JP2000159816A - Preparation of methacrylic polymer - Google Patents

Preparation of methacrylic polymer

Info

Publication number
JP2000159816A
JP2000159816A JP10337863A JP33786398A JP2000159816A JP 2000159816 A JP2000159816 A JP 2000159816A JP 10337863 A JP10337863 A JP 10337863A JP 33786398 A JP33786398 A JP 33786398A JP 2000159816 A JP2000159816 A JP 2000159816A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
temperature
reactor
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10337863A
Other languages
Japanese (ja)
Other versions
JP3434225B2 (en
Inventor
Hirotoshi Mizota
浩敏 溝田
Wataru Hatano
渉 波多野
Hajime Okutsu
肇 奥津
Shigeaki Sasaki
茂明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP33786398A priority Critical patent/JP3434225B2/en
Publication of JP2000159816A publication Critical patent/JP2000159816A/en
Application granted granted Critical
Publication of JP3434225B2 publication Critical patent/JP3434225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous polymerization method of a methacrylic polymer excellent in operational stability of polymerization and reduced in spots of the copolymerization composition ratio of the formed polymer. SOLUTION: In continuously feeding a monomer mixture having methyl methacrylate as the major component and a polymerization initiator into a complete mixing-type reactor to effect bulk or solution polymerization, the average retention time of the reaction liquid is rendered constant and, the polymerization initiator and the mixing time in the reactor are selected in such a manner that the highest peak temperature at which the polymer conversion comes to a maximum is present in the range of 110-160 deg.C to effect the polymerization in the range of the peak temperature ±10 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタクリル系重合
体の改良された製造方法に関する。より詳しくは、メチ
ルメタクリレートまたはメチルメタクリレートを主成分
とするモノマー混合物を完全混合型反応器を用いて連続
的に重合する際に、特定の反応条件を採用する操作安定
性に極めて優れた製造方法に関する。
The present invention relates to an improved method for producing a methacrylic polymer. More specifically, the present invention relates to a production method which employs specific reaction conditions and is extremely excellent in operation stability when continuously polymerizing methyl methacrylate or a monomer mixture containing methyl methacrylate as a main component using a complete mixing type reactor. .

【0002】[0002]

【従来の技術】従来のポリメチルメタクリレート(PM
MA)の工業的な製法は、懸濁重合法を用いるバッチ重
合法が主であった。この方法は、多品種少量生産には適
した製造方法であるが、分散剤等の補助剤を使用するた
めに、成形材料中にこれらが残留して品質を低下させ、
また後処理に大量の水による洗浄及びその後の乾燥を必
要とした。さらに重合操作が回分式であることもあって
運転操作が非能率的、煩雑であると同時に装置費、運転
費等の所要費が高くついた。さらに公害規制が厳しくな
っている現在、分散剤等の補助剤および未反応モノマー
を含む重合に使用された水または洗浄水を大量に放出す
ることは好ましくない。処理装置を新たに設置するとさ
らに所要費の増加となり、工業的に不利な製造方法とな
らざるを得ない。こうした懸濁重合法の抱える問題を解
決するために、MMAを塊状重合により連続的に製造す
る方法が提案されている。
2. Description of the Related Art Conventional polymethyl methacrylate (PM)
The industrial production method of MA) was mainly a batch polymerization method using a suspension polymerization method. This method is a production method suitable for high-mix low-volume production, but because of the use of an auxiliary agent such as a dispersant, these remain in the molding material and deteriorate the quality.
Further, the post-treatment required washing with a large amount of water and subsequent drying. Furthermore, since the polymerization operation is of a batch type, the operation operation is inefficient and complicated, and at the same time, the required costs such as equipment costs and operation costs are high. Furthermore, at the time when pollution regulations are becoming stricter, it is not preferable to discharge a large amount of water or washing water used for polymerization containing auxiliary agents such as dispersants and unreacted monomers. If a processing apparatus is newly installed, the required cost is further increased, and this is inevitably an industrially disadvantageous manufacturing method. In order to solve such problems of the suspension polymerization method, a method of continuously producing MMA by bulk polymerization has been proposed.

【0003】例えば特公昭52−32665号公報で
は、重合温度におけるラジカル重合開始剤の半減期と添
加量を特定し、重合反応温度130℃から160℃にお
いて重合体転化率を50重量%から78重量%とする方
法が開示されている。この方法では、耐熱性に優れかつ
成形時の熱分解性に優れた成形加工温度幅の広いメタク
リル系重合体成形材料を製造することができた。しか
し、この方法では、重合温度の変動により重合体転化率
が大きく変動するため、厳密に重合条件を管理する必要
があり運転管理に苦労を要し、改善が求められていた。
For example, Japanese Patent Publication No. 52-32665 specifies the half life and the amount of a radical polymerization initiator added at a polymerization temperature, and increases the polymer conversion rate from 50% by weight to 78% at a polymerization reaction temperature of 130 ° C. to 160 ° C. % Is disclosed. According to this method, a methacrylic polymer molding material having excellent heat resistance and excellent thermal decomposability during molding and having a wide molding temperature range could be produced. However, in this method, since the conversion of the polymer greatly fluctuates due to the fluctuation of the polymerization temperature, it is necessary to strictly control the polymerization conditions, and it is difficult to manage the operation, and improvement has been demanded.

【0004】また、特開平3−111408号公報に
は、メチルメタクリレートを主成分とするモノマー混合
物を、完全混合型反応器一基により、ラジカル開始剤と
して重合温度での半減期が0.5〜120秒のものを用
い、反応液1m3あたり0.5〜20kWの攪拌動力と
なる攪拌機で攪拌しながら、平均滞在時間がラジカル開
始剤の半減期との比で1/200〜1/10000とな
るように設定し、130〜160℃の温度で、重合体転
化率が45〜70重量%となるよう重合させるメタクリ
ル系重合体の製造方法が開示されている。
Japanese Patent Application Laid-Open No. 3-111408 discloses that a monomer mixture containing methyl methacrylate as a main component can be used as a radical initiator in a half-life at a polymerization temperature of 0.5 to 0.5 with a single complete mixing reactor. The average residence time was 1/200 to 1/10000 in terms of the ratio to the half-life of the radical initiator while stirring with a stirrer having a stirring power of 0.5 to 20 kW per 1 m 3 of the reaction solution using a 120-second solution. A method for producing a methacrylic polymer which is set so as to obtain a polymer conversion rate of 45 to 70% by weight at a temperature of 130 to 160 ° C is disclosed.

【0005】この方法は、重合温度が高くなるほど重合
体転化率が低くなるという、従来の反応速度論の常識と
は異なる現象を見出したことにより、暴走反応を抑制で
きることが有利な点であり、また何らかの原因で反応温
度が上昇した場合、重合体転化率が減少するため発熱量
が減り、自動的に重合温度が低下して元の温度に復元さ
れる自己制御性があり安定運転に有利であるとされてい
る。しかしながら、完全混合型反応器における重合温度
は、実際にはモノマーの供給温度および反応器のジャケ
ット温度を調節することにより一定温度を維持するよう
に管理されるため、逆に重合温度の変動を増幅する危険
があり、この重合温度の変動のために重合体転化率が安
定しないという問題があった。
This method is advantageous in that a runaway reaction can be suppressed by finding a phenomenon different from the common sense of the conventional reaction kinetics that the polymer conversion rate becomes lower as the polymerization temperature becomes higher. Also, if the reaction temperature rises for some reason, the amount of heat generated will decrease because the conversion rate of the polymer will decrease, and the self-controllability will automatically lower the polymerization temperature and restore the original temperature, which is advantageous for stable operation. It is said that there is. However, the polymerization temperature in a complete mixing reactor is actually controlled to maintain a constant temperature by adjusting the monomer supply temperature and the jacket temperature of the reactor. There is a problem that the conversion of the polymer is not stable due to the fluctuation of the polymerization temperature.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の問題点を鑑みてなされたものであり、重合温度の
管理、及び重合体転化率の管理において極めて操業安定
性に優れた製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has a very excellent operation stability in controlling the polymerization temperature and the conversion of the polymer. The aim is to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成すべく鋭意研究を重ねた結果、特定の反応条件
を採用することによりその目的を達成しうることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the object can be achieved by adopting specific reaction conditions. Was completed.

【0008】すなわち、本発明は、メチルメタクリレー
トまたはメチルメタクリレートを主成分とするモノマー
混合物および重合開始剤を含む原料または更に溶媒を含
む原料を完全混合型反応器へ連続的に供給して塊状重合
または溶液重合する方法において、反応器内における反
応液の平均滞在時間を一定とし、かつ重合温度と重合体
転化率との関係において重合体転化率が最も高くなるピ
ーク温度が110〜160℃の間に存在するように重合
開始剤および反応器の混合時間を選択し、該ピーク温度
を中心として±10℃の範囲の一定温度で重合すること
を特徴とするメタクリル系重合体の製造方法である。
That is, according to the present invention, a raw material containing methyl methacrylate or a monomer mixture containing methyl methacrylate as a main component and a polymerization initiator or a raw material further containing a solvent is continuously supplied to a complete mixing type reactor to carry out bulk polymerization or In the solution polymerization method, the average residence time of the reaction solution in the reactor is constant, and the peak temperature at which the polymer conversion rate is highest in the relationship between the polymerization temperature and the polymer conversion rate is between 110 and 160 ° C. A method for producing a methacrylic polymer, characterized in that a mixing time of a polymerization initiator and a reactor is selected so as to be present, and polymerization is carried out at a constant temperature within a range of ± 10 ° C. around the peak temperature.

【0009】この方法は、上記ピーク温度より低温側の
温度において重合することが好ましい。
In this method, the polymerization is preferably performed at a temperature lower than the peak temperature.

【0010】[0010]

【発明の実施の形態】本発明の製造方法は、メタクリル
系重合体、すなわちメチルメタクリレートの単独重合体
または共重合体の製造に適用される。共重合体を製造す
る場合は、メチルメタクリレートを主成分とするモノマ
ー混合物、すなわち80重量%以上のメチルメタクリレ
ートとメチルメタクリレートと共重合可能な20重量%
以下の他のモノマーとを含むモノマー混合物を用いるこ
とが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention is applied to the production of a methacrylic polymer, that is, a homopolymer or a copolymer of methyl methacrylate. In the case of producing a copolymer, a monomer mixture containing methyl methacrylate as a main component, that is, 80% by weight or more of methyl methacrylate and 20% by weight copolymerizable with methyl methacrylate.
It is preferable to use a monomer mixture containing the following other monomers.

【0011】共重合に供される他のモノマーとしては、
特に限定されないが例えばメチルアクリレート、エチル
アクリレート、n−ブチルアクリレート、フルオロアル
キルメタクリレート、ベンジルメタクリレートなどの
(メタ)アクリレートが好ましく用いられる。以下、メ
チルメタクリレートまたはモノマー混合物を「原料モノ
マー」という。
Other monomers to be subjected to copolymerization include:
Although not particularly limited, (meth) acrylates such as methyl acrylate, ethyl acrylate, n-butyl acrylate, fluoroalkyl methacrylate and benzyl methacrylate are preferably used. Hereinafter, methyl methacrylate or a monomer mixture is referred to as “raw material monomer”.

【0012】本発明では、まず原料モノマーまたは原料
モノマーと溶媒を含む反応原料に窒素等の不活性ガスを
導入するか、もしくは減圧下に一定時間保持することに
より、溶存酸素を2ppm以下とすることが好ましい。
溶存酸素が2ppmより多いと重合反応が安定しないば
かりでなく、重合工程で長時間、高温に保持されること
により容易に着色するためである。1ppm以下とする
ことがより好ましい。
In the present invention, the dissolved oxygen is reduced to 2 ppm or less by introducing an inert gas such as nitrogen into the raw material monomer or the reaction raw material containing the raw material monomer and the solvent, or by maintaining the same under reduced pressure for a certain time. Is preferred.
If the dissolved oxygen is more than 2 ppm, not only the polymerization reaction is not stable, but also the coloring is easily performed by keeping the high temperature for a long time in the polymerization step. More preferably, it is 1 ppm or less.

【0013】上記のようにして溶存酸素を除去した原料
モノマーまたは反応原料には、重合開始剤および必要に
応じて連鎖移動剤としてメルカプタン化合物を混合し、
完全混合型反応器に連続的に供給する。そして反応器内
で重合反応が始まり、原料は反応液となる。
The raw material monomer or reaction raw material from which dissolved oxygen has been removed as described above is mixed with a polymerization initiator and, if necessary, a mercaptan compound as a chain transfer agent.
Feed continuously to a complete mixing reactor. Then, the polymerization reaction starts in the reactor, and the raw material becomes a reaction solution.

【0014】本発明で使用されるメルカプタン化合物と
しては、特に限定されないがn−ブチル、n−オクチ
ル、n−ドデシル、tert−ブチルメルカプタン等が
好ましく用いられる。
The mercaptan compound used in the present invention is not particularly limited, but n-butyl, n-octyl, n-dodecyl, tert-butyl mercaptan and the like are preferably used.

【0015】メルカプタンの連鎖移動反応により末端停
止した重合体は耐熱分解性に優れており、全重合体の末
端数に占めるメルカプタン停止末端数の割合が多いほ
ど、耐熱分解性に優れた重合体が得られる。しかしなが
ら、多すぎると重合体の重合度が低くなり重合体の強度
が低下するので、強度を保ちつつ成形加工が可能な適度
な重合度(本発明では、最終的に揮発分を除去した後の
重合体の重量平均分子量が7万〜15万の範囲が好まし
い。)を得るとともに耐熱分解性に優れた重合体を製造
するには、メルカプタンの使用量は、モノマー1モルに
対して1.0×10-4〜1.0×10-2モル、好ましく
は5.0×10-4〜5.0×10-3モルである。
A polymer terminated by a mercaptan chain transfer reaction is excellent in thermal decomposition resistance, and the higher the ratio of the number of mercaptan terminated terminals to the total number of terminals in the polymer, the more excellent the polymer is in thermal decomposition resistance. can get. However, if the amount is too large, the degree of polymerization of the polymer is lowered and the strength of the polymer is reduced. Therefore, an appropriate degree of polymerization capable of forming and processing while maintaining the strength (in the present invention, after removing volatile components finally, In order to obtain a polymer having a weight average molecular weight in the range of 70,000 to 150,000) and to produce a polymer having excellent thermal decomposition resistance, the amount of mercaptan used should be 1.0 to 1 mol of monomer. The amount is from × 10 −4 to 1.0 × 10 −2 mol, preferably from 5.0 × 10 −4 to 5.0 × 10 −3 mol.

【0016】重合開始剤は、重合温度と重合体転化率と
の関係において重合体転化率が最も高くなるピーク温度
が110〜160℃の間に存在するように、反応器の混
合時間との関係で適当なものを選択する。すなわち、重
合開始剤の半減期と反応器の混合時間との比が、下記
(1)式を満足するように選定することにより、重合体
転化率が最も高くなるピーク温度が存在することにな
り、本発明の製造方法が実施できる。 0.35≦(τ1/2/θM)≦2.0 (1) ただし、τ1/2:重合温度における重合開始剤の半減時
間[sec] θM:反応器の混合時間[sec] すなわち、(τ1/2/θM)の値が小さいということは、
反応器に供給される重合開始剤が反応器内に均一に広が
る前に、開始剤の大半は分解してしまうことを意味して
いる。反応工学の分野で多用される反応器の解析モデル
を適用すると、完全混合型反応器でありながら、反応挙
動としては完全混合モデルとは言えず、プラグフローモ
デルとの中間的挙動を示すことを意味している。逆に、
(τ1/2/θM)の値が大きいということは重合開始剤が
ほとんど分解されないまま反応器内に均一に広がるた
め、反応器の型式通り完全混合モデルとして考えること
ができる。
The polymerization initiator has a relationship with the mixing time of the reactor so that the peak temperature at which the polymer conversion is highest in the relationship between the polymerization temperature and the polymer conversion exists between 110 and 160 ° C. Use to select an appropriate one. That is, by selecting the ratio of the half-life of the polymerization initiator to the mixing time of the reactor so as to satisfy the following equation (1), there is a peak temperature at which the conversion of the polymer becomes highest. The production method of the present invention can be implemented. 0.35 ≦ (τ 1/2 / θ M ) ≦ 2.0 (1) where τ 1/2 : half-life of the polymerization initiator at the polymerization temperature [sec] θ M : mixing time of the reactor [sec] That is, a small value of (τ 1/2 / θ M ) means that
This means that most of the initiator is decomposed before the polymerization initiator fed to the reactor spreads evenly in the reactor. When applying an analytical model of a reactor that is frequently used in the field of reaction engineering, it can be said that although it is a completely mixed type reactor, the reaction behavior cannot be said to be a completely mixed model, but shows an intermediate behavior with the plug flow model. Means. vice versa,
When the value of (τ 1/2 / θ M ) is large, the polymerization initiator spreads uniformly in the reactor without being substantially decomposed. Therefore, it can be considered as a complete mixing model according to the type of the reactor.

【0017】メチルメタクリレートの重合では、反応液
中の重合体の含有率が約30重量%を越えるあたりから
ゲル効果により重合速度が加速する現象が生じることが
知られている。そのため、完全混合型反応器では極めて
少量の重合開始剤により効率的にモノマーの重合体転化
率を高くすることが可能であるが、一方、プラグフロー
型反応器では重合開始剤が急速に分解し消失してしまう
ためデッドエンド重合となって同じ温度及び重合開始剤
量の条件下では重合体転化率が低くなる。もちろん、同
じ重合開始剤量であっても重合温度を十分に低くして重
合開始剤をゆっくりと分解させれば高い重合体転化率を
得ることが理論的には考えられるが、実際は、反応器内
の閉塞が起こるため安定運転は困難である。
In the polymerization of methyl methacrylate, it is known that the polymerization effect is accelerated by the gel effect when the content of the polymer in the reaction solution exceeds about 30% by weight. Therefore, in a complete mixing type reactor, it is possible to efficiently increase the polymer conversion of the monomer with a very small amount of polymerization initiator, while in a plug flow type reactor, the polymerization initiator is rapidly decomposed. Since it disappears, dead end polymerization occurs, and the polymer conversion rate decreases under the same temperature and the same amount of polymerization initiator. Of course, even with the same amount of polymerization initiator, it is theoretically possible to obtain a high polymer conversion rate by sufficiently lowering the polymerization temperature and slowly decomposing the polymerization initiator. It is difficult to operate stably because the inside is blocked.

【0018】以上のようなメチルメタクリレートの示す
重合挙動から完全混合型反応器内で起こっている現象を
説明すると、同じ重合開始剤を用い、供給する重合開始
剤濃度、反応器内における反応液の平均滞在時間を同じ
にして重合温度を数点変えて重合体転化率を求めると、
重合開始剤の分解速度が遅くなる低い重合温度領域では
完全混合モデルと見なされるため一般的な反応速度論と
同じように温度が高いほど重合体転化率は高くなる。更
に温度を上げていくとプラグフローモデルの重合挙動が
共存するようになり次第に重合体転化率は上昇しなくな
り、更に温度を上げると逆にプラグフローモデルの重合
挙動が支配的となって重合体転化率が低下する。
From the polymerization behavior of methyl methacrylate as described above, the phenomenon occurring in the complete mixing type reactor will be explained. The same polymerization initiator is used, the concentration of the polymerization initiator to be supplied, and the reaction solution in the reactor are By calculating the polymer conversion rate by changing the polymerization temperature by several points with the same average residence time,
In a low polymerization temperature region where the decomposition rate of the polymerization initiator is slow, it is regarded as a complete mixing model, so that the higher the temperature, the higher the polymer conversion, as in general reaction kinetics. As the temperature was further increased, the polymerization behavior of the plug flow model began to coexist, and the conversion rate of the polymer gradually stopped increasing.When the temperature was further increased, the polymerization behavior of the plug flow model became dominant, and Conversion decreases.

【0019】本発明の方法は、こうした重合体転化率が
最も高くなるピーク重合温度の存在を見極め、このピー
ク温度を中心として±10℃の範囲の一定温度下に重合
を実施する。このピーク温度を中心として±10℃の範
囲で重合を実施した場合には、重合体転化率の変化が極
めて小さく、わずか3重量%程度しか変化しないことが
判明している。
The method of the present invention determines the presence of such a peak polymerization temperature at which the conversion of the polymer becomes the highest, and carries out the polymerization at a constant temperature in the range of ± 10 ° C. around this peak temperature. It has been found that when the polymerization is carried out in the range of ± 10 ° C. around this peak temperature, the change in the polymer conversion is extremely small, and changes only by about 3% by weight.

【0020】すなわち、本発明の方法によれば、何らか
の原因で重合温度が上昇したりあるいは低下したとして
も重合体転化率はほぼ一定であり、重合温度の影響を受
けずに重合体転化率を一定に維持するという操作を自動
的に行うことが可能である。また、反応による発熱量が
常に一定であるため重合温度の管理は、ジャケット温度
またはモノマー供給温度を簡単に制御するのみで、重合
体転化率の変動には影響を及ぼさない。
That is, according to the method of the present invention, even if the polymerization temperature rises or falls for some reason, the conversion of the polymer is almost constant, and the conversion of the polymer is not affected by the polymerization temperature. It is possible to automatically perform the operation of maintaining the constant. In addition, since the calorific value due to the reaction is always constant, the control of the polymerization temperature merely controls the jacket temperature or the monomer supply temperature without affecting the fluctuation of the polymer conversion.

【0021】重合体転化率がほぼ一定であることによ
り、重合工程の管理が楽になるというばかりでなく、反
応器から取り出した重合体と未反応モノマーを含む反応
混合物または更に溶媒を含む反応混合物が、重合工程の
後に続く揮発物除去工程へ常に一定の重合体転化率で供
給されることにより、揮発物除去工程の運転安定性が向
上するという効果がもたらされる。
When the conversion of the polymer is almost constant, not only the control of the polymerization step becomes easy, but also the reaction mixture containing the polymer taken out of the reactor and the unreacted monomer or the reaction mixture containing the solvent is further reduced. By supplying the polymer at a constant conversion rate to the volatile removal step following the polymerization step, the operation stability of the volatile removal step is improved.

【0022】また、メチルメタクリレートと他のモノマ
ーとの共重合体を得る場合、反応器における重合体転化
率が一定であるということは、共重合体の組成比が常に
一定になり、共重合組成比の斑が非常に小さいことを意
味しており、品質上においても非常に効果が大きい。特
に、メチルメタクリレートは光学材料としての用途が多
く、光学ひずみのない均一な材料が求められるため、共
重合体の組成が一定であることは商品価値が高い。中で
もプラスチック光ファイバとしての用途が光学性能上最
も要求が厳しく、芯材及び鞘材の製造方法として本発明
の効果が最も発揮される分野である。
When a copolymer of methyl methacrylate and another monomer is obtained, the fact that the conversion of the polymer in the reactor is constant means that the composition ratio of the copolymer is always constant and the copolymer composition is constant. This means that the unevenness of the ratio is very small, and the effect on the quality is very large. In particular, methyl methacrylate has many uses as an optical material, and a uniform material without optical distortion is required. Therefore, a constant composition of the copolymer has high commercial value. Above all, the application as a plastic optical fiber is the most demanding in terms of optical performance, and is the field where the effect of the present invention is most exerted as a method for producing a core material and a sheath material.

【0023】本発明では、こうした重合温度が変化して
も重合体転化率が変動しないという特異的現象を利用す
ることにより、工程の安定化のみならず共重合体の組成
比を自動的に一定値に収束させるという品質向上の効果
をも発現するという有意性を伴っていることが工業的に
重要な点である。
In the present invention, not only the stabilization of the process but also the composition ratio of the copolymer is automatically kept constant by utilizing the specific phenomenon that the conversion of the polymer does not fluctuate even if the polymerization temperature changes. It is an industrially important point that it has the significance of exhibiting the quality improvement effect of converging to the value.

【0024】完全混合型反応器の攪拌機として、ダブル
ヘリカルリボン翼を使用する場合、式(1)中の混合時
間は下記(2)式で計算できることが一般に知られてい
る。 θM=33/n (2) ただし、θM:混合時間[sec]、n:攪拌回転数[1/sec] したがって、ダブルヘリカルリボン翼で攪拌を行う場
合、式(1)、(2)を満足するような攪拌回転数と半
減時間をもつ重合開始剤の組み合わせを選定することに
より本発明を実施することができる。しかし、攪拌翼が
ダブルヘリカルリボン翼でない場合には、式(2)を適
用することはできないので、使用する攪拌翼について混
合時間を測定して式(1)にあてはめる必要がある。
It is generally known that when a double helical ribbon blade is used as a stirrer in a complete mixing type reactor, the mixing time in the equation (1) can be calculated by the following equation (2). θ M = 33 / n (2) where θ M : mixing time [sec], n: stirring speed [1 / sec] Therefore, when stirring with a double helical ribbon blade, equations (1) and (2) The present invention can be carried out by selecting a combination of a polymerization initiator having a stirring rotation speed and a half life so as to satisfy the following. However, when the stirring blade is not a double helical ribbon blade, the formula (2) cannot be applied. Therefore, it is necessary to measure the mixing time of the stirring blade to be used and apply it to the formula (1).

【0025】本発明の方法に用いられる重合開始剤とし
ては、具体的にはtert−ブチルパーオキシネオデカ
ネート、tert−ヘキシルパーオキシピバレート、t
ert−ブチルパーオキシピバレート、1,1,3,3
−テトラメチルブチルパーオキシ−2−エチルヘキサネ
ート、1−シクロヘキシルパーオキシ−2−エチルヘキ
サネート、tert−ヘキシルパーオキシ−2−エチル
ヘキサネート、tert−ブチルパーオキシ−2−エチ
ルヘキサネート等の有機過酸化物または2,2’−アゾ
ビス(2,4−ジメチルバレロニトリル)、2,2'−
アゾビスイソブチロニトリル、2,2’−アゾビス(2
−メチルブチロニトリル)、ジメチル−2,2’−アゾ
ビスイソブチレート等のアゾ化合物等から重合温度と式
(1)、(2)を考慮して選択することができる。
Specific examples of the polymerization initiator used in the method of the present invention include tert-butylperoxyneodecanate, tert-hexylperoxypivalate,
tert-butyl peroxypivalate, 1,1,3,3
-Tetramethylbutyl peroxy-2-ethylhexanate, 1-cyclohexylperoxy-2-ethylhexanate, tert-hexylperoxy-2-ethylhexanate, tert-butylperoxy-2-ethylhexanate, etc. Organic peroxide or 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-
Azobisisobutyronitrile, 2,2′-azobis (2
-Methylbutyronitrile) and azo compounds such as dimethyl-2,2'-azobisisobutyrate, etc., in consideration of the polymerization temperature and the formulas (1) and (2).

【0026】これらの重合開始剤は1種を単独で使用し
てもよいし、2種以上混合して使用してもよいが、2種
以上使用する場合は重合メカニズムが複雑になるので、
1種の単独使用が好ましい。
One of these polymerization initiators may be used alone, or two or more thereof may be used in combination. However, when two or more polymerization initiators are used, the polymerization mechanism becomes complicated.
One single use is preferred.

【0027】なお、本発明においては、重合開始剤の半
減期の値は、有機過酸化物については日本油脂(株)発
行のカタログ、アゾ化合物については和光純薬(株)発
行のテクニカルビュレタンに記載の値を採用することが
できる。
In the present invention, the values of the half-life of the polymerization initiator are as follows: for organic peroxides, catalogs issued by NOF Corporation, and for azo compounds, technical bulletins issued by Wako Pure Chemical Industries, Ltd. Can be adopted.

【0028】本発明の製造方法は、完全混合型反応器に
おいて、110〜160℃の範囲から選択された一定の
反応液の重合温度において、実質的に均一に攪拌混合す
ることが好ましい。重合温度が低過ぎると低いとゲル効
果による重合速度の加速現象が大きくなる。この場合、
加速現象の影響を避けるため重合体転化率が低い条件で
しか安定に運転することが困難となり、生産性が低下し
て経済的に不利である。好ましい重合温度は120℃以
上である。
In the production method of the present invention, it is preferable that the stirring and mixing be performed substantially uniformly at a constant polymerization temperature of the reaction solution selected from the range of 110 to 160 ° C. in the complete mixing type reactor. If the polymerization temperature is too low, the acceleration of the polymerization rate due to the gel effect will increase if the temperature is too low. in this case,
In order to avoid the influence of the acceleration phenomenon, it is difficult to operate stably only under the condition that the polymer conversion rate is low, and the productivity is reduced, which is economically disadvantageous. The preferred polymerization temperature is 120 ° C. or higher.

【0029】一方、この温度が高過ぎると、重合反応は
安定になり重合体転化率を高くすることができるが、二
量体の生成が非常に多くなるため揮発分除去後の重合体
の透明性ならびに機械的強度が低下する。この重合温度
は140℃以下にすることがより好ましい。
On the other hand, if the temperature is too high, the polymerization reaction becomes stable and the conversion of the polymer can be increased. However, the formation of the dimer becomes so large that the transparency of the polymer after the removal of volatile components becomes high. Properties and mechanical strength are reduced. The polymerization temperature is more preferably set to 140 ° C. or lower.

【0030】さらに、本発明における重合温度は、反応
器内における反応液の平均滞在時間と重合開始剤の供給
濃度が一定の条件のもと、温度と重合体転化率の関係に
おいて最も重合体転化率が高くなるピーク温度が110
〜160℃の間に存在し、そのピーク温度を中心として
±10℃の範囲の一定温度に重合温度を設定することが
重要である。
Further, the polymerization temperature in the present invention is the highest in the relationship between temperature and polymer conversion rate under the condition that the average residence time of the reaction solution in the reactor and the supply concentration of the polymerization initiator are constant. The peak temperature at which the rate increases is 110
It is important to set the polymerization temperature at a constant temperature in the range of ± 10 ° C. with the peak temperature as the center.

【0031】平均滞在時間と重合開始剤の供給濃度が一
定の条件のもとでは、温度と重合体転化率の関係におい
て最も重合体転化率が高くなるピーク温度を中心として
±10℃の範囲においては、たとえ何らかの要因によっ
て重合温度が変動したとしても重合体転化率はほとんど
変化しない。そのために操作安定性が抜群に改善され
る。より好ましくは最も重合体転化率が高くなる温度を
中心として±5℃の範囲に重合温度を設定する。重合温
度がピーク温度を中心として±10℃の範囲を超える場
合には、温度の変動に対する重合体転化率の変動が大き
いために重合条件の管理を厳しくする必要が生ずる。
Under the condition that the average residence time and the concentration of the polymerization initiator supplied are constant, in the range of ± 10 ° C. around the peak temperature at which the polymer conversion becomes highest in the relationship between temperature and polymer conversion. The polymer conversion hardly changes even if the polymerization temperature fluctuates due to some factors. Therefore, the operational stability is remarkably improved. More preferably, the polymerization temperature is set within a range of ± 5 ° C. around the temperature at which the conversion of the polymer becomes highest. If the polymerization temperature exceeds the range of ± 10 ° C. around the peak temperature, it is necessary to control the polymerization conditions strictly because the fluctuation of the polymer conversion with respect to the fluctuation of the temperature is large.

【0032】さらに、本発明の方法は、最も重合体転化
率が高くなるピーク温度より低温側で重合を実施するこ
とが好ましい。先に述べたように、重合体転化率が最も
高くなるピーク温度が存在するという現象は、重合挙動
が完全混合モデルからプラグフローモデルになることに
よって生じるために、オリゴマー等の低分子量体の生成
が起こりやすいことを意味している。したがってこのピ
ーク温度より高温になるにしたがい低分子量体の生成を
促進する。この結果、揮発分除去後の重合体の熱変形温
度の低下、耐熱分解性の低下をもたらす。したがって、
重合温度はピーク温度より低温側で実施することが好ま
しい。
Further, in the method of the present invention, it is preferable to carry out the polymerization at a temperature lower than the peak temperature at which the conversion of the polymer becomes highest. As mentioned earlier, the phenomenon that there is a peak temperature at which the polymer conversion rate is the highest occurs because the polymerization behavior changes from a completely mixed model to a plug flow model, and the generation of oligomers and other low-molecular-weight substances occurs. Is likely to occur. Therefore, as the temperature becomes higher than this peak temperature, the formation of a low molecular weight substance is promoted. As a result, a reduction in the heat distortion temperature of the polymer after the removal of volatile components and a reduction in the thermal decomposition resistance are brought about. Therefore,
The polymerization is preferably carried out at a temperature lower than the peak temperature.

【0033】重合開始剤の使用量は、重合温度、反応器
内における反応液の平均滞在時間、目標とする重合体転
化率によって決まるが、重合体の末端二重結合量の少な
い耐熱分解性に優れた重合体を得るためには、その使用
量の上限はモノマー1モルに対して1.0×10-4
ル、また工業的生産性を考慮して下限は5.0×10-6
モルの範囲で供給することが好ましい。
The amount of the polymerization initiator used depends on the polymerization temperature, the average residence time of the reaction solution in the reactor, and the target conversion of the polymer. In order to obtain an excellent polymer, the upper limit of the amount used is 1.0 × 10 −4 mol per mol of the monomer, and the lower limit is 5.0 × 10 −6 in consideration of industrial productivity.
It is preferable to supply in a molar range.

【0034】完全混合型反応器内における反応液の平均
滞在時間は、1〜6時間とすることが好ましい。この範
囲内にすることにより、重合制御を安定にすることがで
きるとともに、成形加工性に優れた重合体を製造するこ
とができる。滞在時間が短かすぎると、重合開始剤の使
用量を増やす必要があり、重合開始剤の増加により重合
反応の制御が難しくなるとともに、重合体の末端二重結
合量が多くなるため耐熱分解性に優れた重合体は得られ
ない。より好ましくは2時間以上である。一方、上記平
均滞在時間が長すぎると生産性が低下するとともに、二
量体の生成が多くなるため好ましくない。より好ましく
は5時間以下である。反応液の平均滞在時間は、重合反
応中一定に保つことが必要である。平均滞在時間が変動
すると、温度と重合体転化率の関係において最も重合体
転化率が高くなるピーク温度も変動するため、本発明の
方法が実施できなくなる。
The average residence time of the reaction solution in the complete mixing type reactor is preferably 1 to 6 hours. When the content is within this range, the polymerization control can be stabilized, and a polymer having excellent moldability can be produced. If the residence time is too short, it is necessary to increase the amount of the polymerization initiator, and it becomes difficult to control the polymerization reaction due to the increase in the polymerization initiator, and the amount of terminal double bonds in the polymer increases, so that the heat decomposition resistance is increased. A polymer excellent in the above is not obtained. More preferably, it is 2 hours or more. On the other hand, if the average residence time is too long, the productivity decreases and the production of dimers increases, which is not preferable. More preferably, it is 5 hours or less. The average residence time of the reaction solution must be kept constant during the polymerization reaction. If the average residence time fluctuates, the peak temperature at which the polymer conversion becomes highest in the relationship between the temperature and the polymer conversion also fluctuates, so that the method of the present invention cannot be carried out.

【0035】本発明において溶液重合を行う場合、トル
エン、キシレン、アセトン、メチルエチルケトン、メタ
ノール、エタノール、エチルベンゼン、メチルイソブチ
ルケトン、酢酸n−ブチル等を溶媒として使用すること
ができる。これらの中でもメチルエチルケトン、メタノ
ール、エタノール、酢酸n−ブチル等が好ましい。溶媒
を含む原料に対する溶媒の含有量は20重量%以下が好
ましく、10重量%以下がより好ましい。
When performing solution polymerization in the present invention, toluene, xylene, acetone, methyl ethyl ketone, methanol, ethanol, ethyl benzene, methyl isobutyl ketone, n-butyl acetate and the like can be used as a solvent. Among them, methyl ethyl ketone, methanol, ethanol, n-butyl acetate and the like are preferable. The content of the solvent with respect to the raw material containing the solvent is preferably 20% by weight or less, more preferably 10% by weight or less.

【0036】反応器内には重合反応と攪拌混合による発
熱があるので除熱して、場合によっては加熱して所定の
重合温度に制御する。温度制御は既知の方法によって行
うことができる。例えばジャケット、反応器内に設置し
たドラフトチューブあるいはコイル等への熱媒循環によ
る伝熱除熱あるいは伝熱加熱、原料の冷却供給、モノマ
ー蒸気の環流冷却等の方法を採用することができる。
Since heat is generated in the reactor due to the polymerization reaction and stirring and mixing, the heat is removed, and in some cases, the temperature is controlled by heating to a predetermined polymerization temperature. Temperature control can be performed by a known method. For example, a method such as heat transfer heat removal or heat transfer heating by circulating a heat medium to a draft tube or a coil installed in a jacket, a reactor, or the like, cooling and supply of raw materials, and reflux cooling of monomer vapor can be employed.

【0037】本発明の反応器における反応液中の重合体
の含有率は、30〜70重量%の範囲にあることが好ま
しい。重合体の含有率が高すぎると粘度が高いためにゲ
ル効果による重合速度の加速が激しいために安定な運転
が困難である。
The content of the polymer in the reaction solution in the reactor of the present invention is preferably in the range of 30 to 70% by weight. If the content of the polymer is too high, the viscosity is so high that the polymerization speed is greatly accelerated by the gel effect, so that stable operation is difficult.

【0038】また、重合体の含有率が低すぎると、未反
応モノマーを主成分とする揮発物の分離のためにコスト
が増大して工業的に不利である。さらに、より安定に経
済的に有利に製造する条件は、好ましくは重合温度が1
20〜140℃の範囲において40〜55重量%の範囲
である。
On the other hand, if the content of the polymer is too low, the cost increases due to the separation of volatiles mainly composed of unreacted monomers, which is industrially disadvantageous. Furthermore, the conditions for more stable and economically advantageous production are preferably such that the polymerization temperature is 1
It is in the range of 40 to 55% by weight in the range of 20 to 140 ° C.

【0039】本発明に用いられる完全混合型反応器とし
ては、原料の供給口、反応混合物の取り出し口及び攪拌
装置を備えた槽型反応装置を用いることができ、攪拌装
置は反応器内全体にわたる混合性能を持つことが必要で
ある。好ましい攪拌装置としては、ダブルヘリカルリボ
ン翼またはマックスブレンド翼(住友重機械工業(株)
製)等が挙げられる。
As the complete mixing type reactor used in the present invention, a tank type reactor equipped with a raw material supply port, a reaction mixture take-out port and a stirrer can be used, and the stirrer extends throughout the reactor. It is necessary to have mixing performance. As a preferable stirring device, a double helical ribbon blade or a max blend blade (Sumitomo Heavy Industries, Ltd.)
Manufactured).

【0040】本発明では、このような重合工程の後に、
通常は、未反応モノマーまたは溶媒を含む未反応モノマ
ーを主成分とする揮発物分離工程を有しており、連続的
に送られてくる所定の重合体転化率を有する反応混合物
を、減圧下に170〜290℃に加熱して、揮発物の大
部分を連続的に分離除去し、得られる重合体中の残存モ
ノマー含有率が、好ましくは1.0重量%以下、より好
ましくは0.3重量%以下となるようにする。
In the present invention, after such a polymerization step,
Usually, it has a volatiles separation step mainly composed of unreacted monomers or unreacted monomers containing a solvent, the reaction mixture having a predetermined polymer conversion that is continuously sent, under reduced pressure By heating to 170 to 290 ° C, most of the volatiles are continuously separated and removed, and the residual monomer content in the obtained polymer is preferably 1.0% by weight or less, more preferably 0.3% by weight. % Or less.

【0041】揮発物分離工程では、二量体も除去され
る。二量体は、重合体の加熱成型時の着色原因や熱変形
温度の低下原因となるため少ない方が好ましい。得られ
る重合体中の残存二量体含有率は好ましくは0.1重量
%以下、より好ましくは0.05重量%以下となるよう
にする。
In the volatile separation step, dimers are also removed. The dimer is preferably small because it causes coloring during the heat molding of the polymer and lowers the heat distortion temperature. The residual dimer content in the obtained polymer is preferably adjusted to 0.1% by weight or less, more preferably 0.05% by weight or less.

【0042】このように製造したメタクリル系重合体を
成形材料として用いる際には、高級アルコール類、高級
脂肪酸エステル類等の滑剤を添加することができる。ま
た必要に応じて紫外線吸収剤、熱安定剤、着色剤、帯電
防止剤等を添加することができる。
When the methacrylic polymer thus produced is used as a molding material, a lubricant such as a higher alcohol or a higher fatty acid ester can be added. If necessary, an ultraviolet absorber, a heat stabilizer, a coloring agent, an antistatic agent and the like can be added.

【0043】[0043]

【実施例】以下、本発明を実施例によってさらに詳しく
説明するが、これらは本発明を限定するものではない。
The present invention will be described in more detail with reference to the following examples, which do not limit the present invention.

【0044】なお、実施例、比較例の重合体の耐熱分解
性の評価は、セイコー電子工業(株)製の示差熱電子天
秤(SSC500)を使用し、ペレット形状の重合体を
空気中で5℃/分の昇温速度で400℃まで昇温したと
きの屈曲温度(℃)を測定し、これをもって熱分解しや
すいかどうかの指標とした。
The thermal decomposition resistance of the polymers of Examples and Comparative Examples was evaluated by using a differential thermoelectric balance (SSC500) manufactured by Seiko Denshi Kogyo Co., Ltd. The bending temperature (° C.) when the temperature was raised to 400 ° C. at a temperature rising rate of ° C./min was measured, and this was used as an index of whether or not thermal decomposition was easy.

【0045】[実施例1〜4および比較例1]メチルメ
タクリレート98重量%およびメチルアクリレート2重
量%からなるモノマー混合物1モルに対し、n−オクチ
ルメルカプタン1.71×10-3モル(0.25重量
%)および重合開始剤としてジメチル−2,2'−アゾ
ビスイソブチレート1.95×10-5モル(45pp
m)の割合でそれぞれ添加した原料を溶存酸素2ppm
以下にして完全混合型反応器に連続的に供給した。反応
器内に供給された原料はダブルヘリカルリボン翼により
65rpmで攪拌混合した。重合器内における反応液の
平均滞在時間を4時間として、重合温度のみを125
℃、130℃、135℃、140℃(実施例1〜4)お
よび145℃(比較例1)の一定温度にそれぞれ変えて
(その他の条件は全て同じまま)重合を実施した。
Examples 1-4 and Comparative Example 1 1.71 × 10 -3 mol (0.25%) of n-octyl mercaptan per mol of a monomer mixture consisting of 98% by weight of methyl methacrylate and 2% by weight of methyl acrylate. % By weight) and 1.95 × 10 -5 mol (45 pp) of dimethyl-2,2′-azobisisobutyrate as a polymerization initiator.
2) dissolved raw material 2 ppm
It was continuously fed to the complete mixing reactor as follows. The raw materials supplied into the reactor were stirred and mixed at 65 rpm by a double helical ribbon blade. Assuming that the average residence time of the reaction solution in the polymerization vessel is 4 hours, only the polymerization temperature is 125
The polymerization was carried out at constant temperatures of 130 ° C., 130 ° C., 135 ° C., 140 ° C. (Examples 1 to 4) and 145 ° C. (Comparative Example 1) (all other conditions remained the same).

【0046】反応器から反応混合物を連続的に取り出
し、ポンプを用いて送液し、連続的にベントエクストル
ーダ型押し出し機に供給して揮発物を分離除去して重合
体を得た。
The reaction mixture was continuously taken out of the reactor, fed with a pump, and continuously supplied to a vent extruder extruder to separate and remove volatiles to obtain a polymer.

【0047】反応器から取り出された直後の反応混合物
から反応器でのモノマーの重合体転化率、得られた重合
体の残存モノマー含有率、残存二量体含有率及び熱分解
温度を測定し、表1及び図1の結果を得た。図1より最
も重合体転化率が高くなる温度は133℃付近であるこ
とが確認された。また、各温度で100時間の運転を連
続して行ったが(計500時間)、重合温度の変動に対
する重合体転化率の変動が小さいため、実施例1〜4で
は操業は極めて安定しており、運転終了後に反応器内を
観察しても装置への重合体の付着及び異物の生成は認め
られなかった。しかし、残存二量体含有率は重合温度が
高いほど増加していた。また重合温度が高いほど重合体
の熱分解温度が低下しており、125℃および130℃
の重合温度で製造した重合体が熱分解温度が高く耐熱分
解性に優れていた。
From the reaction mixture immediately after being taken out of the reactor, the polymer conversion of the monomer in the reactor, the residual monomer content, the residual dimer content and the thermal decomposition temperature of the obtained polymer were measured. The results of Table 1 and FIG. 1 were obtained. From FIG. 1, it was confirmed that the temperature at which the conversion of the polymer became highest was around 133 ° C. In addition, although the operation was continuously performed for 100 hours at each temperature (500 hours in total), the operation was extremely stable in Examples 1 to 4 because the change in the polymer conversion with respect to the change in the polymerization temperature was small. When the inside of the reactor was observed after the completion of the operation, adhesion of the polymer to the apparatus and generation of foreign matters were not recognized. However, the residual dimer content increased as the polymerization temperature increased. Further, the higher the polymerization temperature, the lower the thermal decomposition temperature of the polymer, and 125 ° C. and 130 ° C.
The polymer produced at the polymerization temperature was high in thermal decomposition temperature and excellent in thermal decomposition resistance.

【0048】[比較例2〜6]重合開始剤をtert−ブチ
ルパーオキシ−3,5,5−トリメチルヘキサノエート
に代えて、モノマー混合物1モルに対して2.2×10
-5モル(50ppm)添加した以外は実施例と同様に1
25℃、130℃、135℃、140℃および145℃
のそれぞれ一定の重合温度において重合を実施し、重合
体転化率を測定し、表1、図2の結果を得た。図2より
明らかなように、重合体転化率は重合温度が高くなるに
したがって高くなっており、反応速度論の常識と一致し
ており、重合温度の変動に対する重合体転化率の変動
は、実施例1〜4と比較して大きかった。そのため、各
温度で100時間の運転を連続して行ったが(計500
時間)、実施例1〜4と比較して操業は不安定であっ
た。
Comparative Examples 2 to 6 The polymerization initiator was replaced with tert-butylperoxy-3,5,5-trimethylhexanoate, and 2.2 × 10 6 mol per 1 mol of the monomer mixture.
Except that -5 mol (50 ppm) was added.
25 ° C, 130 ° C, 135 ° C, 140 ° C and 145 ° C
Was carried out at a constant polymerization temperature, and the conversion of the polymer was measured. The results shown in Table 1 and FIG. 2 were obtained. As is evident from FIG. 2, the polymer conversion rate increases as the polymerization temperature increases, which is consistent with the common sense of reaction kinetics. It was large compared to Examples 1-4. Therefore, the operation was continuously performed at each temperature for 100 hours (total of 500 hours).
Time), the operation was unstable compared to Examples 1-4.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】本発明の製造方法によれば、メチルメタ
クリレートまたはメチルメタクリレートを主成分とする
モノマー混合物を完全混合型反応器を用いて特定条件に
おいて連続的に重合することにより、重合反応の管理を
簡易にできるとともに、共重合組成比の斑の非常に小さ
い光学材料として有用なメタクリル系重合体を製造する
ことができる。
According to the production method of the present invention, the polymerization reaction is controlled by continuously polymerizing methyl methacrylate or a monomer mixture containing methyl methacrylate as a main component under specific conditions using a complete mixing reactor. Can be simplified, and a methacrylic polymer useful as an optical material having an extremely small copolymer composition ratio can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施した場合の重合温度と重合
体転化率の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the polymerization temperature and the conversion of a polymer when the method of the present invention is carried out.

【図2】比較例の方法における重合温度と重合体転化率
の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a polymerization temperature and a polymer conversion rate in a method of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥津 肇 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 佐々木 茂明 富山県富山市海岸通3番地 三菱レイヨン 株式会社富山事業所内 Fターム(参考) 4J011 AA01 AA02 AA09 AB01 AB02 AB15 BA01 BB04 BB09 BB10 FA02 FA04 FA05 FB05 FB11 HA03 HA04 HB02 HB07  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hajime Okutsu 20-1 Miyukicho, Otake City, Hiroshima Pref. Mitsubishi Rayon Co., Ltd. Central Research Laboratory (72) Inventor Shigeaki Sasaki 3 Kaigandori, Toyama City, Toyama Prefecture Mitsubishi Rayon F-term in Toyama Works Co., Ltd. (reference) 4J011 AA01 AA02 AA09 AB01 AB02 AB15 BA01 BB04 BB09 BB10 FA02 FA04 FA05 FB05 FB11 HA03 HA04 HB02 HB07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メチルメタクリレートまたはメチルメタ
クリレートを主成分とするモノマー混合物および重合開
始剤を含む原料または更に溶媒を含む原料を完全混合型
反応器へ連続的に供給して塊状重合または溶液重合する
方法において、反応器内における反応液の平均滞在時間
を一定とし、かつ重合温度と重合体転化率との関係にお
いて重合体転化率が最も高くなるピーク温度が110〜
160℃の間に存在するように重合開始剤および反応器
の混合時間を選択し、該ピーク温度を中心として±10
℃の範囲の一定温度で重合することを特徴とするメタク
リル系重合体の製造方法。
1. A method of performing bulk polymerization or solution polymerization by continuously supplying a raw material containing methyl methacrylate or a monomer mixture containing methyl methacrylate as a main component and a polymerization initiator or a raw material further containing a solvent to a complete mixing reactor. In, the average residence time of the reaction solution in the reactor is constant, and the peak temperature at which the polymer conversion rate is highest in relation to the polymerization temperature and the polymer conversion rate is 110 to 110.
The polymerization initiator and the mixing time of the reactor are selected to be between 160 ° C. and ± 10% around the peak temperature.
A method for producing a methacrylic polymer, comprising polymerizing at a constant temperature in the range of ° C.
【請求項2】 前記ピーク温度より低温側の温度におい
て重合することを特徴とする請求項1記載のメタクリル
系重合体の製造方法。
2. The method for producing a methacrylic polymer according to claim 1, wherein the polymerization is performed at a temperature lower than the peak temperature.
JP33786398A 1998-11-27 1998-11-27 Method for producing methacrylic polymer Expired - Lifetime JP3434225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33786398A JP3434225B2 (en) 1998-11-27 1998-11-27 Method for producing methacrylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33786398A JP3434225B2 (en) 1998-11-27 1998-11-27 Method for producing methacrylic polymer

Publications (2)

Publication Number Publication Date
JP2000159816A true JP2000159816A (en) 2000-06-13
JP3434225B2 JP3434225B2 (en) 2003-08-04

Family

ID=18312704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33786398A Expired - Lifetime JP3434225B2 (en) 1998-11-27 1998-11-27 Method for producing methacrylic polymer

Country Status (1)

Country Link
JP (1) JP3434225B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036645A1 (en) * 1999-04-30 2002-05-10 Soken Chemical & Engineering Co., Ltd. Process for producing acrylic polymer
WO2006001113A1 (en) * 2004-06-25 2006-01-05 Mitsubishi Rayon Co., Ltd. Polymerization apparatus and method for producing polymer
US7700704B2 (en) 2004-11-08 2010-04-20 Lg Chem, Ltd. Method for producing an (meth)acrylate syrup
KR20130107243A (en) * 2012-03-21 2013-10-01 스미또모 가가꾸 가부시끼가이샤 Method for stopping continuous polymerization
US8690284B2 (en) 2011-03-29 2014-04-08 Brother Kogyo Kabushiki Kaisha Liquid discharge apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568841B2 (en) 2008-04-08 2014-08-13 住友化学株式会社 Methacrylic resin composition for hot plate fusion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036645A1 (en) * 1999-04-30 2002-05-10 Soken Chemical & Engineering Co., Ltd. Process for producing acrylic polymer
US7015295B1 (en) 1999-04-30 2006-03-21 Soken Chemical & Engineering Co., Ltd. Process for producing acrylic polymer
WO2006001113A1 (en) * 2004-06-25 2006-01-05 Mitsubishi Rayon Co., Ltd. Polymerization apparatus and method for producing polymer
JP5249514B2 (en) * 2004-06-25 2013-07-31 三菱レイヨン株式会社 Polymerization apparatus and polymer production method
US7700704B2 (en) 2004-11-08 2010-04-20 Lg Chem, Ltd. Method for producing an (meth)acrylate syrup
US7807767B2 (en) 2004-11-08 2010-10-05 Lg Chem, Ltd. Method for producing acryl syrup by bulk polymerization
US8690284B2 (en) 2011-03-29 2014-04-08 Brother Kogyo Kabushiki Kaisha Liquid discharge apparatus
KR20130107243A (en) * 2012-03-21 2013-10-01 스미또모 가가꾸 가부시끼가이샤 Method for stopping continuous polymerization

Also Published As

Publication number Publication date
JP3434225B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP3628518B2 (en) Methacrylic polymer and process for producing the same
JP3395291B2 (en) Method for producing methacrylic polymer
EP0863167B1 (en) Process for producing a copolymer of methyl methacrylate and styrene
KR100350170B1 (en) Polymethacrylate molding materials with high heat deformation temperatures and high stability against thermal collapse
JP2000159816A (en) Preparation of methacrylic polymer
JP3013951B2 (en) Acrylic resin manufacturing method
JP2000034303A (en) Manufacture of polymethylmethacrylate polymer
JP3937111B2 (en) Method for producing polymer
JP3565229B2 (en) Method for producing methacrylic resin
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
KR100763951B1 (en) Process for Methacrylic Resin Having Good Optical Properties
KR100787347B1 (en) Method of preparation for acryl syrup by controlling thermal polymerization in bulk polymerization
JP2001233912A (en) Manufacturing method of methacrylic polymer
JPH0255448B2 (en)
JPH10152505A (en) Production of styrene-methyl methacrylate-based polymer
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JP4325475B2 (en) Methacrylic polymer and process for producing the same
JP3434224B2 (en) Method for producing methacrylic polymer and method for producing plastic optical fiber
JP4256744B2 (en) Method for producing (meth) acrylic polymer
JP3319483B2 (en) Methacrylic resin having thermal decomposition resistance and method for producing the same
JP3013953B2 (en) Acrylic resin manufacturing method
JPH01201307A (en) Production of methacrylate polymer
JP4553078B2 (en) Acrylic syrup manufacturing method
JP3901700B2 (en) Method for producing methacrylic resin
JP2021116311A (en) (meth)acrylic polymer and method for producing (meth)acrylic polymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term