JP2000144308A - Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance and its production - Google Patents
Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance and its productionInfo
- Publication number
- JP2000144308A JP2000144308A JP10324755A JP32475598A JP2000144308A JP 2000144308 A JP2000144308 A JP 2000144308A JP 10324755 A JP10324755 A JP 10324755A JP 32475598 A JP32475598 A JP 32475598A JP 2000144308 A JP2000144308 A JP 2000144308A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- oxidation resistance
- temperature
- strength
- creep rupture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特にボイラ用鋼
管、化学プラント配管用鋼管などに使用される高温強度
と耐酸化性に優れた低合金耐熱鋼及びその製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-alloy heat-resistant steel excellent in high-temperature strength and oxidation resistance, particularly used for steel pipes for boilers and steel pipes for chemical plant piping, and a method for producing the same.
【0002】[0002]
【従来の技術】ボイラ用鋼として、使用温度、圧力に応
じて炭素鋼からオーステナイトステンレス鋼まで使用さ
れているが、近年蒸気条件の高温、高圧化が計画されて
おり、従来材よりも高強度の材料が要求されている。2. Description of the Related Art As steel for boilers, carbon steel to austenitic stainless steel is used depending on the operating temperature and pressure. In recent years, high temperature and high pressure steam conditions are planned, and higher strength than conventional materials is used. Material is required.
【0003】現在の蒸気圧力246kgf/cm2を350kgf/cm2ま
で高圧にする場合、同じ管肉厚で設計するためには約1.
3倍の強度が必要となる。すなわち、現用の2.25Cr-1Mo
鋼の600℃の許容応力2.8kgf/mm2の1.3倍の許容応力3.6k
gf/mm2を有する必要がある。低合金鋼のクリープ破断強
度は、高温長時間側で急激に低下する傾向があるため、
この許容応力を満たすためには、600℃、1万時間のク
リープ破断強度として、12kgf/mm2以上が要求される。
この低合金鋼における高温長時間側でのクリープ破断強
度の低下の一因に、酸化による減肉がある。600℃以下
の温度においては、現在2.25Cr-1Mo鋼が主に使用されて
いる。今後の蒸気温度及び圧力の高温高圧化を考えた場
合、現用の2.25Cr-1Mo鋼の管肉厚を厚くして対処するこ
とは、プラントの大幅な重量増加を招き、大幅な設計変
更を余儀なくされ、コストも増加する。When the current steam pressure is increased from 246 kgf / cm 2 to 350 kgf / cm 2 , it takes about 1.
Three times the strength is required. That is, the current 2.25Cr-1Mo
Allowable stress 2.8 kgf / 1.3 times the mm 2 of the allowable stress of 600 ° C. Steel 3.6k
It should have a gf / mm 2. Since the creep rupture strength of low alloy steel tends to sharply decrease at high temperature and long time,
In order to satisfy this allowable stress, a creep rupture strength at 600 ° C. for 10,000 hours of 12 kgf / mm 2 or more is required.
One cause of the decrease in the creep rupture strength of the low alloy steel on the high temperature and long time side is the wall thinning due to oxidation. At temperatures below 600 ° C, 2.25Cr-1Mo steel is currently mainly used. Considering the future high temperature and pressure of steam temperature and pressure, increasing the wall thickness of the current 2.25Cr-1Mo steel will cause a significant increase in plant weight, and will require a major design change. Cost increases.
【0004】より、高強度で耐酸化性も有する材料とし
て、STBA28(9Cr-1Mo-Nb-V)鋼が火力技術基準に規格化さ
れているが、この材料は、Crを多量添加することから高
価になり、経済性に難がある。耐酸化性を持たせるため
に適正量Crを増量したSTBA25(5Cr-0.5Mo)鋼は、耐酸化
性は有するが、クリープ破断強度は、2.25Cr-1Mo鋼より
も劣っている。As a material having high strength and oxidation resistance, STBA28 (9Cr-1Mo-Nb-V) steel has been standardized in thermal power technical standards. It is expensive and has poor economy. STBA25 (5Cr-0.5Mo) steel, which has an appropriate amount of Cr added to provide oxidation resistance, has oxidation resistance, but is inferior in creep rupture strength to 2.25Cr-1Mo steel.
【0005】上記のような従来鋼の欠点を改善するため
の高強度の5%Cr系耐熱鋼として、クリープ破断強度に有
効な、V,Nb等の添加(特開平3-20440号公報、特開平6-4
9601号公報、特開平4-165043号公報)、Wの添加(特開
平6-88167号公報)、それらの複合添加(特開平7-28624
8号公報、特開平8-134584号公報)を特徴とする各々の
公報に開示されている様なものがある。[0005] As a high-strength 5% Cr heat-resistant steel for improving the above-mentioned drawbacks of conventional steel, addition of V, Nb, etc., which is effective for creep rupture strength (Japanese Patent Laid-Open No. 3-20440, Kaihei 6-4
9601, JP-A-4-65043), addition of W (JP-A-6-88167), and composite addition thereof (JP-A-7-28624)
No. 8, JP-A-8-134584).
【0006】[0006]
【発明が解決しようとする課題】しかし、上記したV,N
b,W等の添加を特徴の一つとした高強度の5%Cr系耐熱鋼
は、前記の蒸気条件の高温・高圧化に対応可能なクリー
プ破断強度を十分に満足していない。本発明の目的は、
Crを5%含有し耐酸化性を保持しながら同時に蒸気条件の
高温・高圧化に対応可能な高温強度に優れた低合金耐熱
鋼及びその製造方法を提供することにある。However, the above-mentioned V, N
The high-strength 5% Cr heat-resistant steel characterized by the addition of b, W, etc., does not sufficiently satisfy the creep rupture strength that can cope with high temperature and high pressure under the above-mentioned steam conditions. The purpose of the present invention is
An object of the present invention is to provide a low-alloy heat-resisting steel containing 5% Cr and having excellent high-temperature strength capable of coping with high-temperature and high-pressure steam conditions while maintaining oxidation resistance and a method for producing the same.
【0007】[0007]
【課題を解決するための手段】前記課題を解決し、目的
を達成するために、本発明は以下に示す手段を用いてい
る。In order to solve the above problems and achieve the object, the present invention uses the following means.
【0008】(1)本発明の高温強度と耐酸化性に優れ
た低合金耐熱鋼は、重量%で、C:0.05〜0.20%と、Si:0.
05〜0.40%と、Mn:0.1〜1.0%と、Cr:4.5〜5.5%と、Mo:0.
1〜1.0%と、W:0.1〜1.0%と、Ti:0.10〜0.40%と、B:0.00
10〜0.0060%と、Nb:0.01%以下(0%を含む)とを含み、残
部はFe及び不可避的不純物からなり、(Mo%+W%):0.2〜1.
5%であることを特徴とする高温強度と耐酸化性に優れた
ものである。(1) The low-alloy heat-resistant steel of the present invention, which has excellent high-temperature strength and oxidation resistance, has a weight percentage of C: 0.05 to 0.20% and Si: 0.1%.
05 ~ 0.40%, Mn: 0.1 ~ 1.0%, Cr: 4.5 ~ 5.5%, Mo: 0.
1 to 1.0%, W: 0.1 to 1.0%, Ti: 0.10 to 0.40%, B: 0.00
10 to 0.0060% and Nb: 0.01% or less (including 0%), the balance consists of Fe and unavoidable impurities, (Mo% + W%): 0.2 to 1.
It is excellent in high temperature strength and oxidation resistance characterized by being 5%.
【0009】(2)本発明の高温強度と耐酸化性に優れ
た低合金耐熱鋼の製造方法は、上記(1)に記載した鋼
を1000℃〜1150℃で焼準し、700℃以上Ac1点以下で焼き
戻す方法である。(2) The method of the present invention for producing a low-alloy heat-resistant steel excellent in high-temperature strength and oxidation resistance comprises normalizing the steel described in (1) above at 1000 ° C. to 1150 ° C. It is a method of tempering with one or less points.
【0010】(3)本発明の高温強度と耐酸化性に優れ
た低合金耐熱鋼の製造方法は、上記(1)に記載した鋼
を1000℃以上で加熱し、1000℃〜800℃で30%以上の加工
を加えたのち200℃以下まで冷却し、700℃以上Ac1点以
下で焼き戻す方法である。(3) The method for producing a low-alloy heat-resistant steel excellent in high-temperature strength and oxidation resistance according to the present invention comprises heating the steel described in (1) above at 1000 ° C. or more, % Or more, then cooled to 200 ° C or less, and tempered at 700 ° C or more and one Ac or less.
【0011】[0011]
【発明の実施の形態】本発明者は、従来鋼(2.25Cr-1Mo)
に比べて耐酸化性を向上させることを目的にCrを重量%
で5%程度含有させると同時に、クリープ破断強度に有効
な固溶強化元素Mo,Wとともに、析出強化元素Ti,Nbを添
加して、所望のクリープ破断強度を有し、蒸気条件の高
温高圧化に対応し得る鋼について研究した。その結果、
5%Cr鋼では、Nbは、Tiと複合添加すると、著しく靭性を
低下させるため、Tiとは複合添加しない方がよいという
知見、及びBは、Tiの析出強化作用を補助する役割があ
り、積極的に複合添加しなくてはならないという知見を
得た。これらの知見に基づき、本発明者は、Nb,B,Tiの
複合添加比率を制限することにより、適正な耐酸化性を
有するCrを含有しながら、蒸気条件の高温・高圧化に対
応できる本発明の鋼及びその製造方法を見出し、本発明
を完成した。BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has proposed a conventional steel (2.25Cr-1Mo).
Cr in order to improve oxidation resistance compared to
At the same time, the precipitation strengthening elements Ti and Nb are added together with the solid solution strengthening elements Mo and W, which are effective for creep rupture strength. A study was made on steels that could respond to as a result,
In 5% Cr steel, Nb significantly lowers the toughness when added in combination with Ti, and the finding that it is better not to add it in combination with Ti, and B has a role to assist the precipitation strengthening action of Ti, It has been found that composite addition must be positively performed. Based on these findings, the present inventor has proposed a method that can cope with high-temperature and high-pressure steam conditions by limiting the composite addition ratio of Nb, B, and Ti while containing Cr having appropriate oxidation resistance. The present inventors have found the steel of the invention and a method for producing the same, and have completed the present invention.
【0012】すなわち、本発明は、鋼組成及び製造条件
を下記範囲に限定することにより、ボイラ用鋼管や化学
プラント配管用鋼管として必要な溶接性及び加工性を保
持しつつ、蒸気条件の高温・高圧化に対応できる高温強
度と耐酸化性に優れた鋼を得ることができる。That is, the present invention restricts the steel composition and the production conditions to the following ranges, thereby maintaining the weldability and workability required for a steel pipe for a boiler or a steel pipe for a chemical plant piping, while maintaining high steam and high temperature conditions. A steel excellent in high-temperature strength and oxidation resistance that can cope with high pressure can be obtained.
【0013】以下に本発明の成分添加理由、成分範囲限
定理由、及び製造条件の限定理由について説明する。The reasons for adding the components of the present invention, the reasons for limiting the range of the components, and the reasons for limiting the manufacturing conditions will be described below.
【0014】(1)成分組成範囲 C:TiとMC型炭化物、CrとM23C6型炭化物、また、Mo,Wと
も炭化物を形成し、引張・クリープ破断強度を向上させ
る元素である。その添加量が、0.05%未満では炭化物の
析出量が少なく十分な強度が得られない。0.20%を超え
ると靭性が低下するとともに、溶接による高温割れが生
じるため、0.05〜0.20%の範囲にする。(1) Component composition range C: Ti and MC type carbides, Cr and M 23 C 6 type carbides, and Mo and W are elements that form carbides and improve tensile and creep rupture strength. If the addition amount is less than 0.05%, the amount of carbide precipitated is small and sufficient strength cannot be obtained. If it exceeds 0.20%, the toughness is reduced, and hot cracking due to welding occurs, so the content is made 0.05 to 0.20%.
【0015】Si:脱酸剤として添加されるが、0.05%未
満の添加では脱酸が十分でなく靭性を低下させる。耐酸
化性の観点からは有効な元素であるが、0.40%を超える
と炭化物の凝集・粗大化を促進しクリープ破断強度を低
下させ、焼戻し後の靭性も低下させることから、0.05〜
0.40%の範囲にする。Si: It is added as a deoxidizing agent, but if added less than 0.05%, deoxidizing is not sufficient and the toughness is reduced. Although it is an effective element from the viewpoint of oxidation resistance, if it exceeds 0.40%, it promotes agglomeration and coarsening of carbides, reduces creep rupture strength, and also reduces toughness after tempering.
Be within the range of 0.40%.
【0016】Mn:脱酸、脱硫剤として添加されるが、0.
1%未満では十分な脱酸、脱硫効果が得られないこと、1.
0%を超えるとSiと同様に靭性を低下させるため、0.1〜
1.0%の範囲にする。Mn: added as a deoxidizing and desulfurizing agent,
If it is less than 1%, sufficient deoxidation and desulfurization effects cannot be obtained, and 1.
If it exceeds 0%, the toughness is reduced as in the case of Si.
Be within the range of 1.0%.
【0017】Cr:耐酸化性に有効であり、M23C6型炭化
物を形成し、高温強度を向上させる元素であるが、4.5%
未満では耐酸化性が十分でないこと、5.5%を超えるとMC
炭化物の生成量を減少させクリープ破断強度を低下させ
るため、その範囲を4.5〜5.5%にする。Cr: an element that is effective for oxidation resistance, forms an M 23 C 6 type carbide, and improves high-temperature strength.
If it is less than 5.5%, the oxidation resistance is not sufficient.If it exceeds 5.5%, MC
The range is 4.5 to 5.5% in order to reduce the amount of carbide generated and lