JPH01201307A - Production of methacrylate polymer - Google Patents

Production of methacrylate polymer

Info

Publication number
JPH01201307A
JPH01201307A JP2492988A JP2492988A JPH01201307A JP H01201307 A JPH01201307 A JP H01201307A JP 2492988 A JP2492988 A JP 2492988A JP 2492988 A JP2492988 A JP 2492988A JP H01201307 A JPH01201307 A JP H01201307A
Authority
JP
Japan
Prior art keywords
polymerization
mixture
polymer
alkyl
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2492988A
Other languages
Japanese (ja)
Inventor
Hisao Anzai
安西 久雄
Isao Sasaki
笹木 勲
Koji Nishida
西田 耕二
Eiichi Hamada
浜田 栄一
Hideaki Makino
牧野 英顕
Masami Otani
正美 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2492988A priority Critical patent/JPH01201307A/en
Publication of JPH01201307A publication Critical patent/JPH01201307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain a methacrylate polymer excellent in optical properties, thermal decomposition resistance, etc., by mixing a methyl methacrylate monomer with a specified mixed solvent, an MW modifier and a polymerization initiator and continuously polymerizing the mixture at a specified temperature. CONSTITUTION:Methyl methacrylate alone or a monomer mixture of methyl methacrylate with other alkyl (meth)acrylates (e.g., methyl acrylate) (A) is mixed with 5-30wt.% mixed solvent (B) composed of 5-50wt.% monohydric alkyl alcohol (e.g., methyl alcohol) and 95-50wt.% (alkyl)benzene. The mixture is homogeneously mixed with an MW modifier (e.g., n-octyl mercaptan) and 3X10<-4>g.mol., per 100g of a mixture of components A and B, of a polymerization initiator (e.g., di-t-butyl peroxide), and the obtained mixture is continuously polymerized at 60-170 deg.C to obtain a methacrylate polymer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタクリル重合体の連続的製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a continuous method for producing methacrylic polymers.

〔従来の技術〕[Conventional technology]

メタクリル重合体は透明性のみならず、耐候性および機
械的性質に優れるため、高性能光学素材、装飾素材、自
動車・電気製品部品等に用いられる有用な樹脂である。
Methacrylic polymers are not only transparent but also have excellent weather resistance and mechanical properties, so they are useful resins used in high-performance optical materials, decorative materials, automobile and electrical product parts, etc.

メタクリル重合体の製造法としては懸濁重合法が広く一
般に採られている。この方法の欠点は、使用される懸濁
化剤がポリマー中に一部残留し、ポリマー特性、とりわ
け、光学特性が低下することである。
Suspension polymerization is widely used as a method for producing methacrylic polymers. A disadvantage of this method is that the suspending agent used remains partially in the polymer, which deteriorates the polymer properties, especially the optical properties.

この懸濁重合法の欠点を改良する方法として、近年、塊
状重合法が考えられている。この方法によれば、懸濁化
剤が使用されないため光学特性に優れたポリマーの製造
が可能である。しかしながら、塊状重合法の欠点は安定
な重合反応の制御が極めて難しく、時として暴走反応を
招くことである。これはよく知られているように“ゲル
効果”または“Tromsdorff効果”と呼ばれる
重合反応の自動加速効果に起因するもので、重合系の粘
度が増大するに伴いポリマー分子の拡散が制限され、停
止反応が低下することによるものである。このゲル効果
はビニル化合物の塊状ラジカル重合に広くみられる現象
であるが、メチルメタクリレートの重合反応においては
特に顕著にみられる。
In recent years, bulk polymerization has been considered as a method for improving the disadvantages of suspension polymerization. According to this method, since no suspending agent is used, it is possible to produce a polymer with excellent optical properties. However, a drawback of the bulk polymerization method is that it is extremely difficult to control a stable polymerization reaction, which sometimes leads to runaway reactions. This is due to the well-known self-accelerating effect of the polymerization reaction called the "gel effect" or "Tromsdorff effect", and as the viscosity of the polymerization system increases, the diffusion of polymer molecules is restricted and stopped. This is due to a decrease in reaction. This gel effect is a phenomenon that is widely observed in the bulk radical polymerization of vinyl compounds, but is particularly noticeable in the polymerization reaction of methyl methacrylate.

前記懸濁重合法の欠点を改良する別の方法として、溶剤
中で重合する溶液重合法なる重合方法も考えられている
。この方法によれば、溶剤によって反応系の粘度が低減
されるため、ゲル効果を最小限に抑えることができ、安
定な重合反応が可能となる。しかしながら、溶剤の使用
によって新たに別の問題が発生する。それはポリマーの
耐熱分解性の低下である。耐熱分解性が低下すると高温
でポリマーを成形加工する時にポリマーの分解生成物に
よる1シルバーストリーク”と呼ばれる銀条跡が発生す
るため成形加工温度をあまり高くできず、成形加工性を
大巾に低下させることになる。
As another method for improving the drawbacks of the suspension polymerization method, a polymerization method called a solution polymerization method in which polymerization is performed in a solvent is also considered. According to this method, since the viscosity of the reaction system is reduced by the solvent, the gel effect can be minimized and a stable polymerization reaction can be performed. However, the use of solvents creates additional problems. This is a decrease in the thermal decomposition resistance of the polymer. If the thermal decomposition resistance decreases, when the polymer is molded at high temperatures, silver streaks called "silver streaks" will occur due to the decomposition products of the polymer, so the molding temperature cannot be raised too high, and the molding processability will be greatly reduced. I will let you do it.

ポリマーの耐熱分解性を向上させようとして溶剤の使用
量を減少してゆくと前記ゲル効果が増加し、安定な重合
反応の制御が困難となる。
If the amount of solvent used is reduced in an attempt to improve the thermal decomposition resistance of the polymer, the gel effect increases, making it difficult to control a stable polymerization reaction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、前記の如き状況に鑑み、品質に優れた
メタクリル重合体、とりわけ光学特性および耐熱分解性
に優れたメタクリル重合体を安定に制御された重合反応
によって製造する方法を提供するにある。
In view of the above-mentioned circumstances, an object of the present invention is to provide a method for producing a methacrylic polymer with excellent quality, particularly a methacrylic polymer with excellent optical properties and thermal decomposition resistance, by a stably controlled polymerization reaction. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のメタクリル重合体の製造法は、メチルメタクリ
レート単独またはメチルメタクリレートと他のアルキル
メタクリレートもしくは、アルキルアクリレートとの単
量体混合物を連続的に重合するに際し、5乃至50重量
%の一価のアルキルアルコールと95乃至50重量%の
ベンゼンもしくはアルキルベンゼンより成る混合溶剤を
5重量%以上、30重量%未満の範囲で含有する前記単
量体との混合物を分子量調整剤及び前記単量体との混合
物100g当たり3X10−4g−モル以下の重合開始
剤と共に実質的に均一に混合された反応区域にて60乃
至170℃の温度で重合することを特徴とする。
The method for producing a methacrylic polymer of the present invention involves continuous polymerization of methyl methacrylate alone or a monomer mixture of methyl methacrylate and other alkyl methacrylates or alkyl acrylates. 100g of a mixture of alcohol and the above monomer containing a mixed solvent consisting of 95 to 50% by weight of benzene or alkylbenzene in a range of 5% by weight or more and less than 30% by weight, a molecular weight regulator and the above monomer. It is characterized by polymerization at a temperature of 60 DEG to 170 DEG C. in a substantially uniformly mixed reaction zone with not more than 3.times.10@-4 g-mol of polymerization initiator per polymerization initiator.

メチルメタクリレートと共重合されるアルキルメタクリ
レートの例としては、エチルメタクリレート、プロピル
メタクリレート、ブチルメタクリレート、シクロヘキシ
ルメタクリレート、2−エチルへキシルメタクリレート
、ベンジルメタクリレート等が挙げられ、また、アルキ
ルアクリレートの例としてはメチルアクリレート、エチ
ルアクリレート、ブチルアクリレート、シクロヘキシル
アクリレート、2−エチルへキシルアクリレート、ベン
ジルアクリレート等が挙げられる。共重合体とする場合
のこれらアルキルメタクリレートまたはアルキルアクリ
レートの使用量に特に制限はないが通常単量体単位で3
0重量%以下である。
Examples of alkyl methacrylates copolymerized with methyl methacrylate include ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, benzyl methacrylate, and examples of alkyl acrylates include methyl acrylate. , ethyl acrylate, butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, benzyl acrylate, and the like. There is no particular restriction on the amount of these alkyl methacrylates or alkyl acrylates used when making a copolymer, but usually 3
It is 0% by weight or less.

本発明にて使用される溶剤は一価のアルキルアルコール
とベンゼンもしくはアルキルベンゼンとの混合溶剤であ
る。ベンゼンもしくはアルキルベンゼンを溶剤としてメ
チルメタクリレートを重合する例は既に知られている。
The solvent used in the present invention is a mixed solvent of monohydric alkyl alcohol and benzene or alkylbenzene. Examples of polymerizing methyl methacrylate using benzene or alkylbenzene as a solvent are already known.

本発明者らはこれら溶剤に一価のアルキルアルコールを
併用した混合溶剤を使用することにより、メチルメタク
リレート重合液の粘度が大巾に低下することを見い出し
た。この混合溶剤の使用によって次の効果がもたらされ
る。すなわち、重合液の粘度が低下することにより、重
合反応の自動加速効果、すなわちゲル効果が最小限に抑
えされ安定な重合が可能となること、および溶剤の使用
量を低減できるため前述の如きポリマーの耐熱分解性の
低下を招くことがないことである。
The present inventors have discovered that the viscosity of the methyl methacrylate polymerization solution can be significantly reduced by using a mixed solvent containing monovalent alkyl alcohol in combination with these solvents. The use of this mixed solvent brings about the following effects. In other words, by lowering the viscosity of the polymerization solution, the self-acceleration effect of the polymerization reaction, that is, the gel effect, is minimized and stable polymerization is possible, and the amount of solvent used can be reduced, making it possible to There should be no reduction in heat decomposition resistance.

好ましい一価のアルキルアルコールは、炭素数4以下の
アルキル基を有するアルコール、すなわち、メチルアル
コール、エチルアルコール、n−プロピルアルコール、
イソプロピルアルコール、n−ブチルアルコールおよび
イソブチルアルコールである。これらアルコールの使用
量は混合溶剤当り5乃至50重重景である。5重量%未
満ではその効果が期待できないし、50重量%を越える
と重合体の溶解性が低下する。好ましい使用量は10乃
至40重1%である。
Preferred monohydric alkyl alcohols include alcohols having an alkyl group having 4 or less carbon atoms, i.e., methyl alcohol, ethyl alcohol, n-propyl alcohol,
These are isopropyl alcohol, n-butyl alcohol and isobutyl alcohol. The amount of these alcohols used is 5 to 50 parts per mixed solvent. If it is less than 5% by weight, no effect can be expected, and if it exceeds 50% by weight, the solubility of the polymer will decrease. The preferred amount used is 10 to 40% by weight.

好ましいアルキルベンゼンは炭素数が4以下のアルキル
基を有するトルエン、キシレン、エチルベンゼン、ジエ
チルベンゼン、イソプロピルベンゼン等である。
Preferred alkylbenzenes include toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and the like having an alkyl group having 4 or less carbon atoms.

前記混合溶剤の使用量は、メチルメタクリレート等の単
量体との混合物に基づき5重量%以上、30重量%未満
である。5重量%未満では重合液の粘度が十分に低下せ
ず、重合反応が不安定になり易い。30重量%以上では
、ポリマーの耐熱分解性の低下を招く。゛好ましくは、
7乃至25重量%である。
The amount of the mixed solvent used is 5% by weight or more and less than 30% by weight based on the mixture with a monomer such as methyl methacrylate. If the amount is less than 5% by weight, the viscosity of the polymerization solution will not be sufficiently reduced, and the polymerization reaction will likely become unstable. If it exceeds 30% by weight, the thermal decomposition resistance of the polymer will decrease.゛Preferably,
It is 7 to 25% by weight.

重合体分子量調整剤としては通常使用されるメルカプタ
ン類が用いられる。具体例としては、アルキル基または
置換アルキル基を有する第1級、第2級および第3級メ
ルカプタン、例えば、n−ブチル、イソブチル、n−オ
クチル、n−ドデシル、5ec−ブチル、5ec−ドデ
シル、tert−ブチルメルカプタン;芳香族メルカプ
タン、例えば、フェニルメルカプタン、チオクレゾール
;チオグリコール酸とそのエステル;ならびにエチレン
チオグリコールの如きメルカプタンが挙げられる。
As the polymer molecular weight regulator, commonly used mercaptans are used. Specific examples include primary, secondary and tertiary mercaptans having alkyl groups or substituted alkyl groups, such as n-butyl, isobutyl, n-octyl, n-dodecyl, 5ec-butyl, 5ec-dodecyl, Mention may be made of mercaptans such as tert-butyl mercaptan; aromatic mercaptans such as phenyl mercaptan, thiocresol; thioglycolic acid and its esters; and ethylene thioglycol.

これらは単独でまたは二種以上組み合わせて用いられる
。重合体分子量調整剤の使用量は所望とする重合体の分
子量に応じて適宜決定される。
These may be used alone or in combination of two or more. The amount of the polymer molecular weight regulator used is appropriately determined depending on the desired molecular weight of the polymer.

重合開始剤は反応温度で活性に分解しラジカルを発生す
るもので、例えば、ジーter t・ブチルパーオキサ
イド、ジ−クミルパーオキサイド、メチルエチルケトン
パーオキサイド、ジーtert・ブチルパーフタレート
、ジーter t・プチルバーペンヅエート、tert
・ブチルパーアセテート、2,5−ジメチル−2,5−
ジ(ter t・ブチルパーオキシ)ヘキサン、ジーt
er t・アミルパーオキサイド、ベンゾイルパーオキ
サイドおよびラウリルパーオキサイド等の有機過酸化物
、ならびにアゾビスイソブタノールジアセテート、1,
1′−アゾビスシクロヘキサンカルボニトリル、2−フ
ェニルアゾ−2,4−ジメチル−4−メトキシバレロニ
トリル、2−シアノ−2−プロピルアゾホルムアシドお
よび2.2′−アゾビスイソブチロニトリル等が挙げら
れる。これらの重合開始剤は単独でまたは二種以上混合
して使用することができる。重合開始剤の使用量は混合
溶剤と単量体との混合物100g当り3X10−4g−
モル以下とする。重合開始剤がこの量を越えると、耐熱
分解性に優れた重合体を得ることができない。好ましく
は、前記混合物100g当り2.5X10−4g−モル
以下とする。
Polymerization initiators are those that actively decompose at the reaction temperature and generate radicals, such as G-tert-butyl peroxide, dicumyl peroxide, methyl ethyl ketone peroxide, G-tert-butyl perphthalate, and G-tert-butyl peroxide. rhubarbenduate, tert
・Butyl peracetate, 2,5-dimethyl-2,5-
Di(tert-butylperoxy)hexane, di-t
Organic peroxides such as amyl peroxide, benzoyl peroxide and lauryl peroxide, and azobisisobutanol diacetate, 1,
Examples include 1'-azobiscyclohexanecarbonitrile, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2-cyano-2-propylazoformacide and 2,2'-azobisisobutyronitrile. It will be done. These polymerization initiators can be used alone or in combination of two or more. The amount of polymerization initiator used is 3X10-4g per 100g of the mixture of mixed solvent and monomer.
Less than a mole. If the amount of the polymerization initiator exceeds this amount, a polymer with excellent heat decomposition resistance cannot be obtained. Preferably, it is not more than 2.5×10 −4 g-mol per 100 g of said mixture.

混合溶剤と単量体との混合物、重合体分子量調整剤およ
び重合開始剤を別々にまたはあらかじめ混合した後に実
質的に均一に混合された反応域に導入し重合反応を行な
わしめる。反応域内に混合されない部分が存在すると重
合熱の蓄熱が引き金となり反応の自動加速効果により暴
走反応を誘発することがあり、安定な重合操作が困難に
なるばかりでなく、品質の一定した重合体が得られない
A mixture of a mixed solvent and a monomer, a polymer molecular weight regulator, and a polymerization initiator are mixed separately or in advance, and then introduced into the reaction zone where they are substantially uniformly mixed to carry out a polymerization reaction. If there is an unmixed portion in the reaction zone, the accumulation of polymerization heat may trigger a runaway reaction due to the automatic acceleration effect of the reaction, which not only makes stable polymerization difficult, but also makes it difficult to obtain a polymer of consistent quality. I can't get it.

実質的に均一に混合された反応域は、例えば、アンカー
型、ダブルスパイラル型およびスクリュウ型等の撹拌翼
を備えたベッセル型反応槽等により達成される。
A substantially uniformly mixed reaction zone is achieved, for example, by a vessel-type reactor equipped with stirring blades such as anchor type, double spiral type, and screw type.

重合温度は60乃至170℃とする。重合温度が60℃
未満では重合速度が低下し経済的でないし、重合液の粘
度が高くなるため重合反応操作が困難となる。重合温度
が170℃を越えると、オリゴマー類の発生が増大し、
これは重合体を加熱した場合黄帯色の原因となり、光学
特性の低下を招く。
The polymerization temperature is 60 to 170°C. Polymerization temperature is 60℃
If it is less than this, the polymerization rate decreases and is not economical, and the viscosity of the polymerization solution increases, making it difficult to operate the polymerization reaction. When the polymerization temperature exceeds 170°C, the generation of oligomers increases,
This causes a yellowish color when the polymer is heated, leading to a decrease in optical properties.

好ましくは、70乃至160℃呂する。Preferably, the temperature is 70 to 160°C.

反応域にて、通常、少くとも初めの単量体の50%まで
重合した後、溶剤および未反応i量体等の揮発分を除去
し目的とする重合体を得る。重合液から揮発分を除去す
る方法としては、通常、減圧下に200〜300℃に加
熱する方法が採られ、スクリュウ押出機あるいはデボラ
タイザー等の装置が用いられる。重合体に残存する揮発
分は1重量%以下、好ましくは0.5重量%以下である
In the reaction zone, usually after polymerization to at least 50% of the initial monomer, volatile components such as the solvent and unreacted i-mer are removed to obtain the desired polymer. As a method for removing volatile components from the polymerization solution, a method of heating to 200 to 300° C. under reduced pressure is usually adopted, and a device such as a screw extruder or a devolatizer is used. The volatile content remaining in the polymer is 1% by weight or less, preferably 0.5% by weight or less.

[発明の効果〕 本発明によれば、アルキルアルコールとベンゼンまたは
アルキルベンゼンより成る混合溶剤を使用して特定量以
下に限定されたラジカル重合開始剤のもとにメチルメタ
クリレート単量体を重合することにより、ビニル単量体
の重合に特有な重合反応の自動加速効果、ゲル効果が抑
えられ、重合反応が安定となり、とりわけ耐熱分解性お
よび光学特性に優れたメタクリル重合体を得ることがで
きる。
[Effects of the Invention] According to the present invention, methyl methacrylate monomers are polymerized using a mixed solvent consisting of alkyl alcohol and benzene or alkylbenzene in the presence of a radical polymerization initiator limited to a specific amount or less. , the automatic acceleration effect and gel effect of the polymerization reaction peculiar to the polymerization of vinyl monomers are suppressed, the polymerization reaction becomes stable, and a methacrylic polymer particularly excellent in heat decomposition resistance and optical properties can be obtained.

〔実施例〕〔Example〕

以下、実施例によって本発明をさらに詳しく説明するが
、本発明は実施例に限定されるものではない。実施例に
おいて使用される「部」および「%」は全て重量部およ
び重量%である。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the Examples. All "parts" and "%" used in the examples are by weight.

以下の実施例において重合体の物性測定は次の方法によ
った。
In the following examples, the physical properties of the polymer were measured by the following method.

(1)  重合体の固有粘度はデロービショップ(De
rreaxBischoff)粘度計によって試料重合
体濃度0.5%のジメチルホルムアミドの流動時間(t
、)とジメチルホルムアミドの流動時間(to)とを温
度25±0.1℃で測定し、to / to 4直力1
ら重合体の相対粘度η、、、lを求め、次式より算出し
た値である。
(1) The intrinsic viscosity of a polymer is determined by Delow-Bishop (De
The flow time (t
) and the flow time (to) of dimethylformamide were measured at a temperature of 25 ± 0.1 °C, to / to 4 direct force 1
The relative viscosity η, ..., l of the polymer was calculated from the following formula.

固有粘度=(In η、、、り/C (式中、Cは溶媒100−あたりの重合体のり゛ラム数
である) (2)成形品の全光線透過率(%)はASTMD 10
03法によって測定した。
Intrinsic viscosity = (In η, , ri/C (wherein, C is the number of polymers per 100 mm of solvent) (2) The total light transmittance (%) of the molded product is ASTM D 10
It was measured by the 03 method.

(3)重合体の熱分解率は試料100■を窒素雰囲気下
290℃で30分間加熱し、その前後の重量差より求め
た。なお、試料は測定前80℃にて24時間真空乾燥し
たものを用いた。
(3) The thermal decomposition rate of the polymer was determined from the difference in weight before and after heating 100 cm of a sample at 290° C. for 30 minutes in a nitrogen atmosphere. Note that the sample used was one that had been vacuum dried at 80° C. for 24 hours before measurement.

実施例1 メチルメタクリレート83部、メチルアクリレート2部
、1.1′−アゾビス−1−シクロヘキサンカルボニト
リル0.025部(1,OX 10−4g−モル/10
0g−単量体混合物)、n−オクチルメルカプタン0.
25部およびトルエン−メタノール混合溶剤(重量比7
:3)15部を混合した後、31/hの割合で内容積2
ONの反応槽に供給した。反応槽は熱媒を循環するジャ
ケットを備え、反応温度は115℃に維持した。また、
反応槽内は十分撹拌し、実質的に均一に混合した。反応
槽を出た直後の重合率は定常状態となってから3日の間
77±2%であり、重合反応は極めて安定に維持するこ
とが可能であった。この重合液を230℃に加熱後、減
圧下にある脱気押出機に連続的に供給した。この脱気押
出機は外径30mmの一軸スクリュウ、真空度10mH
gの減圧に維持された脱気のためのベント開口3ケおよ
び重合体をストランド状に賦形するためのダイスを備え
ており、260℃に加熱された。ベント部で十分に脱気
された重合体はダイスよりストランド状に取り出され、
水冷後ペレタイザーにてペレット化した。得られた重合
体に含まれる揮発分は0.1%以下であることが確認さ
れた。この重合体の物性は以下の通りである。
Example 1 83 parts of methyl methacrylate, 2 parts of methyl acrylate, 0.025 parts of 1,1'-azobis-1-cyclohexanecarbonitrile (1,OX 10-4 g-mol/10
0 g-monomer mixture), n-octyl mercaptan 0.
25 parts and toluene-methanol mixed solvent (weight ratio 7
:3) After mixing 15 parts, the internal volume is 2 at a rate of 31/h.
It was supplied to the ON reaction tank. The reaction vessel was equipped with a jacket for circulating a heat medium, and the reaction temperature was maintained at 115°C. Also,
The inside of the reaction tank was sufficiently stirred to achieve substantially uniform mixing. The polymerization rate immediately after leaving the reaction tank was 77±2% for 3 days after reaching a steady state, and it was possible to maintain the polymerization reaction extremely stably. This polymerization solution was heated to 230° C. and then continuously supplied to a degassing extruder under reduced pressure. This degassing extruder has a single screw with an outer diameter of 30 mm and a vacuum level of 10 mH.
The reactor was equipped with three vent openings for degassing which were maintained at a reduced pressure of 1.5 g and a die for shaping the polymer into strands, and heated to 260°C. The polymer that has been sufficiently degassed at the vent section is taken out in the form of strands from the die.
After cooling with water, it was pelletized using a pelletizer. It was confirmed that the volatile content contained in the obtained polymer was 0.1% or less. The physical properties of this polymer are as follows.

固有粘度    0.32 全光線透過率  93% 熱分解率    2.1% 実施例2、 メチルメタクリレート90部、ジーtert−ブチルパ
ーオキサイド0.004部(2,7x 10−4g−モ
ル/100g−単量体混合物) 、tert−ブチルメ
ルカプタン 溶剤(重量比8:2)10部を用い、実施例1と同様に
重合した。但し、重合温度は150℃とした。
Intrinsic viscosity 0.32 Total light transmittance 93% Thermal decomposition rate 2.1% Example 2, 90 parts of methyl methacrylate, 0.004 parts of di-tert-butyl peroxide (2.7 x 10-4 g-mol/100 g-unit) Polymerization was carried out in the same manner as in Example 1 using 10 parts of tert-butyl mercaptan solvent (weight ratio 8:2). However, the polymerization temperature was 150°C.

定常状態となってから3日間重合率は78部2%であり
、重合反応は極めて安定に維持することが可能であった
。この重合液を実施例1と同様の方法によりペレット化
した。得られた重合体に含まれる揮発分は0.1%以下
であることが確認された。
The polymerization rate was 78 parts and 2% for 3 days after reaching a steady state, and it was possible to maintain the polymerization reaction extremely stably. This polymerization solution was pelletized in the same manner as in Example 1. It was confirmed that the volatile content contained in the obtained polymer was 0.1% or less.

この重合体の物性は以下の通りである。The physical properties of this polymer are as follows.

固有粘度    0.35 全光線透過率  92.5% 熱分解率    1.9% 実施例3 メチルメタクリレート65部、メチルアクリレート10
部、2.2′−アゾビスイソブチロニトリル0.039
部(2,4x 10−4g−モル/100g−単量体混
合物)、n−オクチルメルカプタン0.31部およびベ
ンゼン−メタノール混合溶剤(重量比7:3)25部を
用い、実施例1と同様の方法により重合した。但し、重
合温度は95℃とした。
Intrinsic viscosity 0.35 Total light transmittance 92.5% Thermal decomposition rate 1.9% Example 3 65 parts of methyl methacrylate, 10 parts of methyl acrylate
parts, 2.2'-azobisisobutyronitrile 0.039
Same as Example 1, using 2,4 parts of 10-4 g-mol/100 g-monomer mixture, 0.31 parts of n-octyl mercaptan and 25 parts of benzene-methanol mixed solvent (weight ratio 7:3). Polymerization was carried out by the method of However, the polymerization temperature was 95°C.

定常状態となってから3日間重合率は72部2%であり
、重合反応は極めて安定に維持することが可能であった
。この重合液を実施例1と同様の方法によりペレット化
した。得られた重合体に含まれる揮発分は0.1%以下
であることが確認された。
The polymerization rate was 72 parts and 2% for 3 days after reaching a steady state, and it was possible to maintain the polymerization reaction extremely stably. This polymerization solution was pelletized in the same manner as in Example 1. It was confirmed that the volatile content contained in the obtained polymer was 0.1% or less.

この重合体の物性は以下の通りである。The physical properties of this polymer are as follows.

固有粘度    0.30 全光線透過率  93% 熱分解率    2.5% 実施例4 メチルメタクリレート80部、ジ−クミルパーオキサイ
ド0.031部(1,1x 10−4g−モル/100
g−単量体混合物)、n−ドデシルメルカプタン0.2
8部およびエチルベンゼン−イソプロピルアルコール混
合溶剤(重量比6:4)20部を用い、実施例1と同様
の方法により重合した。但し、重合温度は140℃とし
た。定常状態となってから3日間、重合率は81部2%
であり、重合反応は極めて安定に維持することが可能で
あった。この重合液を実施例1と同様の方法によりペレ
ット化した。得られた重合体に含まれる揮発分は0.1
%以下であることが確認された。この重合体の物性は以
下の通りである。
Intrinsic viscosity 0.30 Total light transmittance 93% Thermal decomposition rate 2.5% Example 4 80 parts of methyl methacrylate, 0.031 parts of dicumyl peroxide (1,1x 10-4 g-mol/100
g-monomer mixture), n-dodecyl mercaptan 0.2
Polymerization was carried out in the same manner as in Example 1 using 8 parts and 20 parts of an ethylbenzene-isopropyl alcohol mixed solvent (weight ratio 6:4). However, the polymerization temperature was 140°C. Three days after reaching steady state, the polymerization rate was 81 parts and 2%.
Therefore, it was possible to maintain the polymerization reaction extremely stably. This polymerization solution was pelletized in the same manner as in Example 1. The volatile content contained in the obtained polymer was 0.1
% or less. The physical properties of this polymer are as follows.

固有粘度    0.32 全光線透過率  93% 熱分解率    2.4%Intrinsic viscosity 0.32 Total light transmittance 93% Thermal decomposition rate 2.4%

Claims (1)

【特許請求の範囲】 1、メチルメタクリレート単独またはメチルメタクリレ
ートと他のアルキルメタクリレートもしくはアルキルア
クリレートとの単量体混合物を連続的に重合するに際し
、5乃至50重量%の一価のアルキルアルコールと95
乃至50重量%のベンゼンもしくはアルキルベンゼンよ
り成る混合溶剤を5重量%以上、30重量%未満の範囲
で含有する前記単量体との混合物を、分子量調整剤及び
前記単量体との混合物100g当り3×10^−^4g
−モル以下の重合開始剤と共に実質的に均一に混合され
た反応域にて60乃至170℃の温度で重合することを
特徴とするメタクリル重合体の製造法。 2、一価のアルキルアルコール及びアルキルベンゼンの
アルキル基の炭素数が4以下である請求項1記載の方法
[Claims] 1. When continuously polymerizing methyl methacrylate alone or a monomer mixture of methyl methacrylate and other alkyl methacrylate or alkyl acrylate, 5 to 50% by weight of monohydric alkyl alcohol and 95%
3 to 50% by weight of a mixture with the monomer containing benzene or alkylbenzene in a range of 5% by weight or more and less than 30% by weight per 100g of the mixture with the molecular weight regulator and the monomer. ×10^-^4g
- A method for producing a methacrylic polymer, characterized in that the polymerization is carried out at a temperature of 60 to 170° C. in a substantially uniformly mixed reaction zone with less than mol of a polymerization initiator. 2. The method according to claim 1, wherein the alkyl group of the monovalent alkyl alcohol and alkylbenzene has 4 or less carbon atoms.
JP2492988A 1988-02-06 1988-02-06 Production of methacrylate polymer Pending JPH01201307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2492988A JPH01201307A (en) 1988-02-06 1988-02-06 Production of methacrylate polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2492988A JPH01201307A (en) 1988-02-06 1988-02-06 Production of methacrylate polymer

Publications (1)

Publication Number Publication Date
JPH01201307A true JPH01201307A (en) 1989-08-14

Family

ID=12151789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2492988A Pending JPH01201307A (en) 1988-02-06 1988-02-06 Production of methacrylate polymer

Country Status (1)

Country Link
JP (1) JPH01201307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020032770A (en) * 2000-10-27 2002-05-04 성재갑 Acrylic resin composition having superior thermal stability
WO2013161266A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020032770A (en) * 2000-10-27 2002-05-04 성재갑 Acrylic resin composition having superior thermal stability
WO2013161266A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
JPWO2013161266A1 (en) * 2012-04-27 2015-12-21 株式会社クラレ (Meth) acrylic resin composition

Similar Documents

Publication Publication Date Title
US6632907B1 (en) Process for producing methacrylic polymer
EP0019372B1 (en) Rubber modified methyl methacrylate syrups, production and use in producing cast sheets and moulding materials
JP3654532B2 (en) Multi-stage method for producing polymethacrylate molding materials with high heat dimensional stability
EP3387030B1 (en) Method of preparation of a composition comprising a copolymer of methyl methacrylate and methacrylic acid
US5719242A (en) Process for preparing methyl methacrylate polymer
KR100350170B1 (en) Polymethacrylate molding materials with high heat deformation temperatures and high stability against thermal collapse
JPH07258340A (en) Extrusion-molded plate and sheet, injection-molded part, molded item, and workpiece produced from polymethacrylate molding material thermoplastically processible
JP2582510B2 (en) Method for producing acrylic polymer
JP2000034303A (en) Manufacture of polymethylmethacrylate polymer
JP3013951B2 (en) Acrylic resin manufacturing method
IT9020378A1 (en) CONTINUOUS MASS ACRYLIC POLYMER PRODUCTION PROCESS
CN114891147B (en) Methyl methacrylate copolymer and preparation method and application thereof
JPH01201307A (en) Production of methacrylate polymer
JPH0251514A (en) Preparation of maleimide copolymer
JP3565229B2 (en) Method for producing methacrylic resin
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JP2592332B2 (en) Maleimide copolymer and method for producing the same
JPH10152505A (en) Production of styrene-methyl methacrylate-based polymer
JPS6243409A (en) Production of thermoplastic resin
JP2000159816A (en) Preparation of methacrylic polymer
US4754008A (en) Heat resistant molding compounds
JP2003040946A (en) Method for producing polyolefin-based graft copolymer
JP4256744B2 (en) Method for producing (meth) acrylic polymer
JP3941984B2 (en) Method for producing vinyl polymer
JP3013953B2 (en) Acrylic resin manufacturing method