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 43/08 G01R 33/06 R (72) Inventor Tatsumi Hirano 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. Hitachi, Ltd.Hitachi Laboratory (72) Inventor Hiroyuki Hoshiya 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 2G017 AA01 AB07 AD54 AD65 5D034 BA04 BA05 BA12 BA16 BA21 BB12 CA08 5E049 AA07 AA09 AC05 BA12 CB02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 反強磁性体と強磁性体とを積層した固定
層、前記固定層上の分離層、前記分離層上の強磁性体か
らなる自由層、を形成するスピンバルブ型再生ヘッド
と、電磁誘導型記録ヘッドと、から構成されるGMRヘ
ッドであって、 基板上に体心立方晶NiFeCr層を形成し、前記体心
立方晶NiFeCr層上に前記固定層を形成することを
特徴とするGMRヘッド。
1. A spin-valve reproducing head for forming a fixed layer in which an antiferromagnetic material and a ferromagnetic material are stacked, a separation layer on the fixed layer, and a free layer made of a ferromagnetic material on the separation layer. A GMR head, comprising: a body-centered cubic NiFeCr layer formed on a substrate; and the fixed layer formed on the body-centered cubic NiFeCr layer. GMR head.
【請求項2】 請求項1に記載のGMRヘッドにおい
て、 前記体心立方晶NiFeCr層の組成が、(Ni1−x
Fex)1−yCryと表記すると、0<x<1、且つ
0.32<y<0.38 であることを特徴とするGM
Rヘッド。
2. The GMR head according to claim 1, wherein the composition of the body-centered cubic NiFeCr layer is (Ni1-x
Fex) 1-yCry, where 0 <x <1 and 0.32 <y <0.38.
R head.
【請求項3】 反強磁性体と強磁性体とを積層した固定
層、前記固定層上の分離層、前記分離層上の強磁性体か
らなる自由層、を形成するスピンバルブ型再生ヘッド
と、電磁誘導型記録ヘッドと、から構成されるGMRヘ
ッドであって、 基板上に体心立方晶NiFeCr層と補助層を形成し、
前記補助層上に前記固定層を形成することを特徴とする
GMRヘッド。
3. A spin-valve read head for forming a fixed layer in which an antiferromagnetic material and a ferromagnetic material are stacked, a separation layer on the fixed layer, and a free layer of the ferromagnetic material on the separation layer. A GMR head comprising: a body-centered cubic NiFeCr layer and an auxiliary layer on a substrate;
A GMR head, wherein the fixed layer is formed on the auxiliary layer.
【請求項4】 請求項3に記載のGMRヘッドにおい
て、 前記補助層が面心立方晶系又は六方晶材料であり、 前記体心立方晶NiFeCr層の組成が、(Ni1−x
Fex)1−yCryと表記すると、0<x<1、且つ
0.32<y<0.42 であることを特徴とするGM
Rヘッド。
4. The GMR head according to claim 3, wherein the auxiliary layer is a face-centered cubic or hexagonal material, and the composition of the body-centered cubic NiFeCr layer is (Ni1-x
Fex) 1-yCry, where 0 <x <1 and 0.32 <y <0.42.
R head.
【請求項5】 強磁性体からなる自由層、前記自由層上
の分離層、前記分離層上で強磁性体と反強磁性体とを積
層した固定層、を形成するスピンバルブ型再生ヘッド
と、電磁誘導型記録ヘッドと、から構成されるGMRヘ
ッドであって、 基板上に体心立方晶NiFeCr層を形成し、前記体心
立方晶NiFeCr層上に前記自由層を形成することを
特徴とするGMRヘッド。
5. A spin-valve reproducing head for forming a free layer made of a ferromagnetic material, a separation layer on the free layer, and a fixed layer on which a ferromagnetic material and an antiferromagnetic material are stacked on the separation layer. A GMR head comprising: a body-centered cubic NiFeCr layer formed on a substrate; and the free layer formed on the body-centered cubic NiFeCr layer. GMR head.
【請求項6】 請求項5に記載のGMRヘッドにおい
て、 前記体心立方晶NiFeCr層の組成が、(Ni1−x
Fex)1−yCryと表記すると、0<x<1、且つ
0.32<y<0.42 であることを特徴とするGM
Rヘッド。
6. The GMR head according to claim 5, wherein the composition of the body-centered cubic NiFeCr layer is (Ni1-x
Fex) 1-yCry, where 0 <x <1 and 0.32 <y <0.42.
R head.
【請求項7】 請求項5又は6に記載のGMRヘッドに
おいて、 前記体心立方晶NiFeCr層と前記自由層との間に緩
衝層を形成し、 前記緩衝層が、Pd、Pt、Ru、Rh、Ir、Re、
Os、Cu、Ag、Au又はそれらの合金からなること
を特徴とするGMRヘッド。
7. The GMR head according to claim 5, wherein a buffer layer is formed between the body-centered cubic NiFeCr layer and the free layer, and the buffer layer is formed of Pd, Pt, Ru, and Rh. , Ir, Re,
A GMR head comprising Os, Cu, Ag, Au or an alloy thereof.
【請求項8】 請求項1乃至7のいずれか1つの請求項
に記載のGMRヘッドにおいて、 前記固定層の強磁性体は、強磁性体を積層して、実質的
にフェリ磁性体又は反強磁性体として機能させる層であ
り、 前記自由層は、強磁性体を積層して実質的にフェリ磁性
体として機能させる層であることを特徴とするGMRヘ
ッド。
8. The GMR head according to claim 1, wherein the ferromagnetic material of the fixed layer is formed by laminating a ferromagnetic material, and is substantially a ferrimagnetic material or an antiferromagnetic material. A GMR head, which is a layer functioning as a magnetic material, wherein the free layer is a layer in which a ferromagnetic material is laminated and functions substantially as a ferrimagnetic material.
【請求項9】 請求項1乃至4のいずれか1つの請求項
に記載のGMRヘッドにおいて、 前記固定層の強磁性体は、強磁性体を積層して、実質的
にフェリ磁性体又は反強磁性体として機能させる層であ
り、 前記固定層は、非磁性体を介在させて上下に固定層を形
成するデュアルスピンバルブ膜であることを特徴とする
GMRヘッド。
9. The GMR head according to claim 1, wherein the ferromagnetic material of the fixed layer is formed by laminating a ferromagnetic material, and is substantially a ferrimagnetic material or an antiferromagnetic material. A GMR head, which is a layer functioning as a magnetic material, wherein the fixed layer is a dual spin valve film in which a fixed layer is formed above and below with a non-magnetic material interposed.
【請求項10】 請求項9に記載のGMRヘッドにおい
て、 前記自由層は、強磁性体を積層して実質的にフェリ磁性
体として機能させる層であることを特徴とするGMRヘ
ッド。
10. The GMR head according to claim 9, wherein the free layer is a layer in which a ferromagnetic material is laminated and functions substantially as a ferrimagnetic material.
JP2001018817A 2001-01-26 2001-01-26 GMR head Expired - Fee Related JP3947361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018817A JP3947361B2 (en) 2001-01-26 2001-01-26 GMR head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001018817A JP3947361B2 (en) 2001-01-26 2001-01-26 GMR head

Publications (2)

Publication Number Publication Date
JP2002230717A true JP2002230717A (en) 2002-08-16
JP3947361B2 JP3947361B2 (en) 2007-07-18

Family

ID=18884786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018817A Expired - Fee Related JP3947361B2 (en) 2001-01-26 2001-01-26 GMR head

Country Status (1)

Country Link
JP (1) JP3947361B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760966B2 (en) * 2002-04-30 2004-07-13 Headway Technologies, Inc. Process of manufacturing a side reading reduced GMR for high track density
JP2004311686A (en) * 2003-04-07 2004-11-04 Alps Electric Co Ltd Magnetically sensitive element and its manufacturing method
US7312960B2 (en) 2004-03-19 2007-12-25 Alps Electric Co., Ltd. Magnetic sensing element comprising a pinned magnetic layer, a free magnetic layer, and a nonmagnetic conductive layer disposed therebetween
US7382587B2 (en) * 2004-04-30 2008-06-03 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having self-pinned SV structures for CPP GMR applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760966B2 (en) * 2002-04-30 2004-07-13 Headway Technologies, Inc. Process of manufacturing a side reading reduced GMR for high track density
JP2004311686A (en) * 2003-04-07 2004-11-04 Alps Electric Co Ltd Magnetically sensitive element and its manufacturing method
US7312960B2 (en) 2004-03-19 2007-12-25 Alps Electric Co., Ltd. Magnetic sensing element comprising a pinned magnetic layer, a free magnetic layer, and a nonmagnetic conductive layer disposed therebetween
US7382587B2 (en) * 2004-04-30 2008-06-03 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head having self-pinned SV structures for CPP GMR applications

Also Published As

Publication number Publication date
JP3947361B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP4942445B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk apparatus
JP3180027B2 (en) Spin valve magnetoresistive sensor and magnetic recording system using this sensor
US9177575B1 (en) Tunneling magnetoresistive (TMR) read head with reduced gap thickness
US6985338B2 (en) Insulative in-stack hard bias for GMR sensor stabilization
EP1400957A2 (en) Spin-valve head containing partial current-screening-layer, production method of said head, and current-screening method
JP2002025013A (en) Magnetic tunnel junction laminated type head and method of manufacture
US7916431B2 (en) Magnetoresistive element including insulating film touching periphery of spacer layer
JP2007287863A (en) Magnetoresistive element and manufacturing method thereof, magnetoresistive element assembly, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device
JP2008060202A (en) Method for manufacturing magneto-resistance effect element of cpp structure
JP3706793B2 (en) Spin valve thin film magnetic element, method of manufacturing the same, and thin film magnetic head including the spin valve thin film magnetic element
KR100272872B1 (en) Magnetic resistance effect element and method for manufacture thereof
US7944650B2 (en) Magnetoresistive element including layered film touching periphery of spacer layer
JP2001118217A (en) Spin valve type thin-film magnetic device, thin-film magnetic head, and manufacturing method of spin valve thin-film magnetic device
US7782576B2 (en) Exchange-coupling film incorporating stacked antiferromagnetic layer and pinned layer, and magnetoresistive element including the exchange-coupling film
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
JP2001177163A (en) Magnetic conversion element and thin film magnetic head
JP2000315305A (en) Magnetic reproducing head, magnetic head assembly, magnetic disk driving device and manufacture of magnetic head assembly
JP3541245B2 (en) Magnetic head and magnetic storage device having the same
JP3947361B2 (en) GMR head
JP2002358610A (en) Magneto-resistive head and its manufacturing method
US7372675B2 (en) Magnetoresistive element, thin-film magnetic head, head gimbal assembly, head arm assembly and magnetic disk drive
JPH0936455A (en) Magnetoresistive effect element
JP2009044122A (en) Magneto-resistive effect element with spacer layer including non-magnetic conductor phase
JP4322915B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk apparatus
JP3823028B2 (en) Magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees