JP2000169932A - Steel for plastic molding die excellent in machinability and weldability and its production - Google Patents

Steel for plastic molding die excellent in machinability and weldability and its production

Info

Publication number
JP2000169932A
JP2000169932A JP34336998A JP34336998A JP2000169932A JP 2000169932 A JP2000169932 A JP 2000169932A JP 34336998 A JP34336998 A JP 34336998A JP 34336998 A JP34336998 A JP 34336998A JP 2000169932 A JP2000169932 A JP 2000169932A
Authority
JP
Japan
Prior art keywords
steel
machinability
hardness
weldability
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34336998A
Other languages
Japanese (ja)
Other versions
JP3737298B2 (en
Inventor
Shinsuke Haneda
晋介 羽田
Yasuhiko Yasumoto
康彦 保元
Yasumasa Yoshida
泰正 吉田
Toshiyuki Minamide
俊幸 南出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP34336998A priority Critical patent/JP3737298B2/en
Publication of JP2000169932A publication Critical patent/JP2000169932A/en
Application granted granted Critical
Publication of JP3737298B2 publication Critical patent/JP3737298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart excellent machinability and weldability to the steel by preparing steel for a die having a specified componential compsn. and a specified structure, and in which 6 hardness calculated from the average cooling rate at the time of quenching or the like and temp. and time at the time of tempering is specified. SOLUTION: Steel having a compsn. contg., by weight, 0.07 to O.20% C, 0.5 to 2.0% Mn, 1.5 to 2.5% Cr, 0.01 to 1.0% Mo, 0.01 to 0.2% V and <=0.1% S (including 0%) and 0.38 to 0.90% Si and having a structure of ferrite + bainite or ferrite + pearlite + bainite is prepd. At this time, in the case the average cooling rate to 500 deg.C at the time of quenching or normalizing is defined as R ( deg.C/min), and P=T (20 + logt)×10-3 [T denotes tempering temp. (K), and (t) denotes tempering time (hr)], its hardness calculated from the formula (in the formula, [element] denotes the containing ratio % of each element) satisfies (HB)<=240 in the case P=20 and R=10 and satisfies (HB)>=160 in the case P=17 and R=0.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被削性および溶接
性に優れたプラスチック成形金型用鋼及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic molding die steel excellent in machinability and weldability and a method for producing the same.

【0002】[0002]

【従来の技術】プラスチック成形金型は、プラスチック
成形金型用鋼を切削加工により所定形状に機械加工し、
シボ模様の形成や鏡面仕上げを行って作製される。従
来、かかるプラスチック成形金型、特に大型の金型とし
ては、S55Cなどの炭素鋼やSCMなどの中低炭素鋼
が用いられてきた。上記成形金型の作製工程において、
まず機械加工の能率を高めるには被削性の向上が望まれ
るところであるが、従来用いられてきたS55Cなどの
金型用鋼は被削性が十分とは言い難い。また特開昭62
−202050号公報では、被削性を向上させるために
特定量のSを添加する技術が提案されているが、かかる
技術でも被削性が十分とは言えない。
2. Description of the Related Art Plastic molding dies are made by machining steel for plastic molding dies into a predetermined shape by cutting.
It is produced by forming a grain pattern and performing mirror finishing. Conventionally, carbon steel such as S55C and medium-low carbon steel such as SCM have been used as such plastic molding dies, especially large dies. In the manufacturing process of the molding die,
First, it is desired to improve machinability in order to increase the efficiency of machining, but it is difficult to say that conventionally used mold steel such as S55C has sufficient machinability. In addition, JP
Japanese Unexamined Patent Publication No. 202050 proposes a technique of adding a specific amount of S in order to improve the machinability, but such technique does not provide sufficient machinability.

【0003】また金型作製においては加工の誤りや設計
変更のため、溶接による補修が施されることがあり、溶
接割れ防止のために当該補修にはかなり高い予熱、後熱
が必要である。ところが均一な加熱のためには専用の加
熱炉が必要となり、また金型が大きいほど予熱に長時間
を要するという問題がある。
In the manufacture of a mold, repair by welding is sometimes performed due to processing error or design change. In order to prevent welding cracks, the repair requires considerably high preheating and postheating. However, there is a problem that a dedicated heating furnace is required for uniform heating, and that a larger mold requires a longer time for preheating.

【0004】また最近はプラスチック製品の意匠性の向
上にともなって、金型用鋼に対してシボ加工性の向上も
求められる。このため、特に大型の金型には鍛造により
製造された均質な鋼が望まれる。
Recently, as the design of plastic products has been improved, it has been required to improve the texture of mold steel. For this reason, homogeneous steel produced by forging is desired especially for large dies.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題に鑑
みなされたものであり、被削性および溶接性に優れると
ともに予熱および後熱が不要なプラスチック成形金型用
鋼及びその製造方法を提供することをその目的とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a steel for a plastic molding die which has excellent machinability and weldability and does not require preheating and postheating, and a method for producing the same. It is intended to do so.

【0006】[0006]

【課題を解決するための手段】本発明によれば、重量%
で、C:0.07〜0.20%、Mn:0.5〜2.0
%、Cr:1.5〜2.5%、Mo:0.01〜1.0
%、V:0.01〜0.2%、S:0.1%以下(0%
を含む)、Si:0.38〜0.90%を含む鋼であっ
て、フェライト+ベイナイト又はフェライト+パーライ
ト+ベイナイトである組織を有し、焼き入れ又は焼きな
らし時の500℃までの平均冷却速度をR(℃/mi
n)、下記式から算出した値をPとした場合に、 P=T(20+logt)×10-3 (式中、Tは焼き戻し温度(K)、tは焼き戻し時間
(hr)) 下記式(1)から算出される計算硬さ(HB)が、P=
20、R=10のとき(HB)≦240を満足し、かつ
P=17、R=0.3のとき(HB)≧160を満足す
るのが望ましい。 (HB)=793.5[C]+9.7[Si]+188.5[Mo]+39. 7[Cr]+44.8(logR)−19.4P+330.7・・・・・(1) (式中、[元素]は、鋼中の各元素の含有率(%)を表
す)
According to the present invention, the weight%
And C: 0.07 to 0.20%, Mn: 0.5 to 2.0
%, Cr: 1.5 to 2.5%, Mo: 0.01 to 1.0
%, V: 0.01 to 0.2%, S: 0.1% or less (0%
And Si: a steel containing 0.38 to 0.90%, having a structure of ferrite + bainite or ferrite + pearlite + bainite, and averaged up to 500 ° C. during quenching or normalizing. Set the cooling rate to R (° C / mi
n), where P is the value calculated from the following equation: P = T (20 + logt) × 10 −3 (where T is the tempering temperature (K) and t is the tempering time (hr)) The calculated hardness (HB) calculated from (1) is P =
It is desirable that (HB) ≦ 240 is satisfied when R = 10 and R = 10, and (HB) ≧ 160 when P = 17 and R = 0.3. (HB) = 793.5 [C] +9.7 [Si] +188.5 [Mo] +39. 7 [Cr] +44.8 (logR) -19.4P + 330.7 (1) (where [element] represents the content (%) of each element in the steel)

【0007】また本発明によれば、重量%で、C:0.
07〜0.20%、Mn:0.5〜2.0%、Cr:
1.5〜2.5%、Mo:0.01〜1.0%、V:
0.01〜0.2%、S:0.1%以下(0%を含
む)、Si:0.38〜0.90%を含む鋼であって、
熱間加工工程において鍛錬比が2以上となるよう鍛錬を
行い、次に割れ防止のために200〜350℃で保持し
た後、800〜950℃に再加熱・保持して焼きならし
を行い、空冷した後550〜680℃に再加熱して焼き
戻しを行う被削性及び溶接性に優れたプラスチック成形
金型用鋼の製造方法が提供される。
Further, according to the present invention, C: 0.
07 to 0.20%, Mn: 0.5 to 2.0%, Cr:
1.5-2.5%, Mo: 0.01-1.0%, V:
A steel containing 0.01 to 0.2%, S: 0.1% or less (including 0%), and Si: 0.38 to 0.90%,
In the hot working process, forging is performed so that the forging ratio becomes 2 or more, then, at 200 to 350 ° C. for preventing cracking, then reheating and holding at 800 to 950 ° C., and normalizing, The present invention provides a method for producing steel for a plastic molding die, which is excellent in machinability and weldability, in which it is air-cooled and then reheated to 550 to 680 ° C. and tempered.

【0008】このとき前記鋼の残部は実質的にFe及び
不可避不純物であることが好ましい。
At this time, the balance of the steel is preferably substantially Fe and unavoidable impurities.

【0009】[0009]

【発明の実施の形態】本発明者らは、被削性および溶接
性に優れたプラスチック成形金型用鋼が得られないか鋭
意検討した結果、C含有量を低く抑えると共に、Si含
有量を従来よりも多くした化学組成とし、また組織をフ
ェライト+ベイナイト又はフェライト+パーライト+ベ
イナイトとし、さらに特定の製造条件のときの計算硬さ
(HB)を特定範囲とすることによって、被削性および
溶接性に優れるプラスチック成形金型用鋼が得られるこ
とを見出し、本発明をなすに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies as to whether or not steel for plastic molding dies having excellent machinability and weldability can be obtained. As a result, the C content was kept low and the Si content was reduced. The machinability and weldability are improved by making the chemical composition larger than before, the structure to be ferrite + bainite or ferrite + pearlite + bainite, and the calculated hardness (HB) under specific production conditions to a specific range. The present inventors have found that a steel for plastic molding dies having excellent properties can be obtained, and have accomplished the present invention.

【0010】本発明のプラスチック成形金型用鋼におい
て、各合金元素のはたらきと組成範囲の限定理由を示せ
ば、次の通りである。
In the steel for a plastic molding die of the present invention, the function of each alloy element and the reason for limiting the composition range are as follows.

【0011】Si:0.38〜0.90% Siは、溶製時の脱酸性元素として作用し、また強度を
高める上で重要な元素であり、また高Si鋼では、Si
2 を主体とする融点の低い酸化膜が生成され、かかる
酸化膜が切削工具と被切削材との間で潤滑剤としての作
用を果たし、切削工具の摩耗を減少させる。また靭性を
若干減少させる作用もあり、これにより切削時の切り屑
の処理を向上させる。かかる作用を有効に発揮させるに
は0.38%以上含有させる必要がある。一方、多量に
含有させると鋼の硬度が増し、被削抵抗が大きくなると
いう問題があるから、0.90%以下にする必要があ
る。より好ましい範囲としては0.38〜0.80%で
ある。
Si: 0.38 to 0.90% Si acts as a deacidifying element at the time of melting and is an important element for increasing the strength.
An oxide film having a low melting point mainly composed of O 2 is generated, and this oxide film acts as a lubricant between the cutting tool and the workpiece to reduce wear of the cutting tool. It also has the effect of slightly reducing toughness, thereby improving the processing of chips during cutting. In order to exert such an effect effectively, it is necessary to contain 0.38% or more. On the other hand, if it is contained in a large amount, there is a problem that the hardness of the steel increases and the cutting resistance increases, so it is necessary to make it 0.90% or less. A more preferred range is 0.38 to 0.80%.

【0012】C:0.07〜0.20% Cは鋼の強化元素として強度を確保すると共に焼き入れ
性を高める上で欠くことができない元素であり、C量が
0.07%未満では十分な強度が得られない。一方C量
が過度に多くなると、溶接性を阻害し、また鋼塊中の偏
析を助長し、さらには炭化物が生成して被削性が悪くな
るので、C量は0.20%以下に抑えることが必要であ
る。硬さ、強度、溶接性、被削性をすべて満足するに
は、C量は0.10〜0.17%の範囲とすることがよ
り好ましい。
C: 0.07% to 0.20% C is an indispensable element as a strengthening element for steel to secure strength and enhance hardenability. When the amount of C is less than 0.07%, C is sufficient. High strength cannot be obtained. On the other hand, if the C content is excessively large, the weldability is impaired, segregation in the steel ingot is promoted, and further, carbides are formed and the machinability deteriorates, so the C content is suppressed to 0.20% or less. It is necessary. In order to satisfy all of hardness, strength, weldability and machinability, the C content is more preferably in the range of 0.10 to 0.17%.

【0013】Mn:0.5〜2.0% Mnは、鋼の脱酸と焼き入れ性の向上に有効に作用する
元素であり、また鋼中に不可避的に混入してくるSを固
定し被削性を向上させるうえでも有効に作用する。こう
した作用を有効に発揮させるには0.5%以上含有させ
なければならない。一方含有量が多いと鋼組織を硬化さ
せ被削性を悪くするので、2.0%以下に抑える必要が
ある。Mnのより好ましい含有率は0.8〜1.9%で
ある。
Mn: 0.5 to 2.0% Mn is an element which effectively acts on the deoxidation and hardenability of steel, and fixes S unavoidably mixed into steel. It also works effectively to improve machinability. In order to effectively exert such an effect, the content must be 0.5% or more. On the other hand, if the content is large, the steel structure is hardened and the machinability deteriorates, so it is necessary to suppress the content to 2.0% or less. The more preferred content of Mn is 0.8 to 1.9%.

【0014】Cr:1.5〜2.5% Crは、焼き入れ性の向上に有効な元素であり、加えて
本願発明ではC量を少なくしたことによる強度不足の補
完をする元素であるから、1.5%以上含有させる必要
がある。一方Cr量が多すぎると鋼が硬質化して被削性
が低下するので2.5%以下に抑える必要がある。焼き
入れ性、補強作用、被削性などをすべて満足するには、
1.7〜2.1%の範囲がより好ましい。
Cr: 1.5 to 2.5% Cr is an element effective for improving the hardenability and, in addition, in the present invention, is an element that complements the lack of strength due to the reduced C content. , 1.5% or more. On the other hand, if the Cr content is too large, the steel becomes hard and the machinability decreases, so it is necessary to suppress the content to 2.5% or less. To satisfy all of the hardenability, reinforcing effect, machinability, etc.,
The range of 1.7 to 2.1% is more preferable.

【0015】Mo:0.01〜1.0% Moは、Crと同様焼き入れ性を高めて高強度化に寄与
する元素であるから、0.01%以上含有させる必要が
ある。一方、Moを多量に含有させると多量の炭化物を
生成し被削性を悪くするので、Cr量との関係で1.0
%以下に抑える必要がある。より好ましい範囲としては
0.05〜0.5%である。
Mo: 0.01% to 1.0% Mo is an element which contributes to high strength by enhancing hardenability similarly to Cr, and therefore it is necessary to contain Mo in an amount of 0.01% or more. On the other hand, when Mo is contained in a large amount, a large amount of carbide is generated and the machinability is deteriorated.
%. A more preferred range is 0.05 to 0.5%.

【0016】V:0.01〜0.2% Vは、焼き戻し軟化抵抗性の向上を図り、必要な硬さの
確保に有効である。また結晶粒の微細化効果もある。か
かる効果を発揮させるには0.01%以上含有させる必
要がある。一方、多量に含有させすぎると炭化物を多量
に生成し被削性を悪くさせるので0.2%以下に抑える
必要がある。より好ましい範囲としては0.03〜0.
1%である。
V: 0.01% to 0.2% V is effective in improving the resistance to temper softening and ensuring necessary hardness. There is also an effect of making crystal grains fine. In order to exert such an effect, it is necessary to contain 0.01% or more. On the other hand, if it is contained in a large amount, carbides are generated in a large amount and the machinability is deteriorated. A more preferred range is from 0.03 to 0.1.
1%.

【0017】S:0.1%以下(0%を含む) 前述のようにMnと反応してMnSを生成し、被削性の
向上に寄与するが、大型金型材のしぼむら等を考慮すれ
ばなるべく少量に抑える必要があり、0.1%以下にす
る必要がある。より好ましくは0.07%以下である。
S: 0.1% or less (including 0%) As described above, MnS reacts with Mn to generate MnS and contributes to improvement of machinability. It is necessary to keep it as small as possible, and it is necessary to make it 0.1% or less. More preferably, it is 0.07% or less.

【0018】また本発明の金型用鋼は、上記成分組成の
要件を満たすという条件の下で、フェライト+ベイナイ
ト又はフェライト+パーライト+ベイナイトの組織を有
していることも重要である。軟質なフェライト組織を含
んだ2相組織または3相組織とすることにより被削性の
向上が図れる。一層の被削性向上を図るには、フェライ
トの面積率は10〜50%の範囲であるのがよい。
It is also important that the mold steel of the present invention has a structure of ferrite + bainite or ferrite + pearlite + bainite under the condition that the above requirements for the component composition are satisfied. Machinability can be improved by using a two-phase structure or a three-phase structure including a soft ferrite structure. In order to further improve machinability, the area ratio of ferrite is preferably in the range of 10 to 50%.

【0019】また前記式(1)から算出される計算硬さ
(HB)が、P=20、R=10のとき240以下で、
P=17、R=0.3のとき160以上となるように化
学組成を規定範囲内で調整することが望ましい。
The calculated hardness (HB) calculated from the above equation (1) is 240 or less when P = 20 and R = 10,
It is desirable to adjust the chemical composition within a specified range so that when P = 17 and R = 0.3, it becomes 160 or more.

【0020】前記式(1)は、種々の組成の鋼において
熱処理条件を種々変化させて得た鋼の硬さと組成との実
験的に得られた関係式であり、調質後の硬さを示す指標
となる。この式によれば、焼き入れ又は焼きならし時の
500℃までの平均冷却速度R、焼き戻し時の温度と時
間から算出されるPから最適な化学成分の範囲を決定す
ることができる。ここでPが20、17のときの硬さを
算出するようにしているのは、Pが17〜20の範囲
が、実際に工業的に製造可能な範囲だからであり、Pが
17のときは最も硬くなる焼き戻し条件、Pが20のと
きは最も軟らかくなる焼き戻し条件である。また、平均
冷却速度Rが10、0.3のときの硬さを算出するよう
にしているのは、鍛鋼製の金型用鋼の場合、一般に厚さ
は100〜1,000mmの範囲であり、これに対応す
る平均冷却速度は10〜0.3℃/minの範囲だから
であり、Rが0.3のときは最も軟らかくなる冷却速
度、Rが10のときは最も硬くなる冷却速度である。以
上から理解されるように、P=20、R=10及びP=
17、R=0.3のときとは、厚さ100〜1,000
mmの範囲の鋼の硬さが最も硬くなる条件及び最も軟ら
かくなる条件である。
The above equation (1) is an experimentally obtained relation between the hardness and the composition of the steel obtained by variously changing the heat treatment conditions in the steels of various compositions. It is an index to show. According to this equation, the optimum range of chemical components can be determined from the average cooling rate R up to 500 ° C. during quenching or normalizing, and P calculated from the temperature and time during tempering. The reason for calculating the hardness when P is 20 or 17 is that the range of 17 to 20 is a range that can be actually manufactured industrially. When the tempering condition is the hardest, and when P is 20, the tempering condition is the softest. In addition, when the average cooling rate R is 10, 0.3, the hardness is calculated in the case of forging steel mold steel, the thickness is generally in the range of 100 to 1,000 mm. This is because the corresponding average cooling rate is in the range of 10 to 0.3 ° C./min. When R is 0.3, the cooling rate is the softest, and when R is 10, the cooling rate is the hardest. . As understood from the above, P = 20, R = 10 and P =
17, when R = 0.3, a thickness of 100 to 1,000
These are the conditions under which the hardness of the steel in the range of mm is the hardest and the softest.

【0021】請求項1の組成において、フェライト+ベ
イナイト又はフェライト+パーライト+ベイナイトの組
織とするには下記に説明する製造方法によるのが望まし
い。すなわち、熱間加工工程において鍛錬比が2以上と
なるよう鍛錬を行い、次に200〜350℃で保持した
後、800〜950℃に再度加熱・保持して焼きならし
を行い、空冷した後550〜680℃に再加熱して焼き
戻しを行う方法が望ましい。
In the composition of the first aspect, the structure of ferrite + bainite or ferrite + pearlite + bainite is desirably obtained by the following production method. That is, in the hot working step, forging is performed so that the forging ratio becomes 2 or more, then, after holding at 200 to 350 ° C., normalizing by heating and holding again at 800 to 950 ° C., and then air cooling. A method in which tempering is performed by reheating to 550 to 680 ° C is desirable.

【0022】まず熱間加工工程において鍛錬比が2以上
になるまで鍛錬することにより、鋼塊内部の空隙が圧着
され、十分な強度と靭性が得られる。
First, in the hot working step, the forging is performed until the forging ratio becomes 2 or more, whereby the voids inside the steel ingot are pressed and sufficient strength and toughness can be obtained.

【0023】次に200〜350℃の範囲で温度保持す
ることにより未変態組織(硬質部分)に起因する割れな
どが防止される。このとき保持温度が200℃未満で
は、低温割れ発生の可能性があり、他方保持温度が35
0℃を超えるとベイナイト変態が終了しないという問題
が生じる。保持時間に特に限定はないが、20〜50時
間が望ましい。
Next, by maintaining the temperature in the range of 200 to 350 ° C., cracks and the like caused by the untransformed structure (hard portion) are prevented. At this time, if the holding temperature is less than 200 ° C., there is a possibility that low-temperature cracking may occur, while the holding temperature is 35
If the temperature exceeds 0 ° C., there arises a problem that bainite transformation is not completed. The holding time is not particularly limited, but is preferably 20 to 50 hours.

【0024】また800〜950℃まで再加熱・保持し
て焼きならしを行うことで、組織が細かくなり所定の強
度を得ることができる。焼きならしの温度が800℃未
満では結晶粒の分布が不均一になるという問題が生じ、
他方焼きならし温度が950℃を超えると結晶粒が粗大
化が起こるという問題が生じる。焼きならしの時間は特
に限定はないが、2〜30時間が望ましい。
Further, by normalizing while reheating and holding the temperature to 800 to 950 ° C., the structure becomes fine and a predetermined strength can be obtained. If the normalizing temperature is lower than 800 ° C., there arises a problem that the distribution of crystal grains becomes non-uniform,
On the other hand, if the normalizing temperature exceeds 950 ° C., there arises a problem that the crystal grains become coarse. The normalizing time is not particularly limited, but is preferably 2 to 30 hours.

【0025】さらに空冷後に550〜680℃まで再加
熱して焼き戻しすることで硬度が低下し、所望の被削性
を得ることができる。焼き戻し温度が550℃未満で
は、硬度が高く被削性が悪くなり、また残留応力が大き
くなるという問題が生じ、他方焼き戻し温度が680℃
を超えると必要とする硬さが得られないという問題が生
じる。焼き戻しの時間は特に限定はないが、2〜30時
間が望ましい。
Further, after air cooling, the hardness is reduced by reheating to 550 to 680 ° C. and tempering, whereby desired machinability can be obtained. If the tempering temperature is lower than 550 ° C., there is a problem that the hardness is high and the machinability is deteriorated, and the residual stress is increased. On the other hand, the tempering temperature is 680 ° C.
If it exceeds 2,000, the required hardness cannot be obtained. The tempering time is not particularly limited, but is preferably 2 to 30 hours.

【0026】[0026]

【実施例】以下に実験例を挙げて本発明を説明するが、
本発明はこれら実験例により何ら限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to experimental examples.
The present invention is not limited by these experimental examples.

【0027】実験例1〜11 表1に示す化学組成を有する鋼塊を電気炉で溶製した
後、鍛錬比2となるように熱間鍛錬を行った。つぎに2
70℃で24時間保持した後880℃まで加熱し保持し
て焼きならしを行い、空冷した後600℃まで再度加熱
し焼き戻しを行い、供試材を作製した。
Experimental Examples 1 to 11 A steel ingot having the chemical composition shown in Table 1 was melted in an electric furnace, and then hot forged to a forging ratio of 2. Next 2
After holding at 70 ° C. for 24 hours, the sample was heated and held at 880 ° C. to perform normalizing, air-cooled, and then reheated to 600 ° C. and tempered to prepare a test material.

【0028】かかる金型用鋼の実測硬さ(HB)、計算
硬さ(HB)、被削性、溶接最高硬さ、予熱・後熱なし
の場合の溶接割れの有無を下記に示すように測定・調査
した。結果を表2に示す。
The measured hardness (HB), calculated hardness (HB), machinability, maximum weld hardness, and the presence or absence of weld cracks in the case of no preheating / post-heating are shown below. Measured and investigated. Table 2 shows the results.

【0029】(実測硬さ(ブリネル硬さ))JIS Z
−2243に準拠して測定した。
(Measured Hardness (Brinell Hardness)) JIS Z
It measured according to -2243.

【0030】(被削性試験) 1.直径10mmのハイスエンドミルを用いて、切削速
度21m/min、送り速度260mm/minの条件
で供試材の切削を行い、逃げ面の摩耗量(mm)を測定
した。 2.直径30mmの超硬エンドミルを用いて、切削速度
99m/min、送り速度260mm/minの条件で
供試材の切削を行い、逃げ面の摩耗量(mm)を測定し
た。
(Machinability test) Using a high-speed end mill with a diameter of 10 mm, the test material was cut at a cutting speed of 21 m / min and a feed speed of 260 mm / min, and the flank wear (mm) was measured. 2. Using a carbide end mill having a diameter of 30 mm, the test material was cut at a cutting speed of 99 m / min and a feed speed of 260 mm / min, and the flank wear (mm) was measured.

【0031】(溶接最高硬さ(HV))JIS Z31
01に準拠して溶接最高硬さを測定した。
(Highest welding hardness (HV)) JIS Z31
The highest welding hardness was measured in accordance with No. 01.

【0032】(溶接割れ)L字材料のコーナー部に溶接
を施し、割れ発生の有無を調査した。
(Weld Cracking) Welding was performed on the corners of the L-shaped material, and the presence or absence of cracks was investigated.

【0033】実験例12 表1に示す化学組成を有する実際の製品相当の大型鋼塊
を電気炉で溶製後、熱間にて鍛錬比2となるよう鍛錬
し、その後200〜350℃で24時間保持した後、8
00〜950℃に加熱し焼きならしを行う。その後55
0〜680℃で焼き戻しを行った。実験例1〜11と同
様に物性を測定・評価した。結果を表2に示す。
EXPERIMENTAL EXAMPLE 12 A large ingot corresponding to an actual product having the chemical composition shown in Table 1 was melted in an electric furnace, and then hot forged to a forging ratio of 2, and then heated at 200 to 350 ° C. for 24 hours. After holding for 8 hours,
It heats to 00-950 degreeC, and normalizes. Then 55
Tempering was performed at 0 to 680 ° C. Physical properties were measured and evaluated as in Experimental Examples 1 to 11. Table 2 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】本発明で規定する元素組成及び組織を有
し、所定の硬さを有する実験例1〜5の金型用鋼は、ハ
イスエンドミルを用いた切削性試験では逃げ面の摩耗量
が0.07mm以下と良好な結果を示し、超硬エンドミ
ルを用いた切削試験でも逃げ面の摩耗量は0.18mm
以下と優れた結果を示した。また溶接最高硬さは505
以下と低く、そしてまた溶接割れも発生しなかった。
The mold steels of Experimental Examples 1 to 5 having the elemental composition and structure specified by the present invention and having a predetermined hardness have a flank wear amount of 0 in a machinability test using a high-speed end mill. 0.07 mm or less, showing a good result. Even in a cutting test using a carbide end mill, the flank wear was 0.18 mm.
The following results were excellent. The maximum welding hardness is 505
The results were as low as below, and no weld cracking occurred.

【0037】これに対して、Siの含有割合が本発明の
規定範囲より少ない実験例6〜11の金型用鋼は、ハイ
スエンドミルを用いた切削性試験では逃げ面の摩耗量が
0.09mm以上で、超硬エンドミルを用いた切削試験
でも実験例6,9,10では逃げ面の摩耗量は0.20
mm以上となり、Si含有割合が少ないと摩耗量が多く
なっている。またC含有割合が本発明の規定範囲より多
い実験例10,11の金型用鋼は、溶接最高硬さが70
0,850と高く、そして溶接割れも発生した。
On the other hand, the die steels of Experimental Examples 6 to 11 in which the content of Si was smaller than the specified range of the present invention had a flank wear of 0.09 mm in the machinability test using a high-speed end mill. As described above, even in the cutting test using the carbide end mill, in Experimental Examples 6, 9, and 10, the wear amount of the flank was 0.20.
mm or more, and when the Si content ratio is small, the amount of wear increases. Further, the mold steels of Experimental Examples 10 and 11 in which the C content ratio was larger than the specified range of the present invention had a maximum weld hardness of 70.
It was as high as 0,850 and weld cracking also occurred.

【0038】実際に製品相当の大型鋼塊を用いて金型用
鋼を作製した実験例12では、鍛錬時の未圧着に伴うU
T不良、鍛錬後の熱扱いによる割れなどは認められず、
硬さ、摩耗量、溶接最高硬さの諸物性も良好なものであ
った。これにより、金型に施されるシボ加工や放電加工
も良好なものであった。さらに断面の硬さ分布も均一な
ものであった。
In Experimental Example 12 in which a mold steel was actually manufactured using a large ingot corresponding to a product, U
No poor T or cracking due to heat treatment after training was observed.
Various properties such as hardness, abrasion amount, and maximum welding hardness were also good. Thereby, the graining and the electric discharge machining applied to the mold were also good. Further, the hardness distribution of the cross section was uniform.

【0039】[0039]

【発明の効果】本発明のプラスチック成形金型用鋼は、
被削性および溶接性に優れるとともに予熱および後熱が
なくても溶接割れが発生することがない。
According to the present invention, the steel for plastic molding dies is
It excels in machinability and weldability, and does not cause welding cracks without preheating and post-heating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 泰正 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 南出 俊幸 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 4F202 AJ07 AJ11 CA30 CB01 4K032 AA04 AA05 AA12 AA16 AA19 AA23 AA29 AA31 AA36 BA00 CF03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasumasa Yoshida 2-3-1 Shinhama, Araimachi, Takasago City, Hyogo Prefecture Inside Kobe Steel, Ltd. Takasago Works (72) Inventor Toshiyuki Minade 2, Araimachi Shinama, Takasago City, Hyogo Prefecture No.3-1 F-term in Kobe Steel, Ltd. Takasago Works (reference) 4F202 AJ07 AJ11 CA30 CB01 4K032 AA04 AA05 AA12 AA16 AA19 AA23 AA29 AA31 AA36 BA00 CF03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.07〜0.20%、 Mn:0.5〜2.0%、 Cr:1.5〜2.5%、 Mo:0.01〜1.0%、 V:0.01〜0.2%、 S:0.1%以下(0%を含む) Si:0.38〜0.90% を含む鋼であって、 フェライト+ベイナイト又はフェライト+パーライト+
ベイナイトである組織を有し、焼き入れ又は焼きならし
時の500℃までの平均冷却速度をR(℃/min)、
下記式から算出した値をPとした場合に、 P=T(20+logt)×10-3 (式中、Tは焼き戻し温度(K)、tは焼き戻し時間
(hr)) 下記式(1)から算出される計算硬さ(HB)が、 P=20、R=10のとき(HB)≦240を満足し、
かつP=17、R=0.3のとき(HB)≧160を満
足する被削性及び溶接性に優れたプラスチック成形金型
用鋼。 (HB)=793.5[C]+9.7[Si]+188.5[Mo]+39. 7[Cr]+44.8(logR)−19.4P+330.7・・・・・(1) (式中、[元素]は、鋼中の各元素の含有率(%)を表
す)
C: 0.07 to 0.20%, Mn: 0.5 to 2.0%, Cr: 1.5 to 2.5%, Mo: 0.01 to 1. 0%, V: 0.01 to 0.2%, S: 0.1% or less (including 0%) Si: 0.38 to 0.90%, ferrite + bainite or ferrite + Perlite +
It has a structure of bainite, and the average cooling rate to 500 ° C. during quenching or normalizing is R (° C./min),
When the value calculated from the following equation is P, P = T (20 + logt) × 10 −3 (where T is the tempering temperature (K) and t is the tempering time (hr)) The following equation (1) The calculated hardness (HB) calculated from the following equation satisfies (HB) ≦ 240 when P = 20 and R = 10,
A steel for a plastic molding die excellent in machinability and weldability that satisfies (HB) ≧ 160 when P = 17 and R = 0.3. (HB) = 793.5 [C] +9.7 [Si] +188.5 [Mo] +39. 7 [Cr] +44.8 (logR) -19.4P + 330.7 (1) (where [element] represents the content (%) of each element in the steel)
【請求項2】 重量%で、 C:0.07〜0.20%、 Mn:0.5〜2.0%、 Cr:1.5〜2.5%、 Mo:0.01〜1.0%、 V:0.01〜0.2%、 S:0.1%以下(0%を含む) Si:0.38〜0.90% を含む鋼を、熱間加工工程において鍛錬比が2以上とな
るよう鍛錬を行い、次に200〜350℃で保持した
後、800〜950℃に再度加熱・保持して焼きならし
を行い、空冷した後550〜680℃に再加熱して焼き
戻しを行う被削性及び溶接性に優れたプラスチック成形
金型用鋼の製造方法。
2. In% by weight, C: 0.07 to 0.20%, Mn: 0.5 to 2.0%, Cr: 1.5 to 2.5%, Mo: 0.01 to 1. 0%, V: 0.01 to 0.2%, S: 0.1% or less (including 0%) Si: 0.38 to 0.90% Forging to 2 or more, then holding at 200-350 ° C, heating and holding again at 800-950 ° C, normalizing, air cooling, and reheating to 550-680 ° C A method for producing steel for plastic molding dies which is excellent in machinability and weldability to be returned.
JP34336998A 1998-12-02 1998-12-02 Steel for large molds for plastic molding excellent in machinability and weldability and method for producing the same Expired - Fee Related JP3737298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34336998A JP3737298B2 (en) 1998-12-02 1998-12-02 Steel for large molds for plastic molding excellent in machinability and weldability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34336998A JP3737298B2 (en) 1998-12-02 1998-12-02 Steel for large molds for plastic molding excellent in machinability and weldability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000169932A true JP2000169932A (en) 2000-06-20
JP3737298B2 JP3737298B2 (en) 2006-01-18

Family

ID=18360990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34336998A Expired - Fee Related JP3737298B2 (en) 1998-12-02 1998-12-02 Steel for large molds for plastic molding excellent in machinability and weldability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3737298B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451381A (en) * 2013-08-15 2013-12-18 成都市新筑路桥机械股份有限公司 Thermal treatment process for low alloy structural steel and low carbon structural steel
CN109207678A (en) * 2018-09-28 2019-01-15 上大鑫仑材料科技(广东)有限公司 A kind of hot forged mould heat treatment method and its application
CN109898019A (en) * 2019-02-26 2019-06-18 唐山志威科技有限公司 Big section, high rigidity ZW872 mould steel preparation process
CN111394551A (en) * 2020-03-30 2020-07-10 舞阳钢铁有限责任公司 Production method of low-surface-hardness SA542TypeDCl4a steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106755863A (en) * 2016-12-15 2017-05-31 通裕重工股份有限公司 Solve the process that heavy in section square forging produces flaw detection coarse-grain

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451381A (en) * 2013-08-15 2013-12-18 成都市新筑路桥机械股份有限公司 Thermal treatment process for low alloy structural steel and low carbon structural steel
CN109207678A (en) * 2018-09-28 2019-01-15 上大鑫仑材料科技(广东)有限公司 A kind of hot forged mould heat treatment method and its application
CN109898019A (en) * 2019-02-26 2019-06-18 唐山志威科技有限公司 Big section, high rigidity ZW872 mould steel preparation process
CN109898019B (en) * 2019-02-26 2020-08-28 唐山志威科技有限公司 Preparation process of large-section high-hardness ZW872 die steel
CN111394551A (en) * 2020-03-30 2020-07-10 舞阳钢铁有限责任公司 Production method of low-surface-hardness SA542TypeDCl4a steel

Also Published As

Publication number Publication date
JP3737298B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP4013969B2 (en) Hot forged product with excellent fatigue strength, method for producing the same, and machine structural component
EP3715478B1 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
WO2009088027A1 (en) Cold-work die steel and dies for cold pressing
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
JP2007211314A (en) Method for hot-forging non-heat-treated parts
JP5678833B2 (en) Induction hardening steel and crankshaft manufactured using the same
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP5580517B2 (en) Manufacturing method for nitrocarburized crankshaft materials
JP2000169932A (en) Steel for plastic molding die excellent in machinability and weldability and its production
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JPH09310146A (en) Production of non-heat treated steel for high strength connecting rod and high strength connecting rod
JPH05171262A (en) Manufacture of wire rod or bar steel for case hardened product
JP2005336553A (en) Hot tool steel
JP4997709B2 (en) Material for nitride parts with excellent broachability and method for producing the same
JP2006028599A (en) Component for machine structure
JP2003113419A (en) Method for manufacturing hot forged component of non- heat treated steel, and hot forged component of non- heat treated steel
JP2000303140A (en) Steel for plastic molding die
JPH04154936A (en) Precipitation hardening nitriding steel
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JP2002088450A (en) Hot work tool steel
JP3365624B2 (en) Tool steel with excellent machinability and heat treatment and mold using the tool steel
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP4778626B2 (en) Manufacturing method of steel parts with low heat treatment strain
JP2000144307A (en) Steel for cold working excellent in induction hardenability, parts of machine structure and its production
JP2001064754A (en) Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412

A521 Written amendment

Effective date: 20050613

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091104

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091104

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101104

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111104

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees