JP2000169678A - Epoxy resin composition and mold coil - Google Patents

Epoxy resin composition and mold coil

Info

Publication number
JP2000169678A
JP2000169678A JP34320698A JP34320698A JP2000169678A JP 2000169678 A JP2000169678 A JP 2000169678A JP 34320698 A JP34320698 A JP 34320698A JP 34320698 A JP34320698 A JP 34320698A JP 2000169678 A JP2000169678 A JP 2000169678A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
particle size
weight
silica filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34320698A
Other languages
Japanese (ja)
Other versions
JP3404304B2 (en
Inventor
Kenji Ikeda
賢二 池田
Shigeo Suzuki
重雄 鈴木
Tomomi Izuna
具巳 伊豆名
Tomohiro Kaizu
朋宏 海津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34320698A priority Critical patent/JP3404304B2/en
Publication of JP2000169678A publication Critical patent/JP2000169678A/en
Application granted granted Critical
Publication of JP3404304B2 publication Critical patent/JP3404304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a mold coil capable of attaining viscosity reduction of an epoxy resin composition before curing and improving casting workability and having excellent insulation reliability after curing by using a silica filler having a regulated frequency of particle diameter in a specific range as a filler of an epoxy resin composition. SOLUTION: In this epoxy resin composition comprising an epoxy resin, a curing agent and a silica filler, the silica filler has <=50 μm maximum particle diameter, >=10% cumulative frequency having <=0.82 particle diameter, >=85% cumulative frequency having 0.82-18.50 μm particle diameter and the ratio of frequencies of [1] 0.82-2.31 μm particle diameter, [2] 2.31-6.54 μm particle diameter and [3] 6.54-18.50 μm particle diameter of [1]:[2]:[3] of 1.00:1.10 to 0.90:1.00 to 1.00-0.80.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエポキシ樹脂組成物
及びモールドコイルに係り、特に、硬化前に低粘度で注
型作業性に優れ、硬化後に絶縁信頼性の優れたエポキシ
樹脂組成物及び該エポキシ樹脂組成物を用いたモールド
コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition and a mold coil, and more particularly to an epoxy resin composition having low viscosity before curing and excellent in castability, and having excellent insulation reliability after curing and the epoxy resin. The present invention relates to a molded coil using a resin composition.

【0002】[0002]

【従来の技術】従来、モールドコイル等に適用されてい
るエポキシ樹脂組成物は電気特性、機械的特性及び耐ク
ラック性等の向上、さらにコストの低減を目的として、
各種充填剤を多量に配合している。しかし、エポキシ樹
脂組成物は充填剤を多量に配合することで粘度が上昇
し、モールドコイル作製時に注型作業性を著しく低下さ
せ、さらにはエポキシ樹脂組成物が巻線等に容易に浸透
せず、絶縁信頼性が低下する等の問題があった。
2. Description of the Related Art Conventionally, epoxy resin compositions applied to molded coils and the like are used for the purpose of improving electrical properties, mechanical properties, crack resistance, etc., and further reducing costs.
Various fillers are blended in large amounts. However, the viscosity of the epoxy resin composition is increased by adding a large amount of filler, which significantly reduces the casting workability at the time of producing a molded coil, and furthermore, the epoxy resin composition does not easily penetrate into windings and the like. However, there have been problems such as a decrease in insulation reliability.

【0003】そのため、モールドコイル作製時の注型作
業性や絶縁信頼性の向上を図るために低粘度のエポキシ
樹脂組成物が要求されている。エポキシ樹脂組成物の粘
度に影響を及ぼす要因に充填剤の平均粒径、粒度分布及
び粒子形状等がある。
[0003] Therefore, a low-viscosity epoxy resin composition is demanded in order to improve casting workability and insulation reliability when producing a molded coil. Factors affecting the viscosity of the epoxy resin composition include the average particle size, particle size distribution, and particle shape of the filler.

【0004】充填剤で低粘度化を図る従来方法として例
えば、特許第2623823号公報にはエポキシ樹脂、充填
剤、硬化剤からなるエポキシ樹脂組成物において、
(A)平均粒径12〜18μm、粒度分布20μm以下の累積重
量が80%以上で6μm以下の累積重量が10%以下の充填剤
と、(B)平均粒径3〜5μm、粒度分布6μm以下の累積重
量が80%以上で2μm以下の累積重量が20%以下の充填剤
を(A)/(B)=75/25〜25/75(重量比)の範囲で混合
する方法が開示されている。
As a conventional method for lowering the viscosity with a filler, for example, Japanese Patent No. 2638223 discloses an epoxy resin composition comprising an epoxy resin, a filler, and a curing agent.
(A) filler having an average particle size of 12 to 18 μm and a cumulative particle size distribution of 20 μm or less and a cumulative weight of 80% or more and 6 μm or less and a cumulative weight of 10% or less; (B) an average particle size of 3 to 5 μm and a particle size distribution of 6 μm or less (A) / (B) = 75/25 to 25/75 (weight ratio) by mixing a filler having a cumulative weight of 80% or more and a cumulative weight of 2 μm or less and 20% or less. I have.

【0005】さらに特許第2634663号公報には、(A)球
形無機粉末であって、平均粒径12〜20μmで2μm以下の
含有量7〜15重量%、12μm以下が35〜50重量%、24μm
以下が60〜75重量%、45μm以上が6重量%以下の充填
剤、(B)破砕無機粉末であって、平均粒径8〜25μm、2
μm以下の含有量5〜15重量%、12μm以下が30〜60重量
%、24μm以下が50〜85重量%の充填剤を(A)/(B)=9
/1〜5/5(重量比)の範囲で混合し、耐クラック性と低
粘度化を図ることが開示されている。
Further, Japanese Patent No. 2646663 discloses that (A) spherical inorganic powder having an average particle diameter of 12 to 20 μm, a content of 2 μm or less of 7 to 15% by weight, and a content of 12 μm or less of 35 to 50% by weight or 24 μm
(B) a crushed inorganic powder having an average particle size of 8 to 25 μm,
Filler with a content of 5 μm or less of 5 to 15% by weight, 30 to 60% by weight of 12 μm or less, and 50 to 85% by weight of 24 μm or less (A) / (B) = 9
It is disclosed that mixing is performed in the range of / 1 to 5/5 (weight ratio) to achieve crack resistance and low viscosity.

【0006】以上のように、従来は粒子径あるいは粒子
形状が異なる無機充填剤を2種類以上混合(併用)した
ものをエポキシ樹脂組成物に適用することで、低粘度化
を図ってきた。しかし、これらの方法は2種類以上の粒
度分布を管理し混合する作業が必要である。また、モー
ルドコイルの様な細線部に対する注型性の観点から、よ
り低粘度なエポキシ樹脂組成物の出現が望まれている。
As described above, conventionally, viscosity reduction has been achieved by applying a mixture of two or more inorganic fillers having different particle diameters or particle shapes (combined use) to an epoxy resin composition. However, these methods require the work of managing and mixing two or more particle size distributions. In addition, from the viewpoint of casting property to a thin wire portion such as a molded coil, the appearance of an epoxy resin composition having a lower viscosity is desired.

【0007】一方、特許第2680029号公報では有機マト
リックスレジン及び無機充填剤と化学結合するあるいは
分子的に絡み合うカップリング剤を併用することにより
硬化前に低粘度で、硬化後に耐クラック性及び耐熱性を
両立することが開示されている。しかし、前記のカップ
リング剤を併用することで粘度特性、耐クラック性は向
上するものの、新に耐熱性が低下する問題があった。
On the other hand, in Japanese Patent No. 2680029, a coupling agent which is chemically bonded or molecularly entangled with an organic matrix resin and an inorganic filler is used in combination to have a low viscosity before curing, and a crack resistance and heat resistance after curing. Are disclosed. However, although the use of the above-mentioned coupling agent improves viscosity characteristics and crack resistance, there is a problem that heat resistance is newly lowered.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は前記従
来技術の欠点を解決するため、硬化前に低粘度で注型作
業性に優れ、硬化後に絶縁信頼性の優れたエポキシ樹脂
組成物及び該エポキシ樹脂組成物を用いたモールドコイ
ルを提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art by providing an epoxy resin composition having a low viscosity before curing and having excellent casting workability, and having excellent insulation reliability after curing. It is intended to provide a molded coil using the epoxy resin composition.

【0009】[0009]

【課題を解決するための手段】本発明はエポキシ樹脂組
成物において、シリカ充填剤の最大粒径が50μm以下で
あり、粒径 0.82μm以下の累積頻度を10%以下、粒径
0.82〜18.50μmの累積頻度を85%以上とし、特定範囲の
粒径の頻度を規定することで上記課題を解決することが
できた。
According to the present invention, in an epoxy resin composition, the maximum particle size of silica filler is 50 μm or less, and the cumulative frequency of 0.82 μm or less is 10% or less.
The above problem could be solved by setting the cumulative frequency of 0.82 to 18.50 μm to 85% or more and defining the frequency of the particle size in a specific range.

【0010】すなわち、本発明はエポキシ樹脂、硬化剤
及びシリカ充填剤を含むエポキシ樹脂組成物において、
該シリカ充填剤は最大粒径 50μm以下であり、粒径 0.8
2μm以下の累積頻度が10%以下、粒径 0.82〜18.50μm
の累積頻度が85%以上であって、更に[1]粒径 0.82〜2.
31μm、[2]粒径 2.31〜6.54μm、[3]粒径 6.54〜18.50
μmの頻度の比率が[1]:[2]:[3]=1.00:1.10〜0.90:
1.00〜0.80から成ることを特徴とする。ここで、エポキ
シ樹脂は [A]ビスフェノールA型エポキシ樹脂と[B]ビス
フェノールF型エポキシ樹脂が[A]:[B]=90重量部:10重
量部〜60重量部:40重量部であることが好ましい。さら
に、前記エポキシ樹脂組成物は[a]エポキシ樹脂及びシ
リカ充填剤を含むエポキシ樹脂組成物と[b]少なくとも
硬化剤及びシリカ充填剤を含む樹脂組成物とに2液化し
ても良い。
That is, the present invention relates to an epoxy resin composition containing an epoxy resin, a curing agent and a silica filler,
The silica filler has a maximum particle size of 50 μm or less, and a particle size of 0.8.
Cumulative frequency of 2μm or less is 10% or less, particle size 0.82 to 18.50μm
Is 85% or more, and [1] particle size is 0.82 to 2.
31 μm, [2] particle size 2.31 to 6.54 μm, [3] particle size 6.54 to 18.50
μm frequency ratio is [1]: [2]: [3] = 1.00: 1.10-0.90:
1.00 to 0.80. Here, epoxy resin [A] bisphenol A type epoxy resin and [B] bisphenol F type epoxy resin are [A]: [B] = 90 parts by weight: 10 parts by weight to 60 parts by weight: 40 parts by weight Is preferred. Further, the epoxy resin composition may be two-packed into [a] an epoxy resin composition containing an epoxy resin and a silica filler and [b] a resin composition containing at least a curing agent and a silica filler.

【0011】また、本発明は、電気絶縁物を導体に被覆
した巻線にエポキシ樹脂組成物を注型後、加熱硬化した
モールドコイルにおいて、前記エポキシ樹脂組成物を注
型後、加熱硬化することにより達成できた。
[0011] The present invention also relates to a method of casting a coil obtained by casting an epoxy resin composition on a winding having an electric insulator coated on a conductor and then curing the epoxy resin composition by heating. Was achieved.

【0012】[0012]

【発明の実施の形態】本発明に示すシリカ充填剤の粒度
構成はレーザ回折粒度分布測定装置 MICROTRAC FRA型
(日機装株式会社製)で粒度分布を測定した結果から定
義した。すなわち、計測使用レンジを 0.12〜704μmに
設定して粒度分布を測定し、粒径 0.82μm以下の累積頻
度は 0.12〜0.14μm、0.14〜0.17μm、0.17〜0.20μm、
0.20〜0.24μm、0.24〜0.29μm、0.29〜0.34μm、0.34
〜0.41μm、0.41〜0.49μm、0.49〜0.58μm、0.58〜0.6
9μm及び 0.69〜0.82μmにおける各頻度の累積頻度が10
%以下、粒径 0.82〜18.50μmの累積頻度が85%以上で
あり、[1]粒径 0.82〜2.31μmの頻度は 0.82〜0.97、0.
97〜1.16μm、1.16〜1.38μm、1.38〜1.64μm、1.64〜
1.94μm及び1.94〜2.31μmにおける各頻度の累積頻度で
あり、また[2]粒径2.31〜6.54μmの頻度は 2.31〜2.75
μm、2.75〜3.27μm、3.27〜3.89μm、3.89〜4.62μm、
4.62〜5.50μm及び5.50〜6.54μmにおける各頻度の累積
頻度であり、更に[3]粒径 6.54〜18.50μmの頻度は 6.5
4〜7.78μm、7.78〜9.25μm、9.25〜11.00μm、11.00〜
13.08μm、13.08〜15.56μm及び 15.56〜18.50μmにお
ける各頻度の累積頻度である。
BEST MODE FOR CARRYING OUT THE INVENTION The particle size composition of the silica filler shown in the present invention was defined from the result of measuring the particle size distribution with a laser diffraction particle size distribution analyzer MICROTRAC FRA type (manufactured by Nikkiso Co., Ltd.). That is, the measurement use range is set to 0.12 to 704 μm and the particle size distribution is measured, and the cumulative frequency of the particle size of 0.82 μm or less is 0.12 to 0.14 μm, 0.14 to 0.17 μm, 0.17 to 0.20 μm,
0.20-0.24μm, 0.24-0.29μm, 0.29-0.34μm, 0.34
~ 0.41μm, 0.41 ~ 0.49μm, 0.49 ~ 0.58μm, 0.58 ~ 0.6
The cumulative frequency of each frequency at 9 μm and 0.69 to 0.82 μm is 10
% Or less, the cumulative frequency of 0.82 to 18.50 μm is 85% or more, [1] The frequency of 0.82 to 2.31 μm is 0.82 to 0.97,
97-1.16 μm, 1.16-1.38 μm, 1.38-1.64 μm, 1.64-
The cumulative frequency of each frequency at 1.94 μm and 1.94 to 2.31 μm, and the frequency of [2] particle size 2.31 to 6.54 μm is 2.31 to 2.75
μm, 2.75-3.27 μm, 3.27-3.89 μm, 3.89-4.62 μm,
It is the cumulative frequency of each frequency in 4.62 to 5.50 μm and 5.50 to 6.54 μm, and the frequency of [3] particle size 6.54 to 18.50 μm is 6.5
4 to 7.78 μm, 7.78 to 9.25 μm, 9.25 to 11.00 μm, 11.00 to
This is the cumulative frequency of each frequency at 13.08 μm, 13.08 to 15.56 μm, and 15.56 to 18.50 μm.

【0013】このような粒度分布を有するシリカ充填剤
を適用することで、硬化前に低粘度化が達成される理由
は明確ではないが、粘度の低下に効果的な最密充填が図
られるためと推察する。シリカ充填剤は、製造コスト及
び粒度分布等の観点から結晶質シリカ、溶融シリカ等を
挙げることができる。
Although it is not clear why the use of a silica filler having such a particle size distribution achieves a reduction in viscosity before curing, it is possible to achieve a close packing that is effective in lowering the viscosity. I guess. Examples of the silica filler include crystalline silica and fused silica from the viewpoints of production cost, particle size distribution, and the like.

【0014】本発明に示すエポキシ樹脂は粘度、機械的
強度、耐熱性の観点から、例えば、ビスフェノールA型
エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添
化ビスフェノールA型エポキシ樹脂、水添化ビスフェノ
ールF型エポキシ樹脂、ビスフェノールA及びビスフェノ
ールFとエピクロルヒドリンとの反応によって得られる
ビスフェノールA/F型エポキシ樹脂、脂環型エポキシ樹
脂、ノボラックエポキシ樹脂等のエポキシ樹脂が用いら
れる。エポキシ樹脂は前記エポキシ樹脂を単独または2
種以上混合して用いることができる。
From the viewpoints of viscosity, mechanical strength and heat resistance, the epoxy resins shown in the present invention include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F An epoxy resin such as a type epoxy resin, a bisphenol A / F type epoxy resin obtained by the reaction of bisphenol A and bisphenol F with epichlorohydrin, an alicyclic epoxy resin, and a novolak epoxy resin is used. Epoxy resin is the same as the above epoxy resin alone or 2
A mixture of more than one species can be used.

【0015】特に、前記エポキシ樹脂は、粘度、耐熱性
及びコスト等の観点から[A]ビスフェノールA型エポキシ
樹脂(エポキシ当量180〜200程度)と[B]ビスフェノー
ルF型エポキシ樹脂(エポキシ当量160〜180程度)が
[A]:[B]=90重量部:10重量部〜60重量部:40重量部で
あることが好ましく、ビスフェノールA型エポキシ樹脂
成分が多いと粘度及びガラス転移温度(以下、Tgとい
う)は高くなるが、逆にビスフェノールF型エポキシ樹
脂成分が多いと粘度及びTgが低下する傾向を示す。
Particularly, from the viewpoints of viscosity, heat resistance, cost and the like, the epoxy resin includes [A] bisphenol A type epoxy resin (epoxy equivalent of about 180 to 200) and [B] bisphenol F type epoxy resin (epoxy equivalent of 160 to 200). 180)
[A]: [B] = 90 parts by weight: 10 parts by weight to 60 parts by weight: preferably 40 parts by weight. If the bisphenol A type epoxy resin component is large, the viscosity and glass transition temperature (hereinafter, referred to as Tg) are high. On the other hand, the viscosity and Tg tend to decrease when the amount of bisphenol F type epoxy resin component is large.

【0016】本発明に示す硬化剤としては、酸無水物ま
たはアミン化合物等がある。
The curing agent according to the present invention includes an acid anhydride or an amine compound.

【0017】酸無水物として例えば、無水フタル酸、無
水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタ
ル酸等が、また、アミン化合物として例えば、脂肪族ポ
リアミンとその変性物、芳香族ポリアミンとその変性物
等が挙げられる。この中でも酸無水物が低粘度及び高Tg
が得られるため好ましい。前記エポキシ樹脂と硬化剤と
の配合割合は特に制限無いが、通常、硬化物の諸特性の
バランスを考慮し、酸無水物では当量比で1:1前後(エ
ポキシ樹脂100重量部に対して硬化剤80〜120重量部)、
アミン化合物ではエポキシ樹脂100重量部に対して10〜6
0重量部が選択される。
As the acid anhydride, for example, phthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc., and as the amine compound, for example, aliphatic polyamine and its modified product, aromatic polyamine and its modified product And the like. Among them, acid anhydride has low viscosity and high Tg
Is preferred because The mixing ratio of the epoxy resin and the curing agent is not particularly limited, but usually, in consideration of the balance of various properties of the cured product, the equivalent ratio of the acid anhydride is about 1: 1 (cured with respect to 100 parts by weight of the epoxy resin). 80-120 parts by weight)
For amine compounds, 10-6 parts per 100 parts by weight of epoxy resin
0 parts by weight is selected.

【0018】硬化促進剤は本発明のエポキシ樹脂組成物
の用途、特性の向上あるいは改善等に応じて適宜使用さ
れ、例えば、2−メチルイミダゾール、2−エチル−4−
メチルイミダゾール、1−シアノエチル−2−メチルイミ
ダゾール、1−(2−シアノエチル)−2−エチル−4−メ
チルイミダゾール等のイミダゾール類、ベンジルジメチ
ルアミン、N−ベンジルジメチルアミン等の第三級アミ
ン類がある。これらの硬化促進剤は単独または2種以上
混合して用いても良い。また、硬化促進剤の配合量はエ
ポキシ樹脂組成物としてのゲル化時間やポットライフ
(可使時間)から適宜選択されるが、エポキシ樹脂100
重量部、硬化剤80〜120重量部に対して0.1〜10重量部が
添加される。
The curing accelerator is appropriately used in accordance with the use of the epoxy resin composition of the present invention, improvement or improvement of properties, and examples thereof include 2-methylimidazole and 2-ethyl-4-.
Imidazoles such as methylimidazole, 1-cyanoethyl-2-methylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, and tertiary amines such as benzyldimethylamine and N-benzyldimethylamine is there. These curing accelerators may be used alone or in combination of two or more. The amount of the curing accelerator is appropriately selected from the gelation time and pot life (pot life) of the epoxy resin composition.
0.1 to 10 parts by weight is added to 80 to 120 parts by weight of the curing agent.

【0019】カップリング剤は本発明のエポキシ樹脂組
成物の用途、特性の向上あるいは改善等に応じて適宜使
用され、(1)無機充填剤と化学結合する反応性官能基
と有機マトリックスレジンと化学結合する反応性官能基
を有するカップリング剤、(2)無機充填剤と化学結合
し、有機マトリックスレジンと絡み合う非反応性有機基
を有するカップリング剤とを併用することがより効果的
である。
The coupling agent is appropriately used in accordance with the use, improvement or improvement of the properties of the epoxy resin composition of the present invention, and (1) a reactive functional group chemically bonded to an inorganic filler, an organic matrix resin, It is more effective to use a coupling agent having a reactive functional group to be bonded and (2) a coupling agent having a non-reactive organic group chemically bonded to an inorganic filler and entangled with an organic matrix resin.

【0020】上記の(1)で示されるカップリング剤と
しては、例えば、ビニルエトキシシラン、ビニルトリス
(β−メトキシエトキシ)シラン、γ−メタクリロキシ
プロピルトリメトキシシラン、γ−グリシドキシプロピ
ルトリメトキシシラン等がある。このうち、γ−グリシ
ドキシプロピルトリメトキシシランが好ましい。また、
(2)で示されるカップリング剤としては、モノアルコ
キシチタネート類、コーディネートタイプのチタネート
類、キレートタイプのチタネート類、トリアルコキシチ
タネート類が使用できる。これらチタネート系カップリ
ング剤のうち、モノアルコキシチタネート類が好まし
い。上記カップリング剤のうち、(1)で示されるカッ
プリング剤の配合量が多すぎると耐クラック性が低下す
る傾向にあり、また、(2)で示されるカップリング剤
の配合量が多すぎると耐熱性が低下する傾向にある。こ
のため、両者ともに無機充填剤に対して0.05〜2.0重量
%、さらに好ましくは0.1〜1.5重量%の範囲で配合する
ことが好ましい。 本発明のエポキシ樹脂、硬化剤及び
シリカ充填剤を含むエポキシ樹脂組成物は、[a]エポキ
シ樹脂及びシリカ充填剤を含むエポキシ樹脂組成物と
[b]少なくとも硬化剤及びシリカ充填剤を含む樹脂組成
物とに各々別個に作製することで、前記エポキシ樹脂組
成物に適宜使用される硬化促進剤の増量が可能になり、
本発明に示すエポキシ樹脂組成物の速硬化性を図ること
ができる。この場合、注型作業の直前に[a] エポキシ樹
脂組成物及び[b]樹脂組成物を2液混合吐出装置等により
適量計量して混合後、注型すればよい。
As the coupling agent represented by the above (1), for example, vinylethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane Etc. Of these, γ-glycidoxypropyltrimethoxysilane is preferred. Also,
As the coupling agent represented by (2), monoalkoxy titanates, coordinate type titanates, chelate type titanates, and trialkoxy titanates can be used. Of these titanate coupling agents, monoalkoxy titanates are preferred. Of the above coupling agents, if the amount of the coupling agent represented by (1) is too large, the crack resistance tends to decrease, and the amount of the coupling agent represented by (2) is too large. And heat resistance tends to decrease. For this reason, it is preferable that both are added in the range of 0.05 to 2.0% by weight, more preferably 0.1 to 1.5% by weight, based on the inorganic filler. The epoxy resin composition containing the epoxy resin of the present invention, a curing agent and a silica filler is (a) an epoxy resin composition containing an epoxy resin and a silica filler.
[b] By separately preparing the resin composition containing at least a curing agent and a silica filler, it is possible to increase the amount of a curing accelerator appropriately used in the epoxy resin composition,
The epoxy resin composition according to the present invention can achieve rapid curability. In this case, the epoxy resin composition [a] and the resin composition [b] may be measured and mixed in an appropriate amount using a two-liquid mixing / discharging apparatus immediately before the casting operation, and then cast.

【0021】以上述べたエポキシ樹脂組成物は電気絶縁
物を導体に被覆した巻線に注型後、加熱硬化することで
絶縁信頼性に優れたモールドコイルが作製できる。
The above-described epoxy resin composition is cast into a winding in which an electric insulator is coated on a conductor, and then cured by heating, whereby a molded coil having excellent insulation reliability can be manufactured.

【0022】以下、本発明を実施例に基づき説明する。Hereinafter, the present invention will be described with reference to examples.

【0023】[0023]

【実施例1〜6、比較例1〜5】シリカ充填剤であるシリカ
A、シリカB、シリカC、シリカ1、シリカ2、シリカ3、シ
リカ4、シリカ5(龍森株式会社製、結晶質シリカ)の最
大粒径、各粒径における累積頻度及び頻度の比率を表1
に示す。
Examples 1 to 6, Comparative Examples 1 to 5 Silica as Silica Filler
The maximum particle size of A, Silica B, Silica C, Silica 1, Silica 2, Silica 3, Silica 4, Silica 5 (crystalline silica manufactured by Tatsumori Co., Ltd.) 1
Shown in

【0024】[0024]

【表1】 [Table 1]

【0025】これらの測定はレーザ回折粒度分布測定装
置 MICROTRAC FRA型(日機装株式会社製)を用いて、
粒径の計測使用レンジを 0.12〜704μmとし、シリカ充
填剤約1gをヘキサメタりん酸ナトリウムの0.2wt%水溶
液約100mlに約1分間超音波分散して測定試料とした。
These measurements were performed using a laser diffraction particle size distribution analyzer MICROTRAC FRA type (manufactured by Nikkiso Co., Ltd.)
The measurement range of the particle size was set to 0.12 to 704 μm, and about 1 g of silica filler was ultrasonically dispersed in about 100 ml of a 0.2 wt% aqueous solution of sodium hexametaphosphate for about 1 minute to obtain a measurement sample.

【0026】前記のシリカ充填剤を用い、エポキシ樹脂
としてビスフェノールF型エポキシ樹脂(旭電化株式会
社製、商品名EP−4901)、ビスフェノールA/F型エポキ
シ樹脂(チバガイギ株式会社製、商品名PY−302−2)、
脂環式エポキシ樹脂(チバガイギ株式会社製、商品名CY
−179)、硬化剤としてメチルヘキサヒドロ無水フタル
酸(日立化成工業株式会社製、商品名HN−5500)、メチ
ルナジック酸無水物(日立化成工業株式会社製、商品名
MHAC−P)、ジエチレントリアミン(住友化学株式会社
製)、硬化促進剤として1−(2−シアノエチル)−2−
エチル−4−メチルイミダゾール(四国化成株式会社
製、商品名2E4MZ−CN)、ベンジルジメチルアミン(花
王株式会社製、商品名BDMA)を表2に示す所定量計量し
た。
Using the silica filler described above, bisphenol F type epoxy resin (trade name: EP-4901, manufactured by Asahi Denka Co., Ltd.) and bisphenol A / F type epoxy resin (trade name: PY-, manufactured by Ciba Geigy Co., Ltd.) 302-2),
Alicyclic epoxy resin (manufactured by Ciba Geigy Corporation, trade name CY
-179), methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., trade name HN-5500), methylnadic anhydride (manufactured by Hitachi Chemical Co., Ltd., trade name)
MHAC-P), diethylenetriamine (manufactured by Sumitomo Chemical Co., Ltd.), and 1- (2-cyanoethyl) -2- as a curing accelerator
Ethyl-4-methylimidazole (trade name: 2E4MZ-CN, manufactured by Shikoku Chemicals Co., Ltd.) and benzyldimethylamine (trade name: BDMA, manufactured by Kao Corporation) were weighed in predetermined amounts shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】その後、各素材を約90℃に調節した万能混
合撹拌機(ダルトン株式会社製)を用いて真空脱泡(10
Pa)しながら、約30分間撹拌混合して実施例1〜6のエポ
キシ樹脂組成物を作製した。作製したエポキシ樹脂組成
物の粘度、注型時間及び硬化物のガラス転移温度(Tgと
略する)を同じく表2に示す。
Thereafter, each material was vacuum defoamed (10%) using a universal mixing stirrer (Dalton Co., Ltd.) adjusted to about 90 ° C.
Pa) while stirring and mixing for about 30 minutes to produce the epoxy resin compositions of Examples 1 to 6. Table 2 also shows the viscosity, casting time, and glass transition temperature (abbreviated to Tg) of the cured product of the prepared epoxy resin composition.

【0029】粘度の測定は、サンプル瓶(35φ、110m
l)に前記エポキシ樹脂組成物約80mlを秤量し、BL型回
転粘度計(東京計器株式会社製)を用い90℃に調節した
シリコーン油浴に浸漬して行った。次に、注型時間の測
定は90℃に加熱したエポキシ樹脂組成物約400gを容積50
0mlの分液ロート(コック穴径;1mm、足径;7mm)に入
れた後、コックを開放して容積200mlのメスシリンダー
に注入し、150mlまで達する時間を計測して、この時間
を注型時間とした。
The viscosity was measured using a sample bottle (35φ, 110m
In l), about 80 ml of the epoxy resin composition was weighed and immersed in a silicone oil bath adjusted to 90 ° C. using a BL-type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd.). Next, about 400 g of the epoxy resin composition heated to 90 ° C. was measured for a casting time of 50 g.
After placing in a 0 ml separatory funnel (cock hole diameter: 1 mm, foot diameter: 7 mm), open the cock and inject it into a 200 ml graduated cylinder, measure the time to reach 150 ml, and cast this time. Time.

【0030】更に、Tgの測定は上記エポキシ樹脂組成物
を90℃で17時間加熱後、更に170℃で15時間加熱して得
た硬化物を熱物理試験機TM−1500型(真空理工株式会社
製)を用いて昇温速度2.0℃/minで行った。
Further, the Tg was measured by heating the epoxy resin composition at 90 ° C. for 17 hours, and further heating at 170 ° C. for 15 hours. Was performed at a heating rate of 2.0 ° C./min.

【0031】シリカ充填剤の粒径 0.82μm以下の累積頻
度を10%以下及び粒径 0.82〜18.50μmの累積頻度を85
%以上として、更に粒径範囲 2.31〜6.54μmにおける頻
度の比率を1.10〜0.90及び粒径範囲6.54〜18.50μmにお
ける頻度の比率を1.00〜0.80とすることで、実施例1〜6
のエポキシ樹脂組成物の粘度は2.0Pa・s以下の低粘度を
示した。注型時間は、実施例1〜6のエポキシ樹脂組成物
はいずれも5分を示し、また、Tgは実施例1〜6は130℃以
上を示した。
The cumulative frequency of silica filler particles having a particle size of 0.82 μm or less is 10% or less and the cumulative frequency of silica particles having a particle size of 0.82 to 18.50 μm is 85%.
% Or more, the frequency ratio in the particle size range of 2.31 to 6.54 μm is 1.10 to 0.90, and the frequency ratio in the particle size range of 6.54 to 18.50 μm is 1.00 to 0.80.
The viscosity of the epoxy resin composition was as low as 2.0 Pa · s or less. The casting time was 5 minutes for all of the epoxy resin compositions of Examples 1 to 6, and the Tg was 130 ° C. or more for Examples 1 to 6.

【0032】これに対し、比較例1〜5のエポキシ樹脂組
成物は表3に示す各素材を、実施例1と同様な方法によ
り作製した。作製したエポキシ樹脂組成物の粘度、注型
時間及び硬化物のTgを同じく表3に示す。
On the other hand, the epoxy resin compositions of Comparative Examples 1 to 5 were prepared from the respective materials shown in Table 3 in the same manner as in Example 1. Table 3 also shows the viscosity, casting time, and Tg of the cured product of the prepared epoxy resin composition.

【0033】[0033]

【表3】 [Table 3]

【0034】シリカ充填剤の粒径 0.82μm以下の累積頻
度が10%を越える(比較例1及び3)あるいは粒径 0.82
〜18.50μmの累積頻度が85%未満(比較例2及び3)の場
合には、粒径範囲 2.31〜6.54μmにおける頻度の比率が
1.10〜0.90及び粒径範囲 6.54〜18.50μmにおける頻度
の比率が1.00〜0.80であっても約3.0Pa・sまで粘度が上
昇した。また、粒径 0.82μm以下の累積頻度が10%以下
及び粒径 0.82〜18.50μmの累積頻度が85%以上の範囲
であっても、粒径範囲 2.31〜6.54μmにおける頻度の比
率が1.10を越える(比較例4)あるいは0.9未満(比較例
5)の場合には、約3.0Pa・sまで粘度が上昇した。
The cumulative frequency of the silica filler having a particle size of 0.82 μm or less exceeds 10% (Comparative Examples 1 and 3) or the particle size is 0.82
When the cumulative frequency of ~ 18.50 μm is less than 85% (Comparative Examples 2 and 3), the frequency ratio in the particle size range of 2.31 to 6.54 μm is
Even when the frequency ratio in the range of 1.10 to 0.90 and the particle size range of 6.54 to 18.50 μm was 1.00 to 0.80, the viscosity increased to about 3.0 Pa · s. In addition, even if the cumulative frequency of particle size 0.82μm or less is 10% or less and the cumulative frequency of particle size 0.82 to 18.50μm is 85% or more, the ratio of frequency in the particle size range 2.31 to 6.54μm exceeds 1.10. (Comparative Example 4) or less than 0.9 (Comparative Example
In the case of 5), the viscosity increased to about 3.0 Pa · s.

【0035】一方、注型時間は、比較例1〜5のエポキシ
樹脂組成物は9〜10分を示し、Tgは比較例1〜5は130℃以
上を示した。
On the other hand, the casting time was 9 to 10 minutes for the epoxy resin compositions of Comparative Examples 1 to 5, and the Tg was 130 ° C. or higher for Comparative Examples 1 to 5.

【0036】以上本実施例のエポキシ樹脂組成物は低粘
度であり、比較例と比べて注型時間が約1/2に短縮でき
るため、注型作業性を向上することができた。
As described above, the epoxy resin composition of this example has a low viscosity, and the casting time can be reduced to about 1/2 compared with the comparative example, so that the casting workability can be improved.

【0037】[0037]

【実施例7〜11、比較例6〜8】実施例1と同様な方法でシ
リカ充填剤であるシリカD、シリカE、シリカF、シリカ
6、シリカ7、シリカ8(龍森株式会社製、結晶質シリ
カ)について粒度分布を測定した。最大粒径、各粒径に
おける累積頻度及び頻度の比率を表4に示す。
Examples 7-11, Comparative Examples 6-8 In the same manner as in Example 1, silica fillers such as silica D, silica E, silica F and silica
The particle size distribution of 6, silica 7, and silica 8 (crystalline silica, manufactured by Tatsumori Corporation) was measured. Table 4 shows the maximum particle size, the cumulative frequency and the ratio of the frequency for each particle size.

【0038】[0038]

【表4】 [Table 4]

【0039】これらのシリカ充填剤を用い、エポキシ樹
脂、硬化剤、硬化促進剤を第5表に示す所定量計量し、
実施例1と同様な方法でエポキシ樹脂組成物を作製し
た。作製したエポキシ樹脂組成物の粘度、注型時間及び
硬化物のTgを同じく表5に示す。
Using these silica fillers, an epoxy resin, a curing agent, and a curing accelerator are measured in predetermined amounts shown in Table 5, and
An epoxy resin composition was prepared in the same manner as in Example 1. Table 5 also shows the viscosity, casting time, and Tg of the cured product of the prepared epoxy resin composition.

【0040】[0040]

【表5】 [Table 5]

【0041】シリカ充填剤の粒径0.82μm以下の累積頻
度を10%以下及び粒径0.82〜18.50μmの累積頻度を85%
以上として、更に粒径範囲2.31〜6.54μmにおける頻度
の比率を1.10〜0.90及び粒径範囲6.54〜18.50μmにおけ
る頻度の比率を1.00〜0.80とすることで、実施例7〜11
のエポキシ樹脂組成物の粘度は2.0Pa・s以下の低粘度を
示した。
The cumulative frequency of silica filler particles having a particle size of 0.82 μm or less is 10% or less, and the cumulative frequency of silica filler particles having a particle size of 0.82 to 18.50 μm is 85%.
As described above, by further setting the frequency ratio in the particle size range of 2.31 to 6.54 μm to 1.10 to 0.90 and the frequency ratio in the particle size range of 6.54 to 18.50 μm to 1.00 to 0.80, Examples 7 to 11
The viscosity of the epoxy resin composition was as low as 2.0 Pa · s or less.

【0042】次に注型時間は、実施例7〜11のエポキシ
樹脂組成物はいずれも5分を示し、また、Tgは実施例7〜
11は130℃以上を示した。これに対し、シリカ充填剤の
粒径範囲6.54〜18.50μmにおける頻度の比率が1.00を越
える(比較例6)あるいは0.8未満(比較例7及び8)の場
合には、粒径 0.82μm以下の累積頻度が10%以下、粒径
0.82〜18.50μmの累積頻度が85%以上、更に粒径範囲
2.31〜6.54μmにおける頻度の比率が1.10〜0.90の範囲
であっても約3.0Pa・sまで粘度が上昇した。したがっ
て、注型時間は、比較例6〜8のエポキシ樹脂組成物が9
〜10分を示した。また、Tgは比較例6〜8が130℃以上で
あった。
Next, the casting time was 5 minutes for all of the epoxy resin compositions of Examples 7 to 11, and the Tg was that of Examples 7 to 11.
11 indicated 130 ° C. or higher. On the other hand, when the ratio of the frequency of the silica filler in the particle size range of 6.54 to 18.50 μm is more than 1.00 (Comparative Example 6) or less than 0.8 (Comparative Examples 7 and 8), the cumulative particle size is 0.82 μm or less. Frequency less than 10%, particle size
The cumulative frequency of 0.82 to 18.50μm is 85% or more, and the particle size range
Even when the ratio of frequencies at 2.31 to 6.54 μm was in the range of 1.10 to 0.90, the viscosity increased to about 3.0 Pa · s. Therefore, the casting time was 9 times for the epoxy resin compositions of Comparative Examples 6 to 8.
Showed ~ 10 minutes. Moreover, Tg was 130 degreeC or more in Comparative Examples 6-8.

【0043】以上、本実施例のエポキシ樹脂組成物は低
粘度であり、比較例と比べて注型時間が約1/2に短縮で
きるため、注型作業性を向上する効果が得られた。
As described above, the epoxy resin composition of the present example has a low viscosity, and the casting time can be reduced to about 1/2 compared with the comparative example. Therefore, the effect of improving the casting workability was obtained.

【0044】[0044]

【実施例12〜15】実施例1と同様のシリカA、硬化剤、硬
化促進剤を用い、エポキシ樹脂であるビスフェノールA
型エポキシ樹脂(旭チバ株式会社製、商品名AER−260)
とビスフェノールF型エポキシ樹脂の配合比を表6のよ
うに変え、実施例1と同様な方法で撹拌混合してエポキ
シ樹脂組成物を作製した。このエポキシ樹脂組成物の粘
度と実施例1と同様に加熱して得た硬化物のTgを測定し
た。結果を同じく表6に示す。
Examples 12 to 15 Bisphenol A which is an epoxy resin using the same silica A, curing agent and curing accelerator as in Example 1
Epoxy resin (AER-260, manufactured by Asahi Ciba Co., Ltd.)
The mixing ratio of the epoxy resin and the bisphenol F type epoxy resin was changed as shown in Table 6, and the mixture was stirred and mixed in the same manner as in Example 1 to prepare an epoxy resin composition. The viscosity of this epoxy resin composition and the Tg of the cured product obtained by heating in the same manner as in Example 1 were measured. The results are also shown in Table 6.

【0045】[0045]

【表6】 [Table 6]

【0046】本実施例のいずれの場合も粘度は2.0Pa・s
以下であり、Tgが約150℃を示した。本実施例によれ
ば、エポキシ樹脂組成物のエポキシ樹脂がビスフェノー
ルA型エポキシ樹脂:ビスフェノールF型エポキシ樹脂の
配合比を90重量部:10重量部〜60重量部:40重量部にす
ることで、低粘度でかつ高Tgが得られた。
In any of the examples, the viscosity was 2.0 Pa · s
The Tg was about 150 ° C. According to the present embodiment, the epoxy resin of the epoxy resin composition has a compounding ratio of bisphenol A type epoxy resin: bisphenol F type epoxy resin of 90 parts by weight: 10 parts by weight to 60 parts by weight: 40 parts by weight, Low viscosity and high Tg were obtained.

【0047】[0047]

【実施例16】次に本発明に示すエポキシ樹脂組成物を
[a]エポキシ樹脂、カップリング剤及びシリカ充填剤か
ら成るエポキシ樹脂組成物と[b]硬化剤、カップリング
剤、硬化促進剤及びシリカ充填剤から成る樹脂組成物と
に2液化した例について説明する。
Example 16 Next, the epoxy resin composition shown in the present invention was
Description of an example in which [a] an epoxy resin composition composed of an epoxy resin, a coupling agent and a silica filler and [b] a resin composition composed of a curing agent, a coupling agent, a curing accelerator and a silica filler are two-packed I do.

【0048】[a]エポキシ樹脂組成物は、実施例3と同様
のビスフェノールA/F型エポキシ樹脂100重量部、シリカ
A330重量部と、更にシラン系カップリング剤(信越化学
株式会社製、商品名KBM-403)3.0重量部を基本組成とし
て各素材を計量後、実施例1と同様な方法で撹拌混合し
て作製した。また[b]樹脂組成物は、実施例3と同様のメ
チルヘキサヒドロ無水フタル酸95重量部、シリカA330重
量部、1−(2−シアノエチル)−2−エチル−4−メチル
イミダゾール0.25重量部と、更にチタネート系カップリ
ング剤(日本曹達株式会社製、商品名S−181)1.0重量
部を基本組成として各素材を計量後、実施例1と同様な
方法で撹拌混合して作製した。
[A] The same epoxy resin composition as in Example 3, 100 parts by weight of bisphenol A / F type epoxy resin, silica
A330 parts by weight and 3.0 parts by weight of a silane-based coupling agent (Shin-Etsu Chemical Co., Ltd., trade name: KBM-403) were weighed as the basic components, and then mixed and stirred in the same manner as in Example 1. did. [B] The resin composition contained 95 parts by weight of methyl hexahydrophthalic anhydride, 330 parts by weight of silica A, and 0.25 parts by weight of 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole as in Example 3. Further, each material was weighed based on 1.0 part by weight of a titanate-based coupling agent (trade name: S-181, manufactured by Nippon Soda Co., Ltd.), and the mixture was stirred and mixed in the same manner as in Example 1 to prepare a mixture.

【0049】この後、前記[a] エポキシ樹脂組成物及び
[b]樹脂組成物は自動計量吐出装置(ナカリキッドコン
トロール株式会社製、商品名トリスタンTVE−EL)を用
い、自動計量された各樹脂組成物をミキシング部で混合
することにより、本実施例16のエポキシ樹脂組成物を得
た。本実施例16のエポキシ樹脂組成物及び実施例3に示
す1液の場合のゲル化時間、粘度及び実施例1と同様に加
熱して得た硬化物のTgを測定した。結果を表7に示す。
Thereafter, the epoxy resin composition [a]
[b] The resin composition of Example 16 was mixed by using an automatic metering and discharging device (trade name: Tristan TVE-EL, manufactured by Nakari Liquid Control Co., Ltd.) in a mixing section. Was obtained. The gelation time, viscosity and Tg of the cured product obtained by heating in the same manner as in Example 1 were measured for the epoxy resin composition of Example 16 and the one liquid shown in Example 3. Table 7 shows the results.

【0050】[0050]

【表7】 [Table 7]

【0051】ゲル化時間の測定はゲル化時間測定装置
(東芝株式会社製、型式SFO−4M)を用いて、エポキシ
樹脂組成物約8mlを試験管(18φ、18ml)に秤量し、90
℃に調節したシリコーン油浴に浸漬して行った。その結
果、本実施例16のエポキシ樹脂組成物のゲル化時間は、
90℃で170分、100℃で88分であるのに対し、1液の実施
例3のエポキシ樹脂組成物は、90℃で380分、100℃で200
分であった。
The gelation time was measured using a gelation time measuring device (manufactured by Toshiba Corporation, Model SFO-4M), and about 8 ml of the epoxy resin composition was weighed into a test tube (18φ, 18 ml).
The test was carried out by immersion in a silicone oil bath adjusted to ° C. As a result, the gel time of the epoxy resin composition of Example 16 was
While it is 170 minutes at 90 ° C. and 88 minutes at 100 ° C., the one-part epoxy resin composition of Example 3 is 380 minutes at 90 ° C. and 200 minutes at 100 ° C.
Minutes.

【0052】また、本実施例16の2液化したエポキシ樹
脂組成物の粘度及び硬化物のTgは1液の実施例3とほぼ同
等の値であった。1液の実施例3のエポキシ樹脂組成物は
エポキシ樹脂と硬化剤とを混合した時から硬化反応が始
まり、更に硬化促進剤が加えられることで反応は加速さ
れる。したがって、各素材の混合後から、注型作業を行
うまでは時間的制約を受ける。
The viscosity and Tg of the cured two-part epoxy resin composition of Example 16 were almost the same as those of Example 3 of one liquid. In the one-part epoxy resin composition of Example 3, the curing reaction starts when the epoxy resin and the curing agent are mixed, and the reaction is accelerated by further adding a curing accelerator. Therefore, there is a time restriction from the mixing of the materials until the casting operation is performed.

【0053】一方、本実施例16は[a] エポキシ樹脂組成
物及び[b]樹脂組成物とに予め2液化しているため、両者
を混合しない限り硬化反応が起こらない。 したがっ
て、2液化することでエポキシ樹脂組成物の保存を実質
的に無期限化することができると共に、硬化促進剤の増
量によりゲル化時間を1/2まで短縮でき速硬化を図るこ
とができた。
On the other hand, in Example 16, since the epoxy resin composition [a] and the resin composition [b] were preliminarily liquidized, the curing reaction does not occur unless both are mixed. Therefore, the storage of the epoxy resin composition can be made substantially indefinite by the two-packing, and the gelation time can be shortened to 1/2 by increasing the amount of the curing accelerator, thereby achieving rapid curing. .

【0054】[0054]

【実施例17、比較例9】本発明に示すエポキシ樹脂組成
物を使用してモールドコイルを作製した例について説明
する。図1は本実施例17のモールドコイルの構成を示す
一部を断面とした斜視図である。このモールドコイル
は、内外周をそれぞれプリプレグ絶縁物2a、3aでモール
ドして内周絶縁層2、外周絶縁層3を形成し、コイル内部
には実施例4と同様なエポキシ樹脂組成物4を巻線1の内
部にも含浸注入した後、加熱硬化することにより作製さ
れる。
Example 17 and Comparative Example 9 An example in which a molded coil was produced using the epoxy resin composition according to the present invention will be described. FIG. 1 is a perspective view, partly in section, showing the configuration of a molded coil according to the seventeenth embodiment. In this molded coil, the inner and outer peripheries are molded with prepreg insulators 2a and 3a, respectively, to form an inner perimeter insulating layer 2 and an outer perimeter insulating layer 3, and the same epoxy resin composition 4 as in Example 4 is wound inside the coil. It is produced by impregnating and injecting into the inside of the wire 1 and then heating and curing.

【0055】本実施例におけるモールドコイルの製造方
法は、図2のように巻線機6の巻心8にプリプレグ絶縁物
2aをエポキシ樹脂組成物の漏れ止め用フランジ7に密着
するようにして巻回し、その上に巻線1を巻回する。
As shown in FIG. 2, the method of manufacturing a molded coil in this embodiment is such that a prepreg insulator
2a is wound so as to be in intimate contact with the flange 7 for preventing leakage of the epoxy resin composition, and the winding 1 is wound thereon.

【0056】巻線1は図3に示すように導体1aと層間絶
縁物5とが交互に巻回される。図2において巻線1の巻回
後、更にその上面にプリプレグ絶縁物3aを一方の端部が
フランジ7に密着するようにして巻回し、その後、170℃
で4時間加熱して巻線1の乾燥とプリプレグ絶縁物2a、3a
の硬化を行う。
As shown in FIG. 3, the conductor 1a and the interlayer insulator 5 are wound alternately on the winding 1. In FIG. 2, after the winding 1 is wound, a prepreg insulator 3a is further wound on the upper surface thereof such that one end thereof is in close contact with the flange 7, and then at 170 ° C.
For 4 hours to dry winding 1 and prepreg insulators 2a, 3a
Is cured.

【0057】図3に示すように、フランジ7を下にして
内周絶縁層2と外周絶縁層3で囲まれた空間及び導体1aと
層間絶縁物5に囲まれた空間に実施例4と同様なエポキシ
樹脂組成物を約10分で含浸注入し、90℃・17時間の加熱
硬化した後にフランジ7及び巻心8を取り外し、更に170
℃・15時間の加熱硬化後、約12時間かけて室温まで冷却
してモールドコイルを作製した。同様に、比較例9のモ
ールドコイルは巻線に比較例3と同様なエポキシ樹脂組
成物を約15分で含浸注入し、実施例17と同様な方法で作
製した。
As shown in FIG. 3, in the same manner as in the fourth embodiment, a space surrounded by the inner circumferential insulating layer 2 and the outer circumferential insulating layer 3 and a space surrounded by the conductor 1a and the interlayer insulator 5 with the flange 7 down. The epoxy resin composition was impregnated and injected in about 10 minutes, and after heating and curing at 90 ° C. for 17 hours, the flange 7 and the core 8 were removed.
After heating and curing at 15 ° C. for 15 hours, it was cooled to room temperature over about 12 hours to produce a molded coil. Similarly, the molded coil of Comparative Example 9 was prepared by impregnating and injecting the same epoxy resin composition as in Comparative Example 3 into the winding in about 15 minutes, and manufactured in the same manner as in Example 17.

【0058】本実施例17のモールドコイルは低粘度のエ
ポキシ樹脂組成物を用いているため、図3に示すように
巻線部にボイド(気泡)が無く、また、前記モールドコ
イルに約10kVの電圧を印加し耐電圧試験を行った結果、
コロナの発生も無かった。
Since the molded coil of Example 17 uses a low-viscosity epoxy resin composition, there are no voids (bubbles) in the winding portion as shown in FIG. As a result of applying a voltage and conducting a withstand voltage test,
No corona was generated.

【0059】これに対し、比較例9のモールドコイルは
粘度が高いエポキシ樹脂組成物を用いているため、図4
に示すように巻線部にボイド(気泡)が形成され、本実
施例17と同様に耐電圧試験を行った結果、コロナが発生
した。
On the other hand, since the molded coil of Comparative Example 9 uses an epoxy resin composition having a high viscosity, FIG.
As shown in (1), voids (bubbles) were formed in the winding portion. As a result of conducting a withstand voltage test in the same manner as in Example 17, corona was generated.

【0060】本実施例によれば、エポキシ樹脂組成物が
硬化前に低粘度であるため、コイル作製時の注型作業時
間が比較例9と比べ約15分から約10分に短縮できると共
に、硬化後にモールドコイルの巻線部にボイドが形成さ
れず、コロナの発生を抑制できるため絶縁信頼性が向上
できた。
According to the present example, since the epoxy resin composition had a low viscosity before curing, the casting operation time during coil production could be reduced from about 15 minutes to about 10 minutes as compared with Comparative Example 9, and the curing time was reduced. Later, no void was formed in the winding portion of the molded coil, and the occurrence of corona could be suppressed, so that the insulation reliability could be improved.

【0061】[0061]

【実施例18、比較例10】実施例17と同様な方法でフラン
ジ7及び内周絶縁層2及び外周絶縁層3を備えた巻線を作
製した。次に、前記巻線に実施例12と同様なエポキシ樹
脂組成物を約10分で含浸注入し、90℃・17時間で加熱硬
化した後にフランジ7及び巻心8を取り外し、更に170℃
・15時間の加熱硬化後、約12時間かけて室温まで冷却し
て本発明のモールドコイルを作製した。同様に、比較例
10のモールドコイルは巻線に比較例8と同様なエポキシ
樹脂組成物を約15分で含浸注入し、実施例18と同様な方
法で作製した。
Example 18 and Comparative Example 10 In the same manner as in Example 17, a winding having the flange 7, the inner peripheral insulating layer 2 and the outer peripheral insulating layer 3 was produced. Next, the same epoxy resin composition as in Example 12 was impregnated and injected into the winding in about 10 minutes, and after being heat-cured at 90 ° C. for 17 hours, the flange 7 and the core 8 were removed.
-After 15 hours of heat curing, the mold coil of the present invention was produced by cooling to room temperature over about 12 hours. Similarly, comparative example
The molded coil of No. 10 was manufactured in the same manner as in Example 18 by impregnating and injecting the same epoxy resin composition as in Comparative Example 8 into the winding in about 15 minutes.

【0062】これら作製したモールドコイルに300kVAを
通電した後、クラック(ひび割れ)の有無を確認した。
その結果、本実施例18のモールドコイルは高Tgのエポキ
シ樹脂組成物を用いているため、コイル温度が通電によ
り約135℃に上昇したがクラックは無かった。これに対
し、比較例10のモールドコイルは低Tgのエポキシ樹脂組
成物を用いているため、コイル温度が通電により約135
℃に上昇してクラックが発生した。
After applying 300 kVA to these molded coils, the presence or absence of cracks was confirmed.
As a result, since the molded coil of Example 18 used the epoxy resin composition having a high Tg, the coil temperature was increased to about 135 ° C. by energization, but there was no crack. On the other hand, since the molded coil of Comparative Example 10 uses a low Tg epoxy resin composition, the coil temperature is reduced to about 135 by energization.
The temperature rose to ℃ and cracks occurred.

【0063】本実施例によれば、エポキシ樹脂組成物が
硬化後に高Tgであるため、通電時のコイル温度上昇によ
るクラックの発生を抑制できるため絶縁信頼性が向上で
きた。
According to this example, since the epoxy resin composition had a high Tg after curing, it was possible to suppress the occurrence of cracks due to a rise in coil temperature during energization, thereby improving insulation reliability.

【0064】[0064]

【実施例19】本実施例のモールドコイルの構成を示す一
部を断面とした斜視図を図5に示す。このモールドコイ
ルは、内外周をそれぞれプリプレグ絶縁物2a、3aでモー
ルドして内周絶縁層2、外周絶縁層3を形成し、更にコイ
ルの一方端部に高粘度のパテ状樹脂組成物9を充填硬化
後、実施例16と同様なエポキシ樹脂組成物4を巻線1の内
部に含浸注入した後、加熱硬化することにより作製され
た。
[Embodiment 19] Fig. 5 is a perspective view, partially in section, showing the structure of a molded coil of this embodiment. In this molded coil, the inner and outer peripheries are molded with prepreg insulators 2a and 3a, respectively, to form an inner perimeter insulating layer 2 and an outer perimeter insulating layer 3, and a high viscosity putty resin composition 9 is applied to one end of the coil. After filling and curing, an epoxy resin composition 4 similar to that in Example 16 was impregnated and injected into the inside of the winding 1 and then heated and cured.

【0065】本実施例におけるモールドコイルの製造方
法は、図6のように巻線機6の巻心8にプリプレグ絶縁物
2aを巻回し、その上に巻線1を巻回する。巻線1は図7に
示すように導体1aと層間絶縁物5とが交互に巻回され
る。
As shown in FIG. 6, the method of manufacturing a molded coil in this embodiment is such that a prepreg insulator
2a is wound, and the winding 1 is wound thereon. As shown in FIG. 7, a conductor 1a and an interlayer insulator 5 are wound alternately on the winding 1.

【0066】図6において巻線1の巻回後、更にその上
面にプリプレグ絶縁物3aを巻回し、図7のように前記コ
イルの一方端部に高粘度のパテ状樹脂組成物9を充填
後、170℃で4時間加熱して巻線1の乾燥とプリプレグ絶
縁物2a、3a及びパテ状樹脂組成物9の硬化を行った。こ
の後、コイルは巻心8を外して図5に示すようにパテ状
樹脂組成物9が充填された端部を下にして置き、実施例1
6と同様の[a]ビスフェノールA/F型エポキシ樹脂、シリ
カA及びシラン系カップリング剤から成る樹脂組成物と
[b]メチルヘキサヒドロ無水フタル酸、シリカA、1−(2
−シアノエチル)−2−エチル−4−メチルイミダゾール
及びチタネート系カップリング剤から成る樹脂組成物を
自動計量吐出装置で混合して得たエポキシ樹脂組成物4
を内周絶縁層2と外周絶縁層3で囲まれた空間及び巻線1
内の空間に約5分で含浸注入した。その後、100℃・5時
間及び170℃・7時間の加熱硬化後、約7時間かけて室温
まで冷却してモールドコイルを得た。
In FIG. 6, after the winding 1 is wound, a prepreg insulator 3a is further wound on the upper surface thereof, and as shown in FIG. 7, one end of the coil is filled with a high-viscosity putty resin composition 9. The wire 1 was dried by heating at 170 ° C. for 4 hours, and the prepreg insulators 2a and 3a and the putty-like resin composition 9 were cured. Thereafter, the coil was removed from the core 8 and placed with the end filled with the putty-like resin composition 9 down as shown in FIG.
A resin composition comprising the same [a] bisphenol A / F type epoxy resin, silica A and a silane coupling agent as in 6,
[b] Methylhexahydrophthalic anhydride, silica A, 1- (2
-Cyanoethyl) -2-ethyl-4-methylimidazole and an epoxy resin composition 4 obtained by mixing the resin composition comprising a titanate-based coupling agent with an automatic metering and discharging device.
Is the space surrounded by the inner insulating layer 2 and the outer insulating layer 3 and the winding 1
It was impregnated and injected into the space in about 5 minutes. Then, after heating and curing at 100 ° C. for 5 hours and 170 ° C. for 7 hours, it was cooled to room temperature over about 7 hours to obtain a molded coil.

【0067】本実施例によれば、エポキシ樹脂組成物が
硬化前に低粘度であるため、コイル作製時の注型作業時
間が従来に比べ約10分から約5分に短縮できると共に、
モールドコイルの巻線部にボイドが形成されないため、
コロナの発生を抑制でき絶縁信頼性が向上する。更に、
2液化したエポキシ樹脂組成物を適用することでゲル化
時間が約1/2まで速硬化性を図ることができ、これによ
り、モールドコイルの加熱硬化時間を32時間から12時間
まで短縮することができるため、モールドコイルの作製
時間を1/2以上短縮することができた。
According to this example, since the epoxy resin composition had a low viscosity before being cured, the casting operation time for producing the coil could be reduced from about 10 minutes to about 5 minutes as compared with the conventional method, and
Since no void is formed in the winding part of the molded coil,
Corona generation can be suppressed, and insulation reliability is improved. Furthermore,
By applying the two-component epoxy resin composition, it is possible to achieve a rapid curing property of about 1/2 of the gel time, thereby shortening the heat curing time of the mold coil from 32 hours to 12 hours. As a result, the manufacturing time of the molded coil was reduced by more than half.

【0068】[0068]

【発明の効果】本発明によればエポキシ樹脂組成物にお
いて、最大粒径50μm以下であり、粒径0.82μm以下の累
積頻度は10%以下、粒径0.82〜18.50μmの累積頻度が85
%以上であって、更に[1]粒径0.82〜2.31μm、[2]粒径
2.31〜6.54μm、[3]粒径6.54〜18.50μmの頻度の比率が
[1]:[2]:[3]=1.00:1.10〜0.90:1.00〜0.80であるシ
リカ充填剤を適用することにより、硬化前に低粘度化が
可能となり、注型作業性を向上することができる。ま
た、上記エポキシ樹脂組成物のエポキシ樹脂を[A]ビス
フェノールA型エポキシ樹脂と[B]ビスフェノールF型エ
ポキシ樹脂の混合物とし、[A]:[B]=90重量部:10重量
部〜60重量部:40重量部の範囲とすることで硬化前に低
粘度で、硬化後に耐熱性が優れたエポキシ樹脂組成物を
得ることができる。
According to the present invention, the epoxy resin composition has a maximum particle size of 50 μm or less, a cumulative frequency of 0.82 μm or less is 10% or less, and a cumulative frequency of 0.82 to 18.50 μm is 85% or less.
% Or more, and [1] particle size 0.82 to 2.31 μm, [2] particle size
2.31 ~ 6.54μm, [3] particle size 6.54 ~ 18.50μm frequency ratio
[1]: [2]: [3] = 1.00: 1.10 to 0.90: By applying silica filler with 1.00 to 0.80, it becomes possible to lower the viscosity before curing and improve casting workability. Can be. The epoxy resin of the epoxy resin composition is a mixture of [A] bisphenol A type epoxy resin and [B] bisphenol F type epoxy resin, and [A]: [B] = 90 parts by weight: 10 parts by weight to 60 parts by weight Parts: in the range of 40 parts by weight, an epoxy resin composition having low viscosity before curing and having excellent heat resistance after curing can be obtained.

【0069】更に前記エポキシ樹脂組成物を、[a]エポ
キシ樹脂及びシリカ充填剤を含むエポキシ樹脂組成物と
[b]少なくとも硬化剤及びシリカ充填剤を含む樹脂組成
物とに2液化することで、エポキシ樹脂組成物に適宜使
用される硬化促進剤を増量することができ、速硬化性が
図られるためモールドコイルの作製時間を短縮できる。
Further, the epoxy resin composition may be used as an epoxy resin composition containing [a] an epoxy resin and a silica filler.
[b] By two-packing with a resin composition containing at least a curing agent and a silica filler, it is possible to increase the amount of a curing accelerator appropriately used in the epoxy resin composition, and to achieve rapid curing, so that a mold is obtained. The time required to manufacture the coil can be reduced.

【0070】以上述べたエポキシ樹脂組成物を用いて電
気絶縁物を導体に被覆した巻線に注型した後、加熱硬化
することで絶縁信頼性に優れたモールドコイルを得るこ
とができる。
A molded coil having excellent insulation reliability can be obtained by casting a coil having an electric insulator coated on a conductor using the above-described epoxy resin composition, followed by heat curing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例17及び18のモールドコイルの構成を示
す一部を断面とした斜視図である。
FIG. 1 is a perspective view, partly in section, showing a configuration of a molded coil of Examples 17 and 18.

【図2】 実施例17及び18、比較例9及び10において巻
線機で作製したコイルの側面図である。
FIG. 2 is a side view of a coil manufactured by a winding machine in Examples 17 and 18 and Comparative Examples 9 and 10.

【図3】 本発明のエポキシ樹脂組成物を含浸注入後の
モールドコイルの断面図である。
FIG. 3 is a cross-sectional view of a molded coil after impregnating and injecting the epoxy resin composition of the present invention.

【図4】 比較例9及び10のモールドコイルの構成を示
す一部を断面とした側面図である。
FIG. 4 is a side view, partly in section, showing a configuration of a molded coil of Comparative Examples 9 and 10.

【図5】 実施例19のモールドコイルの構成を示す一部
を断面とした斜視図である。
FIG. 5 is a perspective view, partially in section, showing a configuration of a molded coil of Example 19;

【図6】 実施例19において巻線機で作製したコイルの
側面図である。
FIG. 6 is a side view of a coil manufactured by a winding machine in Example 19.

【図7】 実施例19におけるコイルの一方端部に高粘度
のパテ状樹脂組成物を充填後の断面図である。
FIG. 7 is a cross-sectional view after filling a high-viscosity putty resin composition into one end of a coil in Example 19.

【符号の説明】[Explanation of symbols]

1…巻線、1a…導体、2…内周絶縁物、2a…プリプレグ絶
縁物、3…外周絶縁物、3a…プリプレグ絶縁物、4…エポ
キシ樹脂組成物、5…層間絶縁物、6…巻線機、7…フラ
ンジ、8…巻心、9…パテ状樹脂組成物、10…ボイド
1 ... winding, 1a ... conductor, 2 ... inner circumference insulation, 2a ... prepreg insulation, 3 ... outer circumference insulation, 3a ... prepreg insulation, 4 ... epoxy resin composition, 5 ... interlayer insulation, 6 ... winding Wire machine, 7… Flange, 8… Core, 9… Putty resin composition, 10… Void

フロントページの続き (72)発明者 伊豆名 具巳 新潟県北蒲原郡中条町大字富岡46番地1 株式会社日立製作所産業機器事業部内 (72)発明者 海津 朋宏 新潟県北蒲原郡中条町大字富岡46番地1 株式会社日立製作所産業機器事業部内 Fターム(参考) 4J002 CD021 CD051 CD061 DJ017 EL136 EN036 EN046 EN076 EN086 FD017 FD146 FD150 FD200 GQ01 5E044 AC01 AC04 5G305 AA02 AA13 AB01 AB36 BA07 BA15 BA22 BA26 CA15 CA16 CC02 CD01 CD08 Continued on the front page (72) Inventor Izumi Gumi 46-1, Tomioka, Nakajo-cho, Kitakanbara-gun, Niigata Prefecture Industrial Machinery Division, Hitachi, Ltd. F-term (reference) in the Industrial Equipment Division of Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】エポキシ樹脂、硬化剤及びシリカ充填剤を
含むエポキシ樹脂組成物において、該シリカ充填剤は最
大粒径50μm以下であり、粒径0.82μm以下の累積頻度が
10%以下、粒径 0.82〜18.50μmの累積頻度が85%以上
であって、更に[1]粒径 0.82〜2.31μm、[2]粒径 2.31
〜6.54μm、[3]粒径 6.54〜18.50μmの頻度の比率が
[1]:[2]:[3]=1.00:1.10〜0.90:1.00〜0.80であるこ
とを特徴とするエポキシ樹脂組成物。
1. An epoxy resin composition comprising an epoxy resin, a curing agent and a silica filler, wherein said silica filler has a maximum particle size of 50 μm or less, and a cumulative frequency of a particle size of 0.82 μm or less.
The cumulative frequency of 10% or less, the particle size of 0.82 to 18.50 μm is 85% or more, and [1] the particle size of 0.82 to 2.31 μm, and [2] the particle size of 2.31
~ 6.54μm, [3] particle size 6.54 ~ 18.50μm frequency ratio
[1]: [2]: [3] = 1.00: 1.10 to 0.90: 1.00 to 0.80.
【請求項2】前記、エポキシ樹脂は[A]ビスフェノールA
型エポキシ樹脂と[B]ビスフェノールF型エポキシ樹脂
が、[A]:[B]=90重量部:10重量部〜60重量部:40重量
部であることを特徴とする請求項1記載のエポキシ樹脂
組成物。
2. The epoxy resin is [A] bisphenol A.
2. The epoxy according to claim 1, wherein the epoxy resin and the [B] bisphenol F epoxy resin are [A]: [B] = 90 parts by weight: 10 parts by weight to 60 parts by weight: 40 parts by weight. Resin composition.
【請求項3】前記、エポキシ樹脂、硬化剤及びシリカ充
填剤を含むエポキシ樹脂組成物が、[a]エポキシ樹脂及
びシリカ充填剤を含むエポキシ樹脂組成物と[b]少なく
とも硬化剤及びシリカ充填剤を含む樹脂組成物とに2液
化してなることを特徴とする請求項1記載のエポキシ樹
脂組成物。
3. The epoxy resin composition comprising an epoxy resin, a curing agent and a silica filler, wherein the epoxy resin composition comprises [a] an epoxy resin composition containing an epoxy resin and a silica filler, and [b] at least a curing agent and a silica filler. 2. The epoxy resin composition according to claim 1, wherein the epoxy resin composition is formed into two liquids with a resin composition containing:
【請求項4】電気絶縁物を導体に被覆した巻線にエポキ
シ樹脂組成物を注型後、加熱硬化したモールドコイルに
おいて、該エポキシ樹脂組成物がエポキシ樹脂、硬化剤
及びシリカ充填剤を含み、該シリカ充填剤は最大粒径 5
0μm以下であり、粒径 0.82μm以下の累積頻度が10%以
下、粒径 0.82〜18.50μmの累積頻度が 85%以上であっ
て、更に[1]粒径 0.82〜2.31μm、[2]粒径 2.31〜6.54
μm、[3]粒径 6.54〜18.50μmの頻度の比率が[1]:
[2]:[3]=1.00:1.10〜0.90:1.00〜0.80から成ること
を特徴とするモールドコイル。
4. A molded coil which is obtained by casting an epoxy resin composition on a winding having an electric insulator coated on a conductor and then heat-curing the molded coil, wherein the epoxy resin composition contains an epoxy resin, a curing agent and a silica filler, The silica filler has a maximum particle size of 5
0 μm or less, the cumulative frequency of 0.82 μm or less is 10% or less, the cumulative frequency of 0.82 to 18.50 μm is 85% or more, and [1] 0.82 to 2.31 μm and [2] 2.31 to 6.54
μm, [3] particle size 6.54-18.50μm frequency ratio [1]:
[2]: [3] = 1.00: 1.10 to 0.90: 1.00 to 0.80.
【請求項5】電気絶縁物を導体に被覆した巻線にエポキ
シ樹脂組成物を注型後、加熱硬化したモールドコイルに
おいて、該エポキシ樹脂組成物がエポキシ樹脂、硬化剤
及びシリカ充填剤を含み、該エポキシ樹脂は[A]ビスフ
ェノールA型エポキシ樹脂と[B]ビスフェノールF型エポ
キシ樹脂が、[A]:[B]=90重量部:10重量部〜60重量
部:40重量部であることを特徴とする請求項4記載のモ
ールドコイル。
5. A molded coil which is obtained by casting an epoxy resin composition on a winding having an electric insulator coated on a conductor and then heat-curing, wherein the epoxy resin composition contains an epoxy resin, a curing agent and a silica filler, In the epoxy resin, [A] bisphenol A type epoxy resin and [B] bisphenol F type epoxy resin are [A]: [B] = 90 parts by weight: 10 parts by weight to 60 parts by weight: 40 parts by weight. 5. The molded coil according to claim 4, wherein:
【請求項6】前記のエポキシ樹脂、硬化剤及びシリカ充
填剤を含むエポキシ樹脂組成物が、[a] エポキシ樹脂及
びシリカ充填剤を含むエポキシ樹脂組成物と[b]少なく
とも硬化剤及びシリカ充填剤とを含む樹脂組成物とに2
液化してなることを特徴とする請求項4記載のモールド
コイル。
6. An epoxy resin composition comprising an epoxy resin, a curing agent and a silica filler, comprising: [a] an epoxy resin composition comprising an epoxy resin and a silica filler; and [b] at least a curing agent and a silica filler. And a resin composition containing
5. The molded coil according to claim 4, wherein the molded coil is liquefied.
JP34320698A 1998-12-02 1998-12-02 Epoxy resin composition and molded coil Expired - Fee Related JP3404304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34320698A JP3404304B2 (en) 1998-12-02 1998-12-02 Epoxy resin composition and molded coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34320698A JP3404304B2 (en) 1998-12-02 1998-12-02 Epoxy resin composition and molded coil

Publications (2)

Publication Number Publication Date
JP2000169678A true JP2000169678A (en) 2000-06-20
JP3404304B2 JP3404304B2 (en) 2003-05-06

Family

ID=18359743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34320698A Expired - Fee Related JP3404304B2 (en) 1998-12-02 1998-12-02 Epoxy resin composition and molded coil

Country Status (1)

Country Link
JP (1) JP3404304B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940382B2 (en) 2002-07-26 2005-09-06 Denso Corporation Resin composition and ignition coil device using the same
JP2007238778A (en) * 2006-03-09 2007-09-20 Sumitomo Bakelite Co Ltd Transparent composite sheet
JP2009503169A (en) * 2005-07-26 2009-01-29 ハンツマン アドバンスト マテリアルズ (スイッツァランド) ゲーエムベーハー Composition
JP2016035001A (en) * 2014-08-01 2016-03-17 京セラケミカル株式会社 Epoxy resin composition for coil cast molding and ignition coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940382B2 (en) 2002-07-26 2005-09-06 Denso Corporation Resin composition and ignition coil device using the same
JP2009503169A (en) * 2005-07-26 2009-01-29 ハンツマン アドバンスト マテリアルズ (スイッツァランド) ゲーエムベーハー Composition
JP2007238778A (en) * 2006-03-09 2007-09-20 Sumitomo Bakelite Co Ltd Transparent composite sheet
JP2016035001A (en) * 2014-08-01 2016-03-17 京セラケミカル株式会社 Epoxy resin composition for coil cast molding and ignition coil

Also Published As

Publication number Publication date
JP3404304B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
JP5642917B2 (en) Epoxy resin composition for impregnating mold coil and mold coil apparatus
JP5314379B2 (en) Epoxy resin composition for mold coil impregnation casting, mold coil device and method for manufacturing mold coil device
JP5129612B2 (en) Casting epoxy resin composition and high thermal conductive coil
JP6101122B2 (en) Epoxy resin composition for mold transformer, mold transformer, and method for producing mold transformer
JP3389533B2 (en) Epoxy resin composition and molded coil
JP2016060826A (en) Epoxy resin composition for two-liquid type casting and electronic component
JP3404304B2 (en) Epoxy resin composition and molded coil
JP2003306594A (en) Epoxy resin composition and rotating machine using the same
JP4403829B2 (en) Rotating electric machine, electrically insulated wire ring and epoxy resin composition used therefor
JP2623823B2 (en) Epoxy resin composition
JP2016033197A (en) Epoxy resin composition for cast, ignition coil and manufacturing method of ignition coil
JP3010828B2 (en) Two-part epoxy resin composition
JP3872038B2 (en) Casting epoxy resin composition, curing method thereof, and electric / electronic component device
JPH1171503A (en) Epoxy resin composition and insulation treatment of electric instrument using the same
JP3385784B2 (en) Inorganic filler anti-settling type casting resin composition and premix composition
JP2020002346A (en) Epoxy resin composition for casting, electronic component and method for manufacturing electronic component
JPS60255029A (en) Coil of rotary electric machine
JP2002155193A (en) Epoxy resin composition and electrical/electronic component device
JPS6228166B2 (en)
JP2000086869A (en) Epoxy resin composition and coil
JP2005048100A (en) Epoxy resin composition for casting and electrical/electronic component apparatus
JP6804992B2 (en) Epoxy resin composition for coil impregnation, manufacturing method of coil products, and ignition coil
JP3949436B2 (en) Casting epoxy resin composition and electrical / electronic component equipment
JPH07230931A (en) Manufacture of high tension transformer
JPH06283343A (en) Manufacture of flyback transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees