JP2000161801A - Pulse pipe refrigerating machine - Google Patents

Pulse pipe refrigerating machine

Info

Publication number
JP2000161801A
JP2000161801A JP10337754A JP33775498A JP2000161801A JP 2000161801 A JP2000161801 A JP 2000161801A JP 10337754 A JP10337754 A JP 10337754A JP 33775498 A JP33775498 A JP 33775498A JP 2000161801 A JP2000161801 A JP 2000161801A
Authority
JP
Japan
Prior art keywords
pulse tube
perforated plate
pulse pipe
working gas
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10337754A
Other languages
Japanese (ja)
Inventor
Kaoru Aoki
薫 青木
Tomohiro Koyama
知大 小山
Katsuaki Kanazawa
克明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10337754A priority Critical patent/JP2000161801A/en
Publication of JP2000161801A publication Critical patent/JP2000161801A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1414Pulse-tube cycles characterised by pulse tube details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Abstract

PROBLEM TO BE SOLVED: To suppress temperature increase at a low-temperature end by providing a porous plate in a pulse pipe and preventing a working medium being discharged into the pulse pipe from directly reaching the low-temperature end in a refrigerating machine with cold storage equipment for exchanging heat with the working medium that is transported between a compressor and the pulse pipe. SOLUTION: A working medium from a compressor 1 flows into cold stage equipment 3 through a high-pressure valve 2a, then flows into a pulse pipe 4, and then pushes the working medium already existing in the pulse pipe 4 toward a high-temperature end 41. Then, although the working medium passes through an orifice 6 and flows into a middle pressure chamber 7, compression heat being generated at the high-temperature end 41 of the pulse pipe 4 is emitted to the outside by a cooling fin 8. After that, when the high-pressure valve 2a is closed and the low-pressure valve 2b is opened, the working medium in the middle pressure chamber 7 momentarily passes through the orifice 6 and then flows into the pulse pipe 4. However, since a porous plate 43 is provided in the pulse pipe 4, the high-pressure gas cannot reach the low-temperature end 42 of the pulse pipe 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パルス管冷凍機に
関する。パルス管冷凍機は、低温部に可動部分がなく構
造も簡単で、しかも到達温度が比較的低い。このため、
振動の少ない冷凍機としての応用が期待されている。ま
た、アウトガス等の汚染物質が可動部に固着して動きを
阻害することがないため、長寿命化も容易である。
[0001] The present invention relates to a pulse tube refrigerator. The pulse tube refrigerator has no moving parts in the low-temperature part, has a simple structure, and has a relatively low temperature. For this reason,
The application as a refrigerator with little vibration is expected. In addition, since the contaminants such as outgas do not adhere to the movable portion and hinder the movement, the life can be easily extended.

【0002】[0002]

【従来の技術】従来のオリフィス型パルス管冷凍機の構
成及び動作原理を、図7を参照して説明する。
2. Description of the Related Art The construction and operating principle of a conventional orifice type pulse tube refrigerator will be described with reference to FIG.

【0003】図7は、従来のオリフィス型パルス管冷凍
機の概略断面図を示す。圧縮機1の吐出口及び吸入口
が、それぞれ高圧側バルブ2a及び低圧側バルブ2bを
介して蓄冷器3の高温端31に接続されている。圧縮機
1は、Heなどの作動ガスの吐出と吸入を繰り返す。図
中の矢印はガス流の方向を示す。高圧側バルブ2aを開
き、低圧側バルブ2bを閉じると、圧縮された作動ガス
が蓄冷器3内に導入される。高圧側バルブ2aを閉じ、
低圧側バルブ2bを開くと、蓄冷器3から圧縮機1へ作
動ガスが吸入される。
FIG. 7 is a schematic sectional view of a conventional orifice type pulse tube refrigerator. A discharge port and a suction port of the compressor 1 are connected to a high temperature end 31 of the regenerator 3 via a high pressure side valve 2a and a low pressure side valve 2b, respectively. The compressor 1 repeats discharge and suction of a working gas such as He. The arrows in the figure indicate the direction of the gas flow. When the high pressure side valve 2 a is opened and the low pressure side valve 2 b is closed, the compressed working gas is introduced into the regenerator 3. Close the high pressure side valve 2a,
When the low-pressure side valve 2b is opened, working gas is sucked from the regenerator 3 into the compressor 1.

【0004】蓄冷器3の内部には、作動ガスの流路が画
定され、その流路内に金網などの蓄冷材が充填されてい
る。蓄冷器3の低温端32は、冷却通路5を介してパル
ス管4の低温端42に連通している。パルス管4内に
は、作動ガスが流入する空洞が画定されている。パルス
管4の高温端41は作動流体の流量調整作用を行うオリ
フィス6を介して中間圧室7に接続されている。
[0004] Inside the regenerator 3, a flow path of a working gas is defined, and the flow path is filled with a regenerator material such as a wire mesh. The low temperature end 32 of the regenerator 3 communicates with the low temperature end 42 of the pulse tube 4 via the cooling passage 5. A cavity into which the working gas flows is defined in the pulse tube 4. The high-temperature end 41 of the pulse tube 4 is connected to the intermediate pressure chamber 7 via an orifice 6 for adjusting the flow rate of the working fluid.

【0005】圧縮機1で圧縮された高圧の作動ガスは、
開かれた高圧側バルブ2aを通って蓄冷器3を通過し、
パルス管4に流入する。作動ガスは、蓄冷器3内を通過
するときに、蓄冷材と熱交換を行う。パルス管4内に作
動ガスが流入すると、既にパルス管4内に存在していた
作動ガスが、新たに流入した作動ガスに押されて高温端
41の方へ移動する。
[0005] The high-pressure working gas compressed by the compressor 1 is:
Passing through the regenerator 3 through the open high pressure side valve 2a,
It flows into the pulse tube 4. The working gas exchanges heat with the cold storage material when passing through the regenerator 3. When the working gas flows into the pulse tube 4, the working gas already existing in the pulse tube 4 is pushed by the newly flowing working gas and moves toward the high temperature end 41.

【0006】この結果、パルス管4内の圧力が中間圧室
7の圧力よりも高くなり、作動ガスがオリフィス6を通
って中間圧室7内に流入する。このとき、パルス管4の
高温端41で圧縮熱が発生する。この圧縮熱は、パルス
管4の高温端41の周りに設けられた放熱フィン8によ
り外部に放射される。
As a result, the pressure in the pulse tube 4 becomes higher than the pressure in the intermediate pressure chamber 7, and the working gas flows into the intermediate pressure chamber 7 through the orifice 6. At this time, heat of compression is generated at the high temperature end 41 of the pulse tube 4. This heat of compression is radiated to the outside by radiation fins 8 provided around the high temperature end 41 of the pulse tube 4.

【0007】次に、高圧側バルブ2aが閉じて低圧側バ
ルブ2bが開く。パルス管4内の作動ガスが、蓄冷器3
の低温端32に流れ込み、蓄冷器3の内部の金網を冷却
しつつ温度上昇し、圧縮機1の吸入口に戻る。この際、
瞬間的に中間圧室7内の作動ガスがオリフィス6を通っ
てパルス管4内に流入する。
Next, the high pressure side valve 2a is closed and the low pressure side valve 2b is opened. The working gas in the pulse tube 4
, And the temperature rises while cooling the wire mesh inside the regenerator 3, and returns to the suction port of the compressor 1. On this occasion,
The working gas in the intermediate pressure chamber 7 momentarily flows into the pulse tube 4 through the orifice 6.

【0008】このような作動ガスの流れにより寒冷が発
生する理由は明確にはなっていないが、パルス管4の低
温端42で作動ガスの膨張に伴う寒冷が発生すると考え
られる。差動ガスの膨張による寒冷の発生が繰り返され
ることにより、冷却通路5に接する被冷却体が冷却され
る。
Although the reason why the flow of the working gas causes the cold is not clear, it is considered that the cold accompanying the expansion of the working gas occurs at the low temperature end 42 of the pulse tube 4. As the generation of cold due to the expansion of the differential gas is repeated, the object to be cooled in contact with the cooling passage 5 is cooled.

【0009】[0009]

【発明が解決しようとする課題】オリフィス型パルス管
冷凍機は、冷却効率の点で他の冷凍機、例えばGM冷凍
機等に劣る。冷却効率の悪い原因の一つとして、下記の
原因が考えられる。すなわち、中間圧室7からの戻りの
高温の作動ガスがオリフィス6を通過してパルス管4内
に流入する際に、パルス管4内に勢いよく噴出する。噴
出した作動ガスは、パルス管4内に滞留している作動ガ
ス中を突き抜け、低温端42の近傍にまで達する。低温
端42の近傍に達した高温の作動ガスが、低温端42の
温度を上昇させると考えられる。
The orifice type pulse tube refrigerator is inferior to other refrigerators, such as a GM refrigerator, in terms of cooling efficiency. One of the causes of poor cooling efficiency is as follows. That is, when the returning hot working gas from the intermediate pressure chamber 7 passes through the orifice 6 and flows into the pulse tube 4, the working gas gushes out into the pulse tube 4. The ejected working gas penetrates through the working gas staying in the pulse tube 4 and reaches near the low temperature end 42. It is considered that the high temperature working gas that has reached the vicinity of the low temperature end 42 raises the temperature of the low temperature end 42.

【0010】このような現象を防止するために、特開平
9−113051号公報に記載の発明では、図8に示す
ように、パルス管4内にストッパー部材9と移動部材1
0とを設けて、中間圧室7からの戻りの作動ガスの勢い
を緩衝している。しかしながら、図8のような構造で
は、パルス管4内に移動部材10が存在するために、可
動部が無いというパルス管冷凍機本来の特徴と利点が失
われてしまう。
In order to prevent such a phenomenon, according to the invention described in Japanese Patent Application Laid-Open No. 9-113051, a stopper member 9 and a moving member 1 are provided in a pulse tube 4 as shown in FIG.
0 is provided to buffer the return of the working gas from the intermediate pressure chamber 7. However, in the structure as shown in FIG. 8, since the moving member 10 exists in the pulse tube 4, the original feature and advantage of the pulse tube refrigerator having no movable portion are lost.

【0011】本発明の目的は、冷却効率を高めることが
可能なパルス管冷凍機を提供することである。
An object of the present invention is to provide a pulse tube refrigerator capable of increasing the cooling efficiency.

【0012】[0012]

【課題を解決するための手段】本発明の一観点による
と、作動ガスの供給及び回収を繰り返す圧縮機と、内部
に空洞を画定するパルス管と、前記圧縮機と前記パルス
管の一端との間に接続され、該圧縮機とパルス管との間
で作動ガスを輸送し、輸送される作動ガスと熱交換を行
う蓄冷器と、ある容積の内部空洞を画定する中間圧室
と、前記中間圧室と前記パルス管の他端との間に接続さ
れ、前記中間圧室の内部空洞と前記パルス管の内部空洞
とを連通させ、通過する作動ガスに対して流路抵抗を有
するガス流路と、前記パルス管の内部空洞内のうち、前
記中間圧室から前記パルス管内へ流入する差動ガスが衝
突する位置に配置され、作動ガスが通過可能な複数の貫
通孔を全面に分散させた多孔板とを有するパルス管冷凍
機が提供される。
According to one aspect of the present invention, a compressor for repeatedly supplying and recovering a working gas, a pulse tube defining a cavity therein, and one end of the compressor and one end of the pulse tube are provided. A regenerator connected between the compressor and the pulse tube for transporting the working gas and performing heat exchange with the transported working gas; an intermediate pressure chamber defining an internal cavity of a certain volume; A gas passage connected between the pressure chamber and the other end of the pulse tube, communicating the internal cavity of the intermediate pressure chamber with the internal cavity of the pulse tube, and having a flow path resistance to a working gas passing therethrough; And, in the internal cavity of the pulse tube, the differential gas flowing from the intermediate pressure chamber into the pulse tube is arranged at a position where the differential gas collides, and a plurality of through holes through which the working gas can pass are dispersed over the entire surface. A pulse tube refrigerator having a perforated plate is provided.

【0013】中間圧室からパルス管内に噴出した差動ガ
スが多孔板に衝突することにより、高温の作動ガスがパ
ルス管の低温端に直接到達することを防止できる。この
ため、低温端の温度上昇を抑制し、冷凍性能を高めるこ
とができる。
[0013] When the differential gas ejected from the intermediate pressure chamber into the pulse tube collides with the perforated plate, it is possible to prevent the high-temperature working gas from directly reaching the low-temperature end of the pulse tube. For this reason, the temperature rise at the low temperature end can be suppressed, and the refrigeration performance can be improved.

【0014】[0014]

【発明の実施の形態】図1は、本発明の実施例によるオ
リフィス型パルス管冷凍機の概略断面図を示す。圧縮機
1、蓄冷器3、パルス管4、及び中間圧室7の基本的な
構成は、図7に示す従来のパルス管冷凍機と同様であ
る。図1のパルス管冷凍機の各構成部分には、図7のパ
ルス管冷凍機の対応する構成部分に付された参照符号を
同一の符号が付されている。
FIG. 1 is a schematic sectional view of an orifice type pulse tube refrigerator according to an embodiment of the present invention. The basic configurations of the compressor 1, the regenerator 3, the pulse tube 4, and the intermediate pressure chamber 7 are the same as those of the conventional pulse tube refrigerator shown in FIG. Each component of the pulse tube refrigerator of FIG. 1 is assigned the same reference numeral as the corresponding component of the pulse tube refrigerator of FIG.

【0015】図1に示す実施例においては、パルス管4
内の空洞の高温端41の近傍に、多孔板43が配置され
ている。なお、蓄冷器3、冷却通路5及びパルス管4
は、外部との断熱のために真空容器内に設置される。
In the embodiment shown in FIG.
A perforated plate 43 is arranged near the high temperature end 41 of the inner cavity. The regenerator 3, cooling passage 5, and pulse tube 4
Is installed in a vacuum vessel for thermal insulation from the outside.

【0016】多孔板43は、Al、ステンレス、Cuあ
るいは樹脂等からなる厚さ約0.5mmの薄板に、所定
口径の多数の貫通孔を形成したものである。これら貫通
孔は、薄板の全面にほぼ一様に分散される。各孔の形状
は円形を含め、各種の形状が考えられる。また、メッシ
ュ状でもよいであろう。
The porous plate 43 is formed by forming a large number of through holes having a predetermined diameter on a thin plate having a thickness of about 0.5 mm made of Al, stainless steel, Cu, resin or the like. These through holes are distributed almost uniformly over the entire surface of the thin plate. Various shapes can be considered for the shape of each hole, including a circle. Also, it may be a mesh.

【0017】図2は、多孔板43及びオリフィス6の取
付部分の詳細な断面図を示す。円筒状部材4aと多孔板
固定部材4bとで、パルス管が構成されている。円筒状
部材4aは、真空容器11の壁に設けられた貫通孔11
aに、真空側から挿入され固定されている。この貫通孔
11aを塞ぐように、真空容器11の外側に多孔板固定
部材4bが取り付けられている。多孔板固定部材4b内
には、空洞4cが形成されている。空洞4cは、多孔板
固定部材4bの、真空容器11に対向する面に開口部を
有する。空洞4cの開口部は、貫通孔11aに整合す
る。また、空洞4cの反対側の開口部には、オリフィス
6が取り付けられている。空洞4cは、オリフィス6を
介して中間圧室7の内部空洞に連通する。
FIG. 2 is a detailed sectional view of a mounting portion of the perforated plate 43 and the orifice 6. A pulse tube is constituted by the cylindrical member 4a and the perforated plate fixing member 4b. The cylindrical member 4a is provided with a through hole 11 provided in a wall of the vacuum vessel 11.
a is inserted from the vacuum side and fixed. A perforated plate fixing member 4b is attached to the outside of the vacuum vessel 11 so as to close the through hole 11a. A cavity 4c is formed in the perforated plate fixing member 4b. The cavity 4c has an opening on the surface of the perforated plate fixing member 4b facing the vacuum vessel 11. The opening of the cavity 4c is aligned with the through hole 11a. An orifice 6 is attached to the opening on the opposite side of the cavity 4c. The cavity 4 c communicates with the internal cavity of the intermediate pressure chamber 7 via the orifice 6.

【0018】多孔板43は、多孔板固定部材4bと真空
容器11とに挟まれて固定される。空洞4cの開口部を
取り囲む円周に沿って段差が形成されている。この段差
部分に多孔板43が配置される。多孔板43と真空容器
11との間は、Oリングによって気密に保たれる。ま
た、Oリングを弾性変形させることによって、多孔板4
3の位置が固定される。
The perforated plate 43 is fixed between the perforated plate fixing member 4b and the vacuum vessel 11. A step is formed along the circumference surrounding the opening of the cavity 4c. The perforated plate 43 is arranged at this step. The space between the porous plate 43 and the vacuum vessel 11 is kept airtight by an O-ring. Further, by elastically deforming the O-ring, the perforated plate 4
Position 3 is fixed.

【0019】図3(A)に、多孔板43の一例を示す。
薄板に、口径約0.5mmの多数の貫通孔44が形成さ
れている。各貫通孔44は、格子模様の交点に対応する
位置に配置されている。開口比は、約25%である。こ
こで、開口比は、薄板の全面積に対する孔の開口部の合
計の面積の割合を意味する。図3(B)に、多孔板43
の他の例を示す。口径約0.7mmの多数の貫通孔44
が形成されている。各貫通孔44は、2組の縞模様を相
互に60°で交差させたときの交点に対応する位置に配
置されている。開口比は約50%である。
FIG. 3A shows an example of the perforated plate 43.
A large number of through holes 44 having a diameter of about 0.5 mm are formed in the thin plate. Each through hole 44 is arranged at a position corresponding to the intersection of the lattice pattern. The aperture ratio is about 25%. Here, the opening ratio means the ratio of the total area of the openings of the holes to the total area of the thin plate. FIG. 3B shows a perforated plate 43.
Here is another example. Numerous through holes 44 with a diameter of about 0.7 mm
Are formed. Each through hole 44 is arranged at a position corresponding to an intersection when two sets of stripes cross each other at 60 °. The aperture ratio is about 50%.

【0020】図4は、実施例によるパルス管冷凍機の冷
凍性能試験の結果を示す。冷凍機の低温部を強制的にヒ
ータで加熱しながら冷凍機を作動させ、低温端の到達温
度を測定した。図3の横軸は冷凍機の冷凍能力(ヒータ
に供給した電力に相当)を単位「W」で表し、縦軸は低
温端の温度を絶対温度で表す。図中の黒丸記号は、実施
例によるパルス管冷凍機の冷凍性能を示す。比較のため
に、図1の多孔板43を配置しない場合の冷凍性能を白
丸記号で示す。なお、試験に用いたパルス管冷凍機のパ
ルス管の径は20mm、長さは200mm、オリフィス
径は0.5mmである。用いた多孔板は、図3(A)に
示すものである。実施例によるパルス管冷凍機は、多孔
板のないものに比べて高い冷凍性能を示している。
FIG. 4 shows a result of a refrigerating performance test of the pulse tube refrigerator according to the embodiment. The refrigerator was operated while the low temperature part of the refrigerator was forcibly heated by the heater, and the ultimate temperature at the low temperature end was measured. The horizontal axis in FIG. 3 represents the refrigerating capacity of the refrigerator (corresponding to the power supplied to the heater) in units of “W”, and the vertical axis represents the temperature at the low temperature end in absolute temperature. The black circle symbols in the figure indicate the refrigerating performance of the pulse tube refrigerator according to the embodiment. For comparison, the refrigeration performance when the perforated plate 43 of FIG. 1 is not arranged is indicated by white circle symbols. The pulse tube refrigerator used in the test had a pulse tube having a diameter of 20 mm, a length of 200 mm, and an orifice diameter of 0.5 mm. The perforated plate used is that shown in FIG. The pulse tube refrigerator according to the embodiment has a higher refrigerating performance than a refrigerator without a perforated plate.

