JPH09178279A - Pulse tube type refrigerator - Google Patents

Pulse tube type refrigerator

Info

Publication number
JPH09178279A
JPH09178279A JP35146195A JP35146195A JPH09178279A JP H09178279 A JPH09178279 A JP H09178279A JP 35146195 A JP35146195 A JP 35146195A JP 35146195 A JP35146195 A JP 35146195A JP H09178279 A JPH09178279 A JP H09178279A
Authority
JP
Japan
Prior art keywords
working fluid
pulse tube
capillary
pipe
buffer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35146195A
Other languages
Japanese (ja)
Inventor
Fumio Kuriyama
文夫 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP35146195A priority Critical patent/JPH09178279A/en
Publication of JPH09178279A publication Critical patent/JPH09178279A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the flow rate of a working fluid easily with high accuracy, radiate generated heat efficiently and improve refrigerating capability and reliability by using a capillary for a pipe which connects a pulse tube and a buffer tank with each other, and forming a heat radiator for cooling the capillary with a refrigerant. SOLUTION: The pressure of a working fluid in a buffer tank 8 is kept at a substantially constant level, and the buffer tank 8 and a flow straightener 14 in a pulse tube 5 are allowed to communicate to each other by a capillary 9 through which a working fluid flows due to a pressure difference between the buffer tank 8 and the flow straightener 14. The flow rate of the working fluid is decided by the inner diameter of the capillary 9 and the length thereof. Since the working fluid generates heat in the vicinity of the capillary 9, an outer block pipe 11 is set around the capillary 9 to form a heat radiator, and a medium is allowed to flow from a medium inlet port 12 to a medium outlet port 13, thus forming the heat radiator so that a temperature of the working fluid flowing inside the capillary 9 is kept at a constant level. With this arrangement, the heat radiation efficiency of the working fluid flowing through the capillary 9 is improved, and, further, the flow rate of the working fluid between the flow straightener 14 in the pulse tube 5 and the buffer tank 8 can be controlled with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はパルスチューブ冷凍
機に関し、特に冷凍能力を向上させるオリフィス型のパ
ルスチューブ冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator, and more particularly to an orifice type pulse tube refrigerator for improving the refrigerating capacity.

【0002】[0002]

【従来の技術】図5は従来のオリフィス型のパルスチュ
ーブ冷凍機の構成例を示す図である。図示するようにパ
ルスチューブ冷凍機は圧縮機1、アフタークーラ2、蓄
冷器3、低温熱交換器4、パルス管5、高温熱交換器
6、オリフィス7及びバッファータンク8を具備し、こ
れを配管及び/又は接続部で接続して構成している。
2. Description of the Related Art FIG. 5 is a diagram showing a configuration example of a conventional orifice type pulse tube refrigerator. As shown in the figure, the pulse tube refrigerator comprises a compressor 1, an aftercooler 2, a regenerator 3, a low temperature heat exchanger 4, a pulse tube 5, a high temperature heat exchanger 6, an orifice 7 and a buffer tank 8, which are piped. And / or the connection portion is used for connection.

【0003】圧縮機1はパルスチューブ冷凍機内に作動
流体(図示せず)の圧力振動を起こさせるものである。
先ず、圧縮機1で圧縮された作動流体は昇温されるため
アフタークーラ2で冷却された後、蓄冷器3、低温熱交
換器4、パルス管5及び高温熱交換器6内の作動流体の
圧力を上げる。
The compressor 1 causes pressure oscillation of a working fluid (not shown) in a pulse tube refrigerator.
First, since the working fluid compressed by the compressor 1 is heated, it is cooled by the aftercooler 2 and then the working fluid in the regenerator 3, the low temperature heat exchanger 4, the pulse tube 5 and the high temperature heat exchanger 6 is cooled. Increase pressure.

【0004】高温熱交換器6とバッファータンク8はオ
リフィス7を通して連通しており、該オリフィス7で作
動流体の流量が絞られているためバッファータンク8内
の圧力変動は極めて小さく抑えられている。圧縮機1に
より起こされる圧力振動により、パルス管5内の作動流
体は断熱変化に近い圧縮と膨張を繰り返し、またアフタ
ークーラ2、蓄冷器3、低温熱交換器4及び高温熱交換
器6内の作動流体は等温変化に近い圧縮と膨張を繰り返
すことになる。
The high temperature heat exchanger 6 and the buffer tank 8 are communicated with each other through the orifice 7. Since the flow rate of the working fluid is restricted by the orifice 7, the pressure fluctuation in the buffer tank 8 is suppressed to be extremely small. Due to the pressure vibration caused by the compressor 1, the working fluid in the pulse tube 5 repeats compression and expansion close to the adiabatic change, and the aftercooler 2, the regenerator 3, the low temperature heat exchanger 4 and the high temperature heat exchanger 6 The working fluid repeats compression and expansion close to the isothermal change.

【0005】上記のような作動流体の運動により、低温
熱交換器4に冷凍が発生する。また、低温熱交換器4の
温度が低下すると同時に蓄冷器3及びパルス管5におい
て温度勾配が生じる。アフタークーラ2及び高温熱交換
器6で発熱が生じるため、冷却水又は他の冷媒で放熱さ
せる必要がある。パルスチューブ冷凍機はこれを連続的
に行なって低温を成生させるものである。
Due to the movement of the working fluid as described above, refrigeration occurs in the low temperature heat exchanger 4. At the same time as the temperature of the low-temperature heat exchanger 4 decreases, a temperature gradient occurs in the regenerator 3 and the pulse tube 5. Since heat is generated in the aftercooler 2 and the high temperature heat exchanger 6, it is necessary to radiate heat with cooling water or another refrigerant. The pulse tube refrigerator is one that continuously performs this to generate a low temperature.

【0006】図6は他のオリフィス型のパルスチューブ
冷凍機の構成例を示す図で、本パルスチューブ冷凍機は
図5におけるオリフィス7をニードルバルブ10に置き
換え、オリフィス部での作動流体の流量を可変にしたも
のである。
FIG. 6 is a diagram showing a configuration example of another orifice type pulse tube refrigerator. In this pulse tube refrigerator, the orifice 7 in FIG. 5 is replaced with a needle valve 10 to change the flow rate of the working fluid in the orifice portion. It is variable.

【0007】図7は他のオリフィス型のパルスチューブ
冷凍機の構成例を示す図で、本パルスチューブ冷凍機は
図5におけるオリフィス7を細管9(キャピラリーチュ
ーブ)に置き換えたものである。
FIG. 7 is a diagram showing a structural example of another orifice type pulse tube refrigerator, in which the orifice 7 in FIG. 5 is replaced with a thin tube 9 (capillary tube).

【0008】[0008]

【発明が解決しようとする課題】オリフィス型のパルス
チューブ冷凍機の一般的構成は図5に示す通りである。
高温熱交換器6は、一般的にはケーシングの中に銅製金
網を堆積充填させ、そのケーシングを周囲より冷却水等
で冷却する構造である。この場合、高温熱交換器6内の
作動流体が発生する熱を十分に放熱することが難しく、
パルス管5とバッファータンク8内の作動流体の温度上
昇を起こさせる原因となっている。
The general structure of an orifice type pulse tube refrigerator is as shown in FIG.
The high temperature heat exchanger 6 generally has a structure in which a copper wire mesh is deposited and filled in a casing, and the casing is cooled from the surroundings with cooling water or the like. In this case, it is difficult to sufficiently dissipate the heat generated by the working fluid in the high temperature heat exchanger 6,
This causes the temperature rise of the working fluid in the pulse tube 5 and the buffer tank 8.

【0009】また、オリフィス7は高温熱交換器6とバ
ッファータンク8とを連通する作動流体の流量を制御す
るものであり、冷凍能力に関わる重要な要素である。小
型のオリフィスチューブ冷凍機の安定した性能を保障
し、信頼性の高い製品を提供させるため、このオリフィ
ス7には精密加工を施さなければならない。
The orifice 7 controls the flow rate of the working fluid that connects the high temperature heat exchanger 6 and the buffer tank 8 and is an important element related to the refrigerating capacity. In order to ensure the stable performance of a small orifice tube refrigerator and to provide a highly reliable product, the orifice 7 must be precision processed.

【0010】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去し、作動流体の流量を容易に精度
良く制御し、作動流体の発熱を効率良く放熱すること
で、冷凍能力の向上と信頼性の向上を図ることができる
パルスチューブ冷凍機を提供することを目的とする。
The present invention has been made in view of the above points, and eliminates the above problems, easily and accurately controls the flow rate of the working fluid, and efficiently radiates the heat generated by the working fluid, thereby providing a refrigerating capacity. It is an object of the present invention to provide a pulse tube refrigerator that can improve the reliability and the reliability.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、圧縮機、蓄冷器、熱交換器、
パルス管、バッファータンク及びそれらを結ぶ配管及び
/又は接続部から構成され、作動流体の作用により冷凍
を発生させるパルスチューブ冷凍機において、パルス管
とバッファータンクとを結ぶ配管に細管を用い、該細管
を冷媒により冷却するように構成したことを特徴とす
る。
In order to solve the above-mentioned problems, the invention according to claim 1 provides a compressor, a regenerator, a heat exchanger,
A pulse tube refrigerator comprising a pulse tube, a buffer tank, and a pipe and / or a connecting portion connecting the pulse tube and a refrigerating machine that generates refrigeration by the action of a working fluid. The thin tube is used as the pipe connecting the pulse tube and the buffer tank. Is configured to be cooled by a refrigerant.

【0012】また、請求項2に記載の発明は、請求項1
に記載のパルスチューブ冷凍機において、細管のまわり
に該細管より大きい径を持つ外郭配管を設置し、該細管
と該外郭配管との間に媒体を流すことにより放熱器を構
成することを特徴とする。
The invention described in claim 2 is the first invention.
In the pulse tube refrigerator according to claim 1, characterized in that an outer pipe having a diameter larger than the thin pipe is installed around the thin pipe, and a radiator is configured by flowing a medium between the thin pipe and the outer pipe. To do.

【0013】また、請求項3に記載の発明は、請求項1
に記載のパルスチューブ冷凍機において、細管を媒体の
通る配管に熱的に接触させて該細管を冷却するように構
成したことを特徴とする。
[0013] The invention described in claim 3 is the first invention.
In the pulse tube refrigerator described in (1), the thin tube is thermally contacted with a pipe through which a medium is passed to cool the thin tube.

【0014】また、請求項4に記載の発明は、請求項1
に記載のパルスチューブ冷凍機において、細管に放熱フ
ィンを設けるか又は該細管に放熱フィンの付いた物体を
熱的に接触させて該細管を冷却するように構成したこと
を特徴とする。
The invention described in claim 4 is the first invention.
In the pulse tube refrigerator described in (1), the thin tube is provided with a heat radiation fin, or an object having the heat radiation fin is brought into thermal contact with the thin tube to cool the thin tube.

【0015】パルスチューブ冷凍機に上記の構成を採用
することにより、細管の内径と長さを選定することによ
り容易にパルス管とバッファータンク間の作動流体の流
量を精度良く制御することが可能となる。また、細管は
流路面積の割合に外部との電熱面積が広くなり、熱交換
器として有効となる。
By adopting the above configuration in the pulse tube refrigerator, it is possible to easily control the flow rate of the working fluid between the pulse tube and the buffer tank with high accuracy by selecting the inner diameter and the length of the thin tube. Become. In addition, the thin tube has a larger area for heating heat with the outside in proportion to the flow path area, which is effective as a heat exchanger.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。なお、下記に示す実施の形態例
は一例であり、本発明はこの実施の形態例に限定される
ものではない。
Embodiments of the present invention will be described below with reference to the drawings. The embodiment described below is an example, and the present invention is not limited to this embodiment.

【0017】図1は本発明のオリフィス型のパルスチュ
ーブ冷凍機の構成を示す図である。本パルスチューブ冷
凍機は圧縮機1、アフタークーラ2、蓄冷器3、低温熱
交換器4、パルス管5、整流器14及びバッファータン
ク8を具備し、整流器14とバッファータンク8を細管
9で接続し、更に細管9のまわりに該細管9より大きい
径を持つ外郭配管11を設置している。
FIG. 1 is a diagram showing the structure of an orifice type pulse tube refrigerator of the present invention. This pulse tube refrigerator comprises a compressor 1, an aftercooler 2, a regenerator 3, a low temperature heat exchanger 4, a pulse tube 5, a rectifier 14 and a buffer tank 8. The rectifier 14 and the buffer tank 8 are connected by a narrow tube 9. Further, an outer pipe 11 having a diameter larger than that of the thin tube 9 is installed around the thin tube 9.

【0018】圧縮機1はパルスチューブ冷凍機内の作動
流体(図示せず)に圧力振動を与えるものであり、該圧
縮機1に連結されるアフタークーラ2は圧縮機1で圧縮
され昇温した作動流体を冷却水等(図示せず)で放熱
し、作動流体の温度を一定に保つための熱交換器であ
る。
The compressor 1 applies pressure oscillation to the working fluid (not shown) in the pulse tube refrigerator, and the aftercooler 2 connected to the compressor 1 is operated by being compressed by the compressor 1 and heated. It is a heat exchanger for keeping the temperature of the working fluid constant by radiating the fluid with cooling water or the like (not shown).

【0019】また、蓄冷器3は熱容量の大きな金属材料
が充填されており、低温熱交換器4で発生した冷凍によ
り冷却された作動ガスと熱交換し、機内の冷凍を保持す
るものである。パルス管5は単純な筒であり、内部の作
動流体は圧縮と膨張とを繰り返している。整流器14は
パルス管5内の作動流体の流れが乱れないように整流す
るためのものである。
The regenerator 3 is filled with a metal material having a large heat capacity, and exchanges heat with the working gas cooled by the refrigeration generated in the low temperature heat exchanger 4 to keep refrigeration inside the machine. The pulse tube 5 is a simple cylinder, and the working fluid inside repeats compression and expansion. The rectifier 14 is for rectifying the flow of the working fluid in the pulse tube 5 so as not to be disturbed.

【0020】バッファータンク8内の作動流体の圧力は
ほぼ一定に保たれており、このバッファータンク8とパ
ルス管5内の整流器14は上記のように細管9で連通
(接続)されている。双方の圧力差により作動流体が細
管9内を流動する。その作動流体の流量は細管9の内径
と長さにより決定される。細管9の近辺の作動流体は発
熱を伴うので、上記のように細管9のまわりに外郭配管
11を設置して放熱器を構成し、媒体入口12から細管
9と外郭配管11の間に媒体を流し、媒体出口13より
排出するようにし、細管9内を流れる作動流体の温度を
一定に保つようにしている。
The pressure of the working fluid in the buffer tank 8 is kept substantially constant, and the buffer tank 8 and the rectifier 14 in the pulse tube 5 are connected (connected) by the thin tube 9 as described above. The working fluid flows in the narrow tube 9 due to the pressure difference between the two. The flow rate of the working fluid is determined by the inner diameter and the length of the thin tube 9. Since the working fluid in the vicinity of the thin tube 9 is accompanied by heat generation, the outer pipe 11 is installed around the thin pipe 9 to form a radiator as described above, and the medium is introduced from the medium inlet 12 between the thin pipe 9 and the outer pipe 11. It is made to flow and discharged from the medium outlet 13, and the temperature of the working fluid flowing in the narrow tube 9 is kept constant.

【0021】上記のように細管9と外郭配管11の間に
媒体を流すことにより、細管9内を流れる作動流体の放
熱効率を上げることができる。また、パルス管5内の整
流器14とバッファータンク8との間の作動流体の流量
は細管9の内径と長さを選定することにより、精度良く
制御することができる。従って冷凍能力と信頼性の向上
を図ることが可能となる。
By flowing the medium between the thin tube 9 and the outer pipe 11 as described above, the heat radiation efficiency of the working fluid flowing in the thin tube 9 can be improved. Further, the flow rate of the working fluid between the rectifier 14 in the pulse tube 5 and the buffer tank 8 can be accurately controlled by selecting the inner diameter and the length of the thin tube 9. Therefore, it is possible to improve the refrigerating capacity and reliability.

【0022】図2は本発明のオリフィス型のパルスチュ
ーブ冷凍機の他の構成を示す図である。本パルスチュー
ブ冷凍機は、図1に示すパルスチューブ冷凍機と略同様
であるが、細管9の長さが長くなる場合に細管9を束ね
ることにより、放熱器を小型化することができる。
FIG. 2 is a diagram showing another structure of the orifice type pulse tube refrigerator of the present invention. This pulse tube refrigerator is substantially the same as the pulse tube refrigerator shown in FIG. 1, but the radiator can be miniaturized by bundling the thin tubes 9 when the thin tubes 9 become long.

【0023】図3は本発明のオリフィス型のパルスチュ
ーブ冷凍機の他の構成を示す図である。本パルスチュー
ブ冷凍機は、図1に示すパルスチューブ冷凍機と略同様
であるが、細管9に放熱フィンを熱的に接触させ、媒体
である空気の自然対流により作動流体からの熱の放熱を
促進させている。なお、本例では細管9に放熱フィンを
熱的に接続させて構成したが、放熱フィンの付いた物体
に細管9を熱的に接触させる構成としても良い。
FIG. 3 is a view showing another structure of the orifice type pulse tube refrigerator of the present invention. This pulse tube refrigerator is substantially the same as the pulse tube refrigerator shown in FIG. 1, except that a heat radiation fin is brought into thermal contact with the thin tube 9 to radiate heat from the working fluid by natural convection of air as a medium. Is promoting. In this example, the radiating fins are thermally connected to the thin tubes 9, but the thin tubes 9 may be thermally contacted with an object having the radiating fins.

【0024】図4は本発明のオリフィス型のパルスチュ
ーブ冷凍機の他の構成を示す図である。本パルスチュー
ブ冷凍機は、図1に示すパルスチューブ冷凍機と略同様
であるが、細管9を媒体配管16に接触させ、媒体配管
16の媒体入口12から媒体出口13に媒体を流してい
る。これにより、作動流体からの熱を積極的に放熱させ
ている。
FIG. 4 is a diagram showing another structure of the orifice type pulse tube refrigerator of the present invention. This pulse tube refrigerator is substantially the same as the pulse tube refrigerator shown in FIG. 1, except that the thin tube 9 is brought into contact with the medium pipe 16 and the medium is flown from the medium inlet 12 of the medium pipe 16 to the medium outlet 13. With this, the heat from the working fluid is positively radiated.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、パ
ルス管とバッファータンクとを結ぶ配管に細管を用い、
この細管を利用して作動流体の放熱を行なうので、作動
流体の流量を精度良く制御できると共に、作動流体の発
熱を積極的に放熱し、パルスチューブ冷凍機の冷凍能力
と信頼性の向上が図れるという優れた効果が得られる。
As described above, according to the present invention, a thin pipe is used as the pipe connecting the pulse pipe and the buffer tank,
This thin tube is used to radiate heat from the working fluid, so that the flow rate of the working fluid can be controlled accurately and the heat generated from the working fluid is actively radiated to improve the refrigerating capacity and reliability of the pulse tube refrigerator. That is an excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のオリフィス型のパルスチューブ冷凍機
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an orifice type pulse tube refrigerator of the present invention.

【図2】本発明のオリフィス型のパルスチューブ冷凍機
の構成を示す図である。
FIG. 2 is a diagram showing a configuration of an orifice type pulse tube refrigerator of the present invention.

【図3】本発明のオリフィス型のパルスチューブ冷凍機
の構成を示す図である。
FIG. 3 is a diagram showing a configuration of an orifice type pulse tube refrigerator of the present invention.

【図4】本発明のオリフィス型のパルスチューブ冷凍機
の構成を示す図である。
FIG. 4 is a diagram showing a configuration of an orifice type pulse tube refrigerator of the present invention.

【図5】従来のオリフィス型のパルスチューブ冷凍機の
構成を示す図である。
FIG. 5 is a diagram showing a configuration of a conventional orifice type pulse tube refrigerator.

【図6】従来のオリフィス型のパルスチューブ冷凍機の
構成を示す図である。
FIG. 6 is a diagram showing a configuration of a conventional orifice type pulse tube refrigerator.

【図7】従来のオリフィス型のパルスチューブ冷凍機の
構成を示す図である。
FIG. 7 is a diagram showing a configuration of a conventional orifice type pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 アフタークーラ 3 蓄冷器 4 低温熱交換器 5 パルス管 6 高温熱交換器 7 オリフィス 8 バッファータンク 9 細管 10 ニードルバルブ 11 外郭配管 12 媒体入口 13 媒体出口 14 整流器 15 放熱フィン 16 媒体配管 1 compressor 2 aftercooler 3 regenerator 4 low temperature heat exchanger 5 pulse tube 6 high temperature heat exchanger 7 orifice 8 buffer tank 9 narrow tube 10 needle valve 11 outer pipe 12 medium inlet 13 medium outlet 14 rectifier 15 radiating fin 16 medium pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、蓄冷器、熱交換器、パルス管、
バッファータンク及びそれらを結ぶ配管及び/又は接続
部から構成され、作動流体の作用により冷凍を発生させ
るパルスチューブ冷凍機において、 前記パルス管と前記バッファータンクとを結ぶ配管に細
管を用い、該細管を冷媒により冷却するように構成した
ことを特徴とするパルスチューブ冷凍機。
1. A compressor, a regenerator, a heat exchanger, a pulse tube,
A pulse tube refrigerator comprising a buffer tank and a pipe and / or a connecting portion connecting the buffer tank to generate refrigeration by the action of a working fluid, wherein a thin pipe is used as a pipe connecting the pulse pipe and the buffer tank, and the thin pipe is A pulse tube refrigerator, which is configured to be cooled by a refrigerant.
【請求項2】 請求項1に記載のパルスチューブ冷凍機
において、 前記細管のまわりに該細管より大きい径を持つ外郭配管
を設置し、該細管と該外郭配管との間に媒体を流すこと
により放熱器を構成することを特徴とするパルスチュー
ブ冷凍機。
2. The pulse tube refrigerator according to claim 1, wherein an outer pipe having a diameter larger than the thin pipe is installed around the thin pipe, and a medium is flowed between the thin pipe and the outer pipe. A pulse tube refrigerator comprising a radiator.
【請求項3】 請求項1に記載のパルスチューブ冷凍機
において、 前記細管を媒体の通る配管に熱的に接触させて該細管を
冷却するように構成したことを特徴とするパルスチュー
ブ冷凍機。
3. The pulse tube refrigerator according to claim 1, wherein the thin tube is cooled by thermally contacting the thin tube with a pipe through which a medium passes.
【請求項4】 請求項1に記載のパルスチューブ冷凍機
において、 前記細管に放熱フィンを設けるか又は該細管に放熱フィ
ンの付いた物体を熱的に接触させて該細管を冷却するよ
うに構成したことを特徴とするパルスチューブ冷凍機。
4. The pulse tube refrigerator according to claim 1, wherein the thin tube is provided with a radiation fin, or an object having a radiation fin is thermally brought into contact with the thin tube to cool the thin tube. A pulse tube refrigerator characterized in that
JP35146195A 1995-12-25 1995-12-25 Pulse tube type refrigerator Pending JPH09178279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35146195A JPH09178279A (en) 1995-12-25 1995-12-25 Pulse tube type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35146195A JPH09178279A (en) 1995-12-25 1995-12-25 Pulse tube type refrigerator

Publications (1)

Publication Number Publication Date
JPH09178279A true JPH09178279A (en) 1997-07-11

Family

ID=18417449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35146195A Pending JPH09178279A (en) 1995-12-25 1995-12-25 Pulse tube type refrigerator

Country Status (1)

Country Link
JP (1) JPH09178279A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229677B (en) * 1989-03-10 1993-09-08 Hitachi Ltd Apparatus for and method of reading and printing medium information
NL1018728C2 (en) * 2000-02-17 2003-05-01 Lg Electronics Inc Pulse tube cooling device.
US6865894B1 (en) * 2002-03-28 2005-03-15 Lockheed Martin Corporation Cold inertance tube for multi-stage pulse tube cryocooler
JP2013194997A (en) * 2012-03-21 2013-09-30 Sumitomo Heavy Ind Ltd Pulse tube refrigerator and method for operating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2229677B (en) * 1989-03-10 1993-09-08 Hitachi Ltd Apparatus for and method of reading and printing medium information
NL1018728C2 (en) * 2000-02-17 2003-05-01 Lg Electronics Inc Pulse tube cooling device.
US6865894B1 (en) * 2002-03-28 2005-03-15 Lockheed Martin Corporation Cold inertance tube for multi-stage pulse tube cryocooler
US6983610B1 (en) * 2002-03-28 2006-01-10 Lockheed Martin Corporation Cold inertance tube for multi-stage pulse tube cryocooler
JP2013194997A (en) * 2012-03-21 2013-09-30 Sumitomo Heavy Ind Ltd Pulse tube refrigerator and method for operating the same

Similar Documents

Publication Publication Date Title
TW426798B (en) Stirling apparatus
CN106766527A (en) A kind of refrigerator with double refrigeration systems
WO2002016835A1 (en) Sterling refrigerating system and cooling device
JP5882110B2 (en) Regenerator type refrigerator, regenerator
JPH09178279A (en) Pulse tube type refrigerator
KR100709060B1 (en) Heat pump system with heat pipe type
CN220187129U (en) Hot end heat exchanger and Stirling refrigerator
CN208124665U (en) A kind of multi-temperature cold source acquisition device of Cryo Refrigerator
JP6109057B2 (en) Regenerator type refrigerator
JPH02254269A (en) Finned tube type heat exchanger
JP2983215B1 (en) Pulse tube refrigerator heat exchanger
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP3605878B2 (en) Pulse tube refrigerator
JP2002039639A (en) Pulse tube type freezer
TWI759219B (en) Stirling freezer
CN110145884A (en) A kind of multi-temperature cold source acquisition device of Cryo Refrigerator
JPH0854151A (en) Pulse tube refrigerating machine
JP2003240373A (en) Jacket for heat-exchanger, and stirling refrigerating engine
JP3741300B2 (en) Pulse tube refrigerator
JPH09243189A (en) Pulse-tube refrigerator
JPH08271069A (en) Pulse tube refrigerator
JP4000512B2 (en) Pulse tube refrigerator
JPH03199854A (en) Very low temperature refrigerator
JP2000018742A (en) Cooling device
JPH11223398A (en) Heat exchanger for heat engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706