JP2000171108A - Rotary compressor and refrigerating circuit using it - Google Patents

Rotary compressor and refrigerating circuit using it

Info

Publication number
JP2000171108A
JP2000171108A JP10344367A JP34436798A JP2000171108A JP 2000171108 A JP2000171108 A JP 2000171108A JP 10344367 A JP10344367 A JP 10344367A JP 34436798 A JP34436798 A JP 34436798A JP 2000171108 A JP2000171108 A JP 2000171108A
Authority
JP
Japan
Prior art keywords
refrigerant
compression
rotary compressor
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10344367A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishikawa
弘 西川
Eiichi Shimizu
栄一 清水
Makoto Hazama
誠 間
Takehiro Nishikawa
剛弘 西川
Kazuya Sato
里  和哉
Yasuo Sakamoto
泰生 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10344367A priority Critical patent/JP2000171108A/en
Publication of JP2000171108A publication Critical patent/JP2000171108A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply a conventional basic design roughly as it is even in the case that carbon dioxide is used as the refrigerant used for a rotary compressor is made. SOLUTION: A preceding compressive element 20 and a succeeding compressive element 30 are connected in series by a coupling pipe so as to constitute a compression means 12, and further it is provided with a refrigerant injection device 50. This refrigerant injection device 50 has a pressure reducing mechanism 53 consisting of a capillary tube or the like, and it depressurizes a cooling refrigerant supplied from outside of the machine to lower the temperature and injects the refrigerant into a compression room. The injection of the cooling refrigerant is performed from the refrigerant injection port 51 communicating with the compression room of the succeeding stage compressive element 30. Hereby, the temperature and the pressure of the refrigerant within the compression room are lowered, and even when carbon dioxide is used as the refrigerant used or a rotary compressor 10, the conventional basic design can be applied to it roughly as it is.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素を冷媒
として用いたロータリ圧縮機に関する。
The present invention relates to a rotary compressor using carbon dioxide as a refrigerant.

【0002】[0002]

【従来の技術】従来、ロータリ圧縮機は種々の技術分野
に用いられ、冷媒を圧縮する圧縮手段やこの圧縮手段を
駆動するための駆動手段であるモータ等を有して、これ
らが密閉ケース内に収納された構成となっている。
2. Description of the Related Art Conventionally, rotary compressors have been used in various technical fields, and have a compression means for compressing a refrigerant and a motor as a driving means for driving the compression means. It is configured to be stored in.

【0003】このようなロータリ圧縮機においては、こ
れまで冷媒としてR−22等の塩素を含む冷媒(以下、
特定フロンガスと記載する)が用いられていたが、この
R−22冷媒はオゾン層を破壊する原因となることが判
明し規制対象となった。
In such a rotary compressor, a refrigerant containing chlorine such as R-22 (hereinafter, referred to as a refrigerant) has been used.
However, this R-22 refrigerant was found to be a cause of destruction of the ozone layer, and was subject to regulation.

【0004】そこで、特定フロンガスに代わる冷媒の研
究開発が盛んに行われている。かかる冷媒には、二酸化
炭素冷媒等がある。
[0004] Therefore, research and development of a refrigerant replacing the specific Freon gas have been actively conducted. Such refrigerants include carbon dioxide refrigerants.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特定フ
ロンガスを用いることを前提とした従来構造のロータリ
圧縮機に二酸化炭素冷媒を用いると、従来に比べて冷媒
の最低圧力が約6倍(約30〜40kg/cm2G)、
最高圧力が約4倍(約150kg/cm2G)となって
差圧が大きくなると共に、最高圧力や最高温度が非常に
高くなる問題がある。
However, when a carbon dioxide refrigerant is used in a rotary compressor having a conventional structure on the assumption that a specific Freon gas is used, the minimum pressure of the refrigerant is about six times (about 30 to 30 times) as compared with the conventional one. 40 kg / cm 2 G),
There is a problem that the maximum pressure becomes about four times (about 150 kg / cm 2 G), the differential pressure becomes large, and the maximum pressure and the maximum temperature become extremely high.

【0006】このためロータリ圧縮機を構成するシリン
ダや密閉ケース等の部材の耐圧特性、耐熱特性及び潤滑
油の熱特性を含めた基本設計をやり直す必要が生じると
共に、このようなロータリ圧縮機を用いた冷凍回路の設
計変更が必要となってコストアップの要因となってい
る。
For this reason, it is necessary to redo the basic design including the pressure resistance characteristics, heat resistance characteristics, and thermal characteristics of the lubricating oil of the members such as the cylinder and the closed case that constitute the rotary compressor, and use such a rotary compressor. This requires a change in the design of the refrigeration circuit, which is a factor in increasing costs.

【0007】またシリンダや密閉ケース等における耐圧
及び耐熱の問題が解決しても、冷媒の圧力が高くなる構
成の場合には、圧縮手段を駆動するための駆動手段の負
荷が大きくなり(消費電力が大きくなる)、従来に比べ
て冷凍効率が低下してしまう問題がある。
Further, even if the problems of pressure resistance and heat resistance in a cylinder, a closed case, etc. are solved, in the case of a structure in which the pressure of the refrigerant is high, the load of the driving means for driving the compression means increases (power consumption). Refrigeration efficiency is reduced as compared with the related art.

【0008】そこで、本発明は、二酸化炭素冷媒を用い
た場合であっても、従来の基本設計を略そのまま適用で
きると共に冷凍効率の低下を抑制したロータリ圧縮機及
びそれを用いた冷凍回路を提供することを目的とする。
Therefore, the present invention provides a rotary compressor and a refrigeration circuit using the same, in which a conventional basic design can be applied almost as it is and a decrease in refrigeration efficiency is suppressed even when a carbon dioxide refrigerant is used. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、請求項1にかかる発明は、圧縮室を縮小させて、該
圧縮室内の冷媒を圧縮する圧縮手段と、該圧縮手段を駆
動する駆動手段とを有したロータリ圧縮機において、圧
縮手段が、圧縮室を備えた圧縮要素を連結管により複数
直列接続して形成され、かつ、各圧縮要素における冷媒
の最高温度及び最高圧力が所定温度及び所定圧力以上に
ならないように機外から冷却用冷媒を減圧して圧縮室に
注入する冷媒温度調節手段を有して、冷媒として二酸化
炭素冷媒を用いた場合であっても、従来の基本設計を略
そのまま適用できるようにすると共に冷凍効率の低下を
抑制したことを特徴とする。
According to a first aspect of the present invention, there is provided a compressor for reducing the size of a compression chamber and compressing a refrigerant in the compression chamber, and a drive for driving the compression means. Means, the compression means is formed by connecting a plurality of compression elements having compression chambers in series by a connecting pipe, and the maximum temperature and the maximum pressure of the refrigerant in each compression element are a predetermined temperature and Having a refrigerant temperature control means for decompressing the cooling refrigerant from outside the machine and injecting it into the compression chamber so as not to exceed a predetermined pressure, even when using a carbon dioxide refrigerant as the refrigerant, the conventional basic design It is characterized by being able to be applied almost as it is and suppressing a decrease in refrigeration efficiency.

【0010】請求項2にかかる発明は、冷媒温度調節手
段が、減圧器を備えて、該減圧器により冷却用冷媒を減
圧することにより当該冷却用冷媒の温度を下げて圧縮室
に注入することにより、冷媒として二酸化炭素冷媒を用
いた場合であっても、容易に従来の基本設計を略そのま
ま適用できるようにすると共に冷凍効率の低下を抑制し
たことを特徴とする。
According to a second aspect of the present invention, the refrigerant temperature adjusting means includes a decompressor, and the pressure of the cooling refrigerant is reduced by the decompressor to lower the temperature of the cooling refrigerant and inject it into the compression chamber. Thus, even when a carbon dioxide refrigerant is used as the refrigerant, the conventional basic design can be easily applied substantially as it is, and a decrease in refrigeration efficiency is suppressed.

【0011】請求項3にかかる発明は、冷媒を圧縮する
請求項1又は2記載のロータリ圧縮機と、冷媒を冷却す
る冷却用熱交換器と、冷媒を減圧する減圧器と、冷媒を
加熱する加熱用熱交換器とが接続されて、基本設計を変
更することなく二酸化炭素冷媒を用いた冷凍回路を構成
し、その際に従来の基本設計を略そのまま適用できるよ
うにすると共に冷凍効率の低下を抑制したことを特徴と
する。
According to a third aspect of the present invention, there is provided the rotary compressor according to the first or second aspect of compressing the refrigerant, a cooling heat exchanger for cooling the refrigerant, a decompressor for reducing the pressure of the refrigerant, and heating the refrigerant. A heat exchanger for heating is connected to form a refrigeration circuit using carbon dioxide refrigerant without changing the basic design.In this case, the conventional basic design can be applied almost as it is, and the refrigeration efficiency decreases. Is suppressed.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図を参照し
て説明する。図1はロータリ圧縮機10の側断面図で、
本発明にかかるロータリ圧縮機10は駆動手段であるモ
ータ11、このモータ11の下方に設けられた圧縮手段
12等を有して、これらが密閉ケース13内に収納され
て冷媒として二酸化炭素冷媒が用いられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of the rotary compressor 10,
The rotary compressor 10 according to the present invention has a motor 11 as a driving means, a compression means 12 provided below the motor 11, and the like. These are housed in a closed case 13, and a carbon dioxide refrigerant is used as a refrigerant. Used.

【0013】なお、密閉ケース13の底部には潤滑油1
4が貯留しており、圧縮手段12における摺動部等を潤
滑するようになっている。
The lubricating oil 1 is provided at the bottom of the closed case 13.
4 for lubricating a sliding portion or the like in the compression means 12.

【0014】圧縮手段12は、前段圧縮要素20と後段
圧縮要素30とから構成され、各圧縮要素20,30に
は吸入管21,31及び吐出管22,32が設けられる
と共に、連結管40により前段圧縮要素20の吐出管2
2と後段圧縮要素30の吸入管31とが連結されてい
る。
The compression means 12 comprises a first-stage compression element 20 and a second-stage compression element 30. Each of the compression elements 20, 30 is provided with suction pipes 21, 31 and discharge pipes 22, 32. Discharge pipe 2 of pre-stage compression element 20
2 and the suction pipe 31 of the rear compression element 30 are connected.

【0015】従って、機外から供給された冷媒は前段圧
縮要素20と後段圧縮要素30とで順次圧縮されて機外
に吐出されることになる。
Therefore, the refrigerant supplied from outside the machine is sequentially compressed by the first-stage compression element 20 and the second-stage compression element 30 and discharged outside the machine.

【0016】前段圧縮要素20と後段圧縮要素30とは
略同じ構成で、各圧縮要素20,30は円筒状のシリン
ダ23,33内にローラ24,34が配設されている。
このローラ24,34は円筒状に形成され、その内側に
クランク25,35が配設されると共に、ローラ24,
34の外側面に図示しないベーンが当接している。
The first-stage compression element 20 and the second-stage compression element 30 have substantially the same configuration. Each of the compression elements 20 and 30 has rollers 24 and 34 disposed in cylindrical cylinders 23 and 33, respectively.
The rollers 24 and 34 are formed in a cylindrical shape, and cranks 25 and 35 are disposed inside the rollers 24 and 34.
A vane (not shown) is in contact with the outer side surface of 34.

【0017】クランク25,35はモータ11の回転軸
15に固着して(又は一体形成されて)設けられている
ので、クランク25,35の回転によりローラ24,3
4は偏心回転運動するようになる。
Since the cranks 25 and 35 are fixed to (or integrally formed with) the rotating shaft 15 of the motor 11, the rotation of the cranks 25 and 35 causes the rollers 24 and 3 to rotate.
4 makes eccentric rotational movement.

【0018】このときローラ24,34における外側面
の一端がシリンダ23,33と常に最小隙間で保持され
るので、シリンダ23,33とローラ24,34との間
に形成される空間は三日月状となる。
At this time, one end of the outer surface of each of the rollers 24 and 34 is always held at a minimum clearance with the cylinders 23 and 33, so that the space formed between the cylinders 23 and 33 and the rollers 24 and 34 has a crescent shape. Become.

【0019】そして、ベーンがローラ24,34の外側
面に当接しているので、このベーンにより三日月状の空
間は図示しない吸気室と圧縮室とに区画される。
Since the vane is in contact with the outer surfaces of the rollers 24 and 34, the vane divides the crescent-shaped space into an intake chamber and a compression chamber (not shown).

【0020】シリンダ23,33の内径及びローラ2
4,34の外径は変化しないので、ローラ24,34が
回転しても三日月状空間の容積は常に一定である。しか
しローラ24,34が回転するに伴い、ローラ24,3
4とシリンダ23,33との最小隙間の位置が変化する
ため三日月状空間の向きが変化する。
Inner diameter of cylinders 23 and 33 and roller 2
Since the outer diameters of the rollers 4 and 34 do not change, the volume of the crescent-shaped space is always constant even when the rollers 24 and 34 rotate. However, as the rollers 24, 34 rotate, the rollers 24, 3
Since the position of the minimum gap between the cylinder 4 and the cylinders 23 and 33 changes, the direction of the crescent-shaped space changes.

【0021】一方、ベーンはローラ24,34の外側面
に常に当接するようにシリンダ23,33の半径方向に
出入りする。
On the other hand, the vanes move in and out in the radial direction of the cylinders 23 and 33 so as to always contact the outer surfaces of the rollers 24 and 34.

【0022】従って、このベーンにより三日月状空間が
区画されて形成される吸気室と圧縮室との容積比は、ロ
ーラ24,34の回転に従い変化し、吸気室の容積が拡
張すると、圧縮室の容積は縮小する。
Accordingly, the volume ratio between the suction chamber and the compression chamber formed by dividing the crescent-shaped space by the vane changes according to the rotation of the rollers 24 and 34. When the volume of the suction chamber is expanded, the volume of the compression chamber is reduced. The volume shrinks.

【0023】吸気室には図示しない吸気口が連通し、ま
た圧縮室には図示しない吐出口が連通しており、ローラ
24,34が吸気口を横切ることにより吸気室は吐出口
と連通するようになって、吸気室が圧縮室に変る。
An intake port (not shown) communicates with the intake chamber, and a discharge port (not shown) communicates with the compression chamber. When the rollers 24 and 34 cross the intake port, the intake chamber communicates with the discharge port. , The intake chamber changes to a compression chamber.

【0024】吐出口には図示しない吐出バルブが設けら
れており、圧縮室の縮小に伴い冷媒が圧縮されて、この
吐出バルブで規定される吐出圧に達すると冷媒が吐出さ
れる。
A discharge valve (not shown) is provided at the discharge port. The refrigerant is compressed as the compression chamber is reduced, and is discharged when the discharge pressure specified by the discharge valve is reached.

【0025】なお、前段圧縮要素20のローラ24と後
段圧縮要素30のローラ34とは、各ローラ24,34
が偏心回転運動することにより発生する振動が相殺され
るように、回転位相が180度ずれて設けられている。
即ち、クランク25とクランク35とは、回転軸15を
中心に対称に設けられている。
The rollers 24 of the first-stage compression element 20 and the rollers 34 of the second-stage compression element 30 are respectively
The rotation phases are shifted by 180 degrees so that the vibrations generated by the eccentric rotational movement are offset.
That is, the crank 25 and the crank 35 are provided symmetrically about the rotation shaft 15.

【0026】以上が圧縮要素20,30の共通構成であ
るが、後段圧縮要素30にはさらに冷媒温度調節手段で
ある冷媒注入装置50が設けられて、圧縮室における冷
媒の温度及び圧力を調節するようになっている。
The above is the common configuration of the compression elements 20 and 30, but the post-stage compression element 30 is further provided with a refrigerant injection device 50 as a refrigerant temperature adjusting means for adjusting the temperature and pressure of the refrigerant in the compression chamber. It has become.

【0027】冷媒注入装置50は、後段圧縮要素30の
圧縮室と連通する冷媒注入口51、この冷媒注入口51
に連結された冷媒注入管52、この冷媒注入管52を流
れる冷媒(この冷媒を特に、冷却用冷媒と記載する)を
減圧するキャピラリチューブ等からなる減圧機構53、
冷媒注入管52に冷却用冷媒を流すか否かを制御する電
磁弁等の開閉弁54が設けられている。
The refrigerant injection device 50 has a refrigerant injection port 51 communicating with the compression chamber of the rear compression element 30,
A pressure reducing mechanism 53 composed of a capillary tube or the like for depressurizing a refrigerant flowing through the refrigerant injection tube 52 (this refrigerant is particularly referred to as a cooling refrigerant).
An on-off valve 54 such as an electromagnetic valve that controls whether or not the cooling refrigerant flows through the refrigerant injection pipe 52 is provided.

【0028】そして、冷媒の温度が所定温度より高くな
らないように開閉弁54が開かれると、冷却用冷媒が減
圧機構53で減圧されながら冷媒注入管52を流動して
冷媒注入口51から圧縮室に注入される。
When the on-off valve 54 is opened so that the temperature of the refrigerant does not become higher than the predetermined temperature, the cooling refrigerant flows through the refrigerant injection pipe 52 while being depressurized by the decompression mechanism 53, and flows from the refrigerant injection port 51 to the compression chamber. Is injected into.

【0029】これにより冷却用冷媒は、吸入管31から
吸気された圧縮室の冷媒と混じってこの圧縮室内の冷媒
の温度を下げる。冷媒の温度が下がることは、冷媒の圧
力も下がることを意味する。
As a result, the cooling refrigerant mixes with the refrigerant in the compression chamber sucked from the suction pipe 31 to lower the temperature of the refrigerant in the compression chamber. Decreasing the temperature of the refrigerant means that the pressure of the refrigerant also decreases.

【0030】なお、冷却用冷媒が減圧機構53を通過す
ることにより減圧されるが、この減圧により冷却用冷媒
の温度が下がるので、効率的に圧縮室内の冷媒の温度及
び圧力を下げることが可能になる。
Although the cooling refrigerant is depressurized by passing through the pressure reducing mechanism 53, the temperature of the cooling refrigerant is reduced by the decompression, so that the temperature and pressure of the refrigerant in the compression chamber can be efficiently reduced. become.

【0031】ところで冷媒注入口51は、冷媒が圧縮さ
れ始めた後に冷却用冷媒を注入するように設けることが
好ましい。これは圧縮開始前(吸気室が圧縮室に変る
前)に冷却用冷媒を注入すると、圧力バランスの関係か
ら注入された冷却用冷媒が吸入管31から流出してしま
うのを防止するためである。
Incidentally, it is preferable that the refrigerant injection port 51 is provided so that the cooling refrigerant is injected after the refrigerant starts to be compressed. This is to prevent the injected cooling refrigerant from flowing out of the suction pipe 31 due to the pressure balance when the cooling refrigerant is injected before the start of compression (before the intake chamber is changed to the compression chamber). .

【0032】このような構成により、冷媒の最高圧力及
び最高温度を抑えることができロータリ圧縮機10を構
成する各部材の耐圧、耐熱評価を含めた基本設計をやり
直す必要が無くなると共に、冷媒の圧力が予め設定され
た圧力よりも大きくなることはないので、冷凍効率の低
下を抑制することが可能になる。
With such a configuration, the maximum pressure and the maximum temperature of the refrigerant can be suppressed, so that it is not necessary to redo the basic design including the pressure resistance and the heat resistance evaluation of each member constituting the rotary compressor 10, and the refrigerant pressure can be reduced. Does not become higher than a preset pressure, so that a decrease in refrigeration efficiency can be suppressed.

【0033】図2はかかるロータリ圧縮機10を空気調
和機に適用した際の冷凍回路図で、室内に配設される室
内機A、室外に配設される室外機Bを主要構成とし、室
内機Aは冷媒と室内空気とを熱交換させる室内熱交換器
19等を有している。
FIG. 2 is a refrigeration circuit diagram when such a rotary compressor 10 is applied to an air conditioner. The indoor unit A disposed indoors and the outdoor unit B disposed outdoors are main components. The machine A has an indoor heat exchanger 19 for exchanging heat between the refrigerant and the indoor air.

【0034】また室外機Bは、上記ロータリ圧縮機1
0、冷媒と外気とを熱交換させる室外熱交換器17、冷
媒を減圧する減圧器18、冷媒の循環路を切替える四方
弁16等を有し、室外熱交換器17と減圧器18との間
の配管に冷媒注入管52が接続されている。
The outdoor unit B includes the rotary compressor 1
0, an outdoor heat exchanger 17 for exchanging heat between the refrigerant and the outside air, a decompressor 18 for depressurizing the refrigerant, a four-way valve 16 for switching the circulation path of the refrigerant, and the like, between the outdoor heat exchanger 17 and the decompressor 18 A refrigerant injection pipe 52 is connected to the pipe.

【0035】そして、冷房運転する時は、冷媒がロータ
リ圧縮機10、室外熱交換器17、減圧器18、室内熱
交換器19を循環するように循環路を切換える。
During the cooling operation, the circulation path is switched so that the refrigerant circulates through the rotary compressor 10, the outdoor heat exchanger 17, the pressure reducer 18, and the indoor heat exchanger 19.

【0036】この場合、冷媒は室外熱交換器17で熱交
換して冷却され(冷却用熱交換器として作用する)、室
内熱交換器19で熱交換して加熱される(加熱用熱交換
器として作用する)。
In this case, the refrigerant is cooled by exchanging heat in the outdoor heat exchanger 17 (acting as a cooling heat exchanger), and is heated by exchanging heat in the indoor heat exchanger 19 (heating heat exchanger). Acts as).

【0037】これにより、ロータリ圧縮機10で圧縮さ
れた冷媒は、室外熱交換器17で外気と熱交換して冷媒
の温度が下がり、減圧器18で減圧されて室内機Aに供
給される。
Thus, the refrigerant compressed by the rotary compressor 10 exchanges heat with the outside air in the outdoor heat exchanger 17 to lower the temperature of the refrigerant, and is decompressed by the decompressor 18 and supplied to the indoor unit A.

【0038】このとき冷媒注入管52の開閉弁54が開
かれていると、減圧器18に供給される冷媒の一部がこ
の冷媒注入管52を介して、後段圧縮要素30に供給さ
れ、ロータリ圧縮機10を含め冷凍回路内での冷媒の最
高温度及び最高圧力が所定圧力及び温度範囲に保たれよ
うになる。
At this time, when the on-off valve 54 of the refrigerant injection pipe 52 is open, a part of the refrigerant supplied to the decompressor 18 is supplied to the subsequent compression element 30 via the refrigerant injection pipe 52, The maximum temperature and the maximum pressure of the refrigerant in the refrigeration circuit including the compressor 10 are maintained in a predetermined pressure and temperature range.

【0039】室内機Aに供給された冷媒は、室内熱交換
器19で室内空気と熱交換して、室内空気を冷却して室
外機Bに戻りサイクルが1巡する。
The refrigerant supplied to the indoor unit A exchanges heat with the indoor air in the indoor heat exchanger 19, cools the indoor air, returns to the outdoor unit B, and goes through one cycle.

【0040】また暖房運転をする時は、冷媒がロータリ
圧縮機10、室内熱交換器19、減圧器18、室外熱交
換器17を循環するように循環路を切換える。
In the heating operation, the circulation path is switched so that the refrigerant circulates through the rotary compressor 10, the indoor heat exchanger 19, the decompressor 18, and the outdoor heat exchanger 17.

【0041】この場合、冷媒は室内熱交換器19で熱交
換して冷却され(冷却用熱交換器として作用)、室外熱
交換器17で熱交換して加熱される(加熱用熱交換器と
して作用)。
In this case, the refrigerant is cooled by exchanging heat in the indoor heat exchanger 19 (acting as a cooling heat exchanger) and is heated by exchanging heat in the outdoor heat exchanger 17 (as a heating heat exchanger). Action).

【0042】これにより、ロータリ圧縮機10で圧縮さ
れた冷媒は、室内熱交換器19で室内空気と熱交換して
この室内空気を加熱して室外機Bに供給される。
Thus, the refrigerant compressed by the rotary compressor 10 exchanges heat with the indoor air in the indoor heat exchanger 19 to heat the indoor air and is supplied to the outdoor unit B.

【0043】室外機Bに供給された冷媒は、減圧器18
により減圧され、室外熱交換器17で外気と熱交換して
ロータリ圧縮機10に戻りサイクルが1巡する。
The refrigerant supplied to the outdoor unit B is supplied to the decompressor 18
, Heat exchanges with the outside air in the outdoor heat exchanger 17, and the flow returns to the rotary compressor 10 to make one cycle.

【0044】このとき冷媒注入管52の開閉弁54が開
かれていると、室外熱交換器17に供給される冷媒の一
部がこの冷媒注入管52を介して、後段圧縮要素30に
供給され、ロータリ圧縮機10を含め冷凍回路内での冷
媒の最高温度及び最高圧力は所定の圧力範囲及び温度範
囲に保たれるようになっている。
At this time, when the on-off valve 54 of the refrigerant injection pipe 52 is open, a part of the refrigerant supplied to the outdoor heat exchanger 17 is supplied to the latter compression element 30 via the refrigerant injection pipe 52. The maximum temperature and the maximum pressure of the refrigerant in the refrigeration circuit including the rotary compressor 10 are maintained in predetermined pressure ranges and temperature ranges.

【0045】[0045]

【発明の効果】以上説明したように請求項1にかかる発
明によれば、圧縮室を備えた圧縮要素を連結管により複
数直列接続して圧縮手段を形成し、かつ、各圧縮要素に
おける冷媒の最高温度及び最高圧力が所定温度及び所定
圧力以上にならないように機外から冷却用冷媒を減圧し
て圧縮室に注入する冷媒温度調節手段を設けたので、冷
媒として二酸化炭素冷媒を用いた場合であっても、従来
の基本設計を略そのまま適用できるようにすると共に冷
凍効率の低下を抑制することが可能になる。
As described above, according to the first aspect of the present invention, a plurality of compression elements each having a compression chamber are connected in series by a connecting pipe to form compression means, and the refrigerant in each compression element is formed. Since the refrigerant temperature control means for reducing the pressure of the cooling refrigerant from outside the machine and injecting the refrigerant into the compression chamber so that the maximum temperature and the maximum pressure do not exceed the predetermined temperature and the predetermined pressure is provided, when a carbon dioxide refrigerant is used as the refrigerant, Even if there is, it becomes possible to apply the conventional basic design as it is, and to suppress a decrease in refrigeration efficiency.

【0046】請求項2にかかる発明によれば、冷媒温度
調節手段に減圧器を設けたので該減圧器により冷却用冷
媒を減圧し冷却用冷媒の温度を下げて圧縮室に注入する
ようにしたので、冷媒として二酸化炭素冷媒を用いた場
合であっても、容易に従来の基本設計を略そのまま適用
できるようにすると共に冷凍効率の低下を抑制したこと
を特徴とする。
According to the second aspect of the present invention, since the decompressor is provided in the refrigerant temperature control means, the cooling refrigerant is depressurized by the decompressor to lower the temperature of the cooling refrigerant and inject the refrigerant into the compression chamber. Therefore, even when a carbon dioxide refrigerant is used as the refrigerant, the conventional basic design can be easily applied substantially as it is, and a decrease in refrigeration efficiency is suppressed.

【0047】請求項3にかかる発明によれば、冷媒音戸
町清酒団を備えたロータリ圧縮機と、冷媒を冷却する冷
却用熱交換器と、冷媒を減圧する減圧器と、冷媒を加熱
する加熱用熱交換器とが接続されて冷凍回路を形成した
ので、基本設計を変更することなく二酸化炭素冷媒を用
いた冷凍回路が容易に構成できると共に冷凍効率の低下
が抑制できる。
According to the third aspect of the present invention, a rotary compressor provided with a refrigerant Ondocho Sakedan, a cooling heat exchanger for cooling the refrigerant, a decompressor for depressurizing the refrigerant, and a heating device for heating the refrigerant Since the refrigeration circuit is formed by being connected to the heat exchanger for use, a refrigeration circuit using a carbon dioxide refrigerant can be easily configured without changing the basic design, and a decrease in refrigeration efficiency can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の説明に適用されるロータ
リ圧縮機の断面図である。
FIG. 1 is a sectional view of a rotary compressor applied to a description of an embodiment of the present invention.

【図2】図1のロータリ圧縮機を空気調和機に適用した
ときの冷凍回路図である。
FIG. 2 is a refrigeration circuit diagram when the rotary compressor of FIG. 1 is applied to an air conditioner.

【符号の説明】[Explanation of symbols]

10 ロータリ圧縮機 12 圧縮手段 17 室外熱交換器 18 減圧器 19 室内熱交換器 20 前段圧縮要素 21,31 吸入管 22,32 吐出管 23,33 シリンダ 24,34 ローラ 25,35 クランク 30 後段圧縮要素 40 連結管 50 冷媒注入装置 51 冷媒注入口 52 冷媒注入管 53 減圧機構 54 開閉弁 DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Compression means 17 Outdoor heat exchanger 18 Decompressor 19 Indoor heat exchanger 20 Pre-compression element 21, 31 Suction pipe 22, 32 Discharge pipe 23, 33 Cylinder 24, 34 Roller 25, 35 Crank 30 Post-compression element 40 connecting pipe 50 refrigerant injection device 51 refrigerant injection port 52 refrigerant injection pipe 53 pressure reducing mechanism 54 on-off valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 1/00 321 F25B 1/00 321N (72)発明者 間 誠 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西川 剛弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 里 和哉 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 坂本 泰生 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA05 AA09 AA13 AA21 AB03 BB12 BB13 BB42 BB47 CC24 CC47 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F25B 1/00 321 F25B 1/00 321N (72) Inventor Makoto Ma Ma 2-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Takehiro Nishikawa 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka 2-72 Sanyo Electric Co., Ltd. 3-5-5 Sanyo Electric Co., Ltd. (72) Inventor Yasuo Sakamoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 3H029 AA05 AA09 AA13 AA21 AB03 BB12 BB13 BB42 BB47 CC24 CC47

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮室を縮小させて、該圧縮室内の冷媒
を圧縮する圧縮手段と、該圧縮手段を駆動する駆動手段
とを有したロータリ圧縮機において、 前記圧縮手段が、前記圧縮室を備えた圧縮要素を連結管
により複数直列接続して形成され、かつ、各圧縮要素に
おける冷媒の最高温度及び最高圧力が所定温度及び所定
圧力以上にならないように機外から冷却用冷媒を減圧し
て前記圧縮室に注入する冷媒温度調節手段を有すること
を特徴とするロータリ圧縮機。
1. A rotary compressor having compression means for reducing a compression chamber to compress refrigerant in the compression chamber, and driving means for driving the compression means, wherein the compression means A plurality of compression elements provided are formed by connecting a plurality of compression elements in series by a connecting pipe, and the cooling refrigerant is depressurized from outside the machine so that the maximum temperature and the maximum pressure of the refrigerant in each compression element do not exceed the predetermined temperature and the predetermined pressure. A rotary compressor having a refrigerant temperature adjusting means for injecting the refrigerant into the compression chamber.
【請求項2】 前記冷媒温度調節手段が、キャピラリチ
ューブを備えて、該キャピラリチューブにより冷却用冷
媒を減圧して当該冷却用冷媒の温度を下げた後に前記圧
縮室に注入することを特徴とする請求項1記載のロータ
リ圧縮機。
2. The refrigerant temperature adjusting means includes a capillary tube, and the pressure of the cooling refrigerant is reduced by the capillary tube to lower the temperature of the cooling refrigerant, and then the refrigerant is injected into the compression chamber. The rotary compressor according to claim 1.
【請求項3】 冷媒を圧縮する請求項1又は2記載のロ
ータリ圧縮機と、冷媒を冷却する冷却用熱交換器と、冷
媒を減圧する減圧器と、冷媒を加熱する加熱用熱交換器
とが接続されてなることを特徴とする冷凍回路。
3. The rotary compressor according to claim 1, which compresses the refrigerant, a cooling heat exchanger that cools the refrigerant, a decompressor that decompresses the refrigerant, and a heating heat exchanger that heats the refrigerant. Is connected to the refrigeration circuit.
JP10344367A 1998-12-03 1998-12-03 Rotary compressor and refrigerating circuit using it Pending JP2000171108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10344367A JP2000171108A (en) 1998-12-03 1998-12-03 Rotary compressor and refrigerating circuit using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10344367A JP2000171108A (en) 1998-12-03 1998-12-03 Rotary compressor and refrigerating circuit using it

Publications (1)

Publication Number Publication Date
JP2000171108A true JP2000171108A (en) 2000-06-23

Family

ID=18368697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10344367A Pending JP2000171108A (en) 1998-12-03 1998-12-03 Rotary compressor and refrigerating circuit using it

Country Status (1)

Country Link
JP (1) JP2000171108A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294059A (en) * 2001-07-02 2004-10-21 Sanyo Electric Co Ltd Heat pump equipment
JPWO2003004948A1 (en) * 2001-07-02 2004-10-28 三洋電機株式会社 Heat pump equipment
KR100793477B1 (en) * 2001-01-18 2008-01-14 마츠시타 덴끼 산교 가부시키가이샤 Enclosed compressor
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243481A (en) * 1987-03-31 1988-10-11 Toshiba Corp Scroll compressor
JPH0681786A (en) * 1992-09-04 1994-03-22 Toshiba Corp Two-stage compression type rotary compressor
JPH07318179A (en) * 1994-05-26 1995-12-08 Toshiba Corp Sealed compressor, and freezer and air conditioner including the compressor
JPH10115470A (en) * 1996-08-22 1998-05-06 Nippon Soken Inc Steam compression type regrigeration cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243481A (en) * 1987-03-31 1988-10-11 Toshiba Corp Scroll compressor
JPH0681786A (en) * 1992-09-04 1994-03-22 Toshiba Corp Two-stage compression type rotary compressor
JPH07318179A (en) * 1994-05-26 1995-12-08 Toshiba Corp Sealed compressor, and freezer and air conditioner including the compressor
JPH10115470A (en) * 1996-08-22 1998-05-06 Nippon Soken Inc Steam compression type regrigeration cycle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100793477B1 (en) * 2001-01-18 2008-01-14 마츠시타 덴끼 산교 가부시키가이샤 Enclosed compressor
JP2004294059A (en) * 2001-07-02 2004-10-21 Sanyo Electric Co Ltd Heat pump equipment
JPWO2003004948A1 (en) * 2001-07-02 2004-10-28 三洋電機株式会社 Heat pump equipment
US6880352B2 (en) 2001-07-02 2005-04-19 Sanyo Electric Co., Ltd. Heat pump device
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration

Similar Documents

Publication Publication Date Title
JP4815286B2 (en) Two-way refrigeration cycle equipment
EP1215449A1 (en) Multi-stage compression refrigerating device
US20060090488A1 (en) Apparatus for changing capacity of multi-stage rotary compressor
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
JP5478715B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4949817B2 (en) Multistage compressor and refrigeration cycle using the same
JP2000087892A (en) Two-stage compressor and air conditioner
US20060193732A1 (en) Variable capacity compressor and starting method thereof
US20040074256A1 (en) Expander
JP2004197640A (en) Positive displacement expander and fluid machinery
JP2005265278A (en) Refrigeration device
JP4974851B2 (en) Refrigeration air conditioner
JP2000283077A (en) Rotary compressor
JP2000171108A (en) Rotary compressor and refrigerating circuit using it
JP2010156498A (en) Refrigerating device
JP2000161276A (en) Rotary compressor and refrigeration circuit employing same
JP2000205164A (en) Rotary compressor
JP2000097177A (en) Rotary compressor and refrigerating circuit
JP2001330360A (en) Refrigerator and freezer air conditioner
JP5656691B2 (en) Refrigeration equipment
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
KR101176452B1 (en) Refrigerating cycle
JP2010156487A (en) Refrigerating device
JP2000283078A (en) Multistage compressor
JP2001065888A (en) Carbon dioxide refrigerating machine