【0021】図5は、多孔板43の設置位置により冷凍
性能がどのように変わるかを測定した結果を示すグラフ
である。図5の横軸は、図2に示すオリフィス6のパル
ス管側の端部から多孔板43までの距離Lを単位「m
m」で表し、縦軸は最低到達温度を絶対温度で表す。オ
リフィスからの距離Lが15mm〜25mmの範囲のと
きに、比較的高い冷凍性能が得られた。
FIG. 5 is a graph showing the result of measuring how the refrigerating performance changes depending on the installation position of the perforated plate 43. The horizontal axis in FIG. 5 represents the distance L from the end of the orifice 6 on the pulse tube side shown in FIG.
m ", and the vertical axis represents the lowest attainable temperature in absolute temperature. When the distance L from the orifice was in the range of 15 mm to 25 mm, relatively high refrigeration performance was obtained.

【0022】図6は、多孔板の貫通孔の配置の違いによ
る冷凍性能の違いを測定した結果を示すグラフである。
図6の横軸は、パルス管冷凍機の低温端に与えられる熱
負荷を単位Wで表し、縦軸は、低温端の温度を絶対温度
で表す。図中の黒丸記号は、図3(A)に示す多孔板を
用いた場合を示す。白丸記号は、図3(A)に示す多孔
板の中央部分をテープで塞いだものを用いた場合を示
す。テープで塞いだ部分の面積は、多孔板全体の約60
%である。
FIG. 6 is a graph showing the results of measuring the difference in refrigeration performance due to the difference in the arrangement of the through holes in the perforated plate.
The horizontal axis in FIG. 6 represents the heat load applied to the low temperature end of the pulse tube refrigerator in W, and the vertical axis represents the temperature at the low temperature end in absolute temperature. The black circle symbol in the figure indicates the case where the perforated plate shown in FIG. A white circle symbol indicates a case where a perforated plate shown in FIG. 3A whose central portion is covered with a tape is used. The area of the area covered with tape is about 60
%.

【0023】テープでふさいだ多孔板を装着した場合に
は、全面に貫通孔が形成されている多孔板を装着した場
合に比べて、冷凍性能が悪い。この原因は、下記のよう
に考察される。
When a perforated plate covered with a tape is mounted, the refrigerating performance is worse than when a perforated plate having a through hole formed on the entire surface is mounted. This cause is considered as follows.

【0024】多孔板の孔を板面全体に一様に分散配置し
た場合には、作動ガスの流れに乱れが生じにくい。これ
に対し、テープで孔を塞いだ場合のように、孔が板の周
辺部など特定の部分に偏在する場合には、作動ガスに乱
流が生じる。この乱流のために、冷凍性能が低下すると
考えられる。従って、多孔板に形成する貫通孔は、板面
に一様に分布させることが好ましい。
When the holes of the perforated plate are uniformly distributed over the entire plate surface, the flow of the working gas is less likely to be disturbed. On the other hand, when the holes are unevenly distributed in a specific portion such as the peripheral portion of the plate, such as when the holes are closed with a tape, a turbulent flow occurs in the working gas. It is considered that the refrigeration performance is reduced due to the turbulence. Therefore, it is preferable that the through holes formed in the perforated plate are uniformly distributed on the plate surface.

【0025】上記の実施例では、多孔板43の各孔44
の口径を0.5mm及び0.7mmとしたが、他の口径
の貫通孔を設けた多毛番を用いてもよい。口径の好適な
範囲は0.2〜0.7mm、より好適な範囲は0.4m
m〜0.8mmである。また、開口比の好適な範囲は、
25〜50%である。
In the above embodiment, each hole 44 of the perforated plate 43
Are 0.5 mm and 0.7 mm in diameter, but a polyhedron provided with through holes of other diameters may be used. The preferred range of the caliber is 0.2-0.7 mm, the more preferred range is 0.4 m
m to 0.8 mm. The preferred range of the aperture ratio is:
25 to 50%.

【0026】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
自明であろう。
The present invention has been described in connection with the preferred embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
中間圧室からパルス管内に噴出した作動ガスが、多孔板
に衝突する。このため、高温の差動ガスが低温端まで直
接到達することを防止できる。これにより、冷凍効率を
高めることができる。
As described above, according to the present invention,
The working gas ejected from the intermediate pressure chamber into the pulse tube collides with the perforated plate. Therefore, it is possible to prevent the high-temperature differential gas from directly reaching the low-temperature end. Thereby, the refrigeration efficiency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるオリフィス型パルス管冷
凍機の概略図である。
FIG. 1 is a schematic view of an orifice type pulse tube refrigerator according to an embodiment of the present invention.

【図2】図1に示すパルス管冷凍機の多孔板取り付け部
分の断面図である。
FIG. 2 is a cross-sectional view of a perforated plate mounting portion of the pulse tube refrigerator shown in FIG.

【図3】本発明の実施例によるオリフィス型パルス管冷
凍機のパルス管に装着される多孔板の平面図である。
FIG. 3 is a plan view of a perforated plate mounted on a pulse tube of an orifice type pulse tube refrigerator according to an embodiment of the present invention.

【図4】本発明の実施例によるオリフィス型パルス管冷
凍機の冷凍性能を示すグラフである。
FIG. 4 is a graph showing the refrigerating performance of the orifice type pulse tube refrigerator according to the embodiment of the present invention.

【図5】本発明の実施例によるオリフィス型パルス管冷
凍機の多孔板の位置による到達温度の変化を示すグラフ
である。
FIG. 5 is a graph showing a change in an attained temperature depending on a position of a perforated plate of an orifice type pulse tube refrigerator according to an embodiment of the present invention.

【図6】本発明の実施例によるオリフィス型パルス管冷
凍機の多孔板の孔の配置による冷凍性能の違いを示すグ
ラフである。
FIG. 6 is a graph showing a difference in refrigeration performance depending on an arrangement of holes in a perforated plate of an orifice type pulse tube refrigerator according to an embodiment of the present invention.

【図7】従来例によるオリフィス型パルス管冷凍機の概
略図である。
FIG. 7 is a schematic view of an orifice type pulse tube refrigerator according to a conventional example.

【図8】他の従来例によるオリフィス型パルス管冷凍機
の概略図である。
FIG. 8 is a schematic view of an orifice type pulse tube refrigerator according to another conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2a、2b 高圧側、低圧側バルブ 3 蓄冷器 4 パルス管 5 冷却通路 6 オリフィス 7 中間圧室 8 放熱フィン 9 ストッパ部材 10 移動部材 11 真空容器 31、41 高温端 32、42 低温端 43 多孔板 44 貫通孔 DESCRIPTION OF SYMBOLS 1 Compressor 2a, 2b High pressure side, low pressure side valve 3 Regenerator 4 Pulse tube 5 Cooling passage 6 Orifice 7 Intermediate pressure chamber 8 Radiation fin 9 Stopper member 10 Moving member 11 Vacuum container 31, 41 High temperature end 32, 42 Low temperature end 43 Perforated plate 44 Through hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 作動ガスの供給及び回収を繰り返す圧縮
機と、 内部に空洞を画定するパルス管と、 前記圧縮機と前記パルス管の一端との間に接続され、該
圧縮機とパルス管との間で作動ガスを輸送し、輸送され
る作動ガスと熱交換を行う蓄冷器と、 ある容積の内部空洞を画定する中間圧室と、 前記中間圧室と前記パルス管の他端との間に接続され、
前記中間圧室の内部空洞と前記パルス管の内部空洞とを
連通させ、通過する作動ガスに対して流路抵抗を有する
ガス流路と、 前記パルス管の内部空洞内のうち、前記中間圧室から前
記パルス管内へ流入する差動ガスが衝突する位置に配置
され、作動ガスが通過可能な複数の貫通孔を全面に分散
させた多孔板とを有するパルス管冷凍機。
A compressor that repeats supply and recovery of a working gas; a pulse tube that defines a cavity therein; a compressor connected to one end of the pulse tube; A regenerator that transports the working gas between and exchanges heat with the transported working gas; an intermediate pressure chamber that defines an internal cavity of a certain volume; and between the intermediate pressure chamber and the other end of the pulse tube. Connected to
A gas flow path that communicates the internal cavity of the intermediate pressure chamber with the internal cavity of the pulse tube, and has a flow path resistance to a working gas passing therethrough; and, within the internal cavity of the pulse tube, the intermediate pressure chamber And a perforated plate in which a plurality of through-holes through which a working gas can pass are dispersed over the entire surface of the pulse tube refrigerator.
【請求項2】 前記多孔板の複数の貫通孔の各々の口径
が0.4mm〜0.8mmの範囲であり、前記複数の貫
通孔の総開口面積の前記多孔板の面積に対する開口比が
25〜50%の範囲である請求項1に記載のパルス管冷
凍機。
2. A plurality of through holes of the perforated plate each have a diameter in a range of 0.4 mm to 0.8 mm, and an opening ratio of a total opening area of the plurality of through holes to an area of the perforated plate is 25. The pulse tube refrigerator according to claim 1, wherein the range is from 50% to 50%.
【請求項3】 前記ガス流路と前記パルス管との接続箇
所から前記多孔板までの距離が5〜20mmである請求
項2に記載のパルス管冷凍機。
3. The pulse tube refrigerator according to claim 2, wherein a distance from a connection point between the gas flow path and the pulse tube to the perforated plate is 5 to 20 mm.
【請求項4】 前記多孔板に形成された貫通孔が、該多
孔板の表面にほぼ一様に分散されている請求項1〜3の
いずれかに記載のパルス管冷凍機。
4. The pulse tube refrigerator according to claim 1, wherein the through holes formed in the perforated plate are substantially uniformly dispersed on the surface of the perforated plate.
JP10337754A 1998-11-27 1998-11-27 Pulse pipe refrigerating machine Pending JP2000161801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10337754A JP2000161801A (en) 1998-11-27 1998-11-27 Pulse pipe refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10337754A JP2000161801A (en) 1998-11-27 1998-11-27 Pulse pipe refrigerating machine

Publications (1)

Publication Number Publication Date
JP2000161801A true JP2000161801A (en) 2000-06-16

Family

ID=18311653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10337754A Pending JP2000161801A (en) 1998-11-27 1998-11-27 Pulse pipe refrigerating machine

Country Status (1)

Country Link
JP (1) JP2000161801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019087A1 (en) 2001-08-30 2003-03-06 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019087A1 (en) 2001-08-30 2003-03-06 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine
EP1431682A1 (en) * 2001-08-30 2004-06-23 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine
EP1431682A4 (en) * 2001-08-30 2009-02-25 Aisin Seiki Pulse tube refrigerating machine

Similar Documents

Publication Publication Date Title
US9423160B2 (en) Regenerative refrigerator
JP2006284061A (en) Pulse pipe refrigerating machine
JP2016090061A (en) Cryogenic refrigerator
US20150168028A1 (en) Cryogenic refrigerator
JP2000161801A (en) Pulse pipe refrigerating machine
JP6376793B2 (en) Regenerator type refrigerator
US10976080B2 (en) Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
JP2749549B2 (en) Double inlet pulse tube refrigerator
CN214118435U (en) Heat insulation compressor valve plate
RU2273808C2 (en) Refrigeration machine with pulsating pipe
KR20060111447A (en) Evaporator for a refrigeration appliance
CN113532178B (en) Radiator and air conditioning system with same
CN113654277B (en) Condenser
WO2019009019A1 (en) Cryogenic refrigerator
JP2001263840A (en) Pulse tube refrigerator
KR102530063B1 (en) Suction pipe for refrigerator with groove
CN210532727U (en) Cryogenic refrigerator
JPH09178279A (en) Pulse tube type refrigerator
CN212320122U (en) Novel pulse tube refrigerator
CN112867898B (en) Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP6284788B2 (en) Displacer
JP2002235962A (en) Pulse-tube refrigerator
JP2015178916A (en) regenerator
KR100533131B1 (en) Cold end heat exchanger of pulse tube refrigerator
JP2021032514A (en) Throttle device and refrigeration cycle system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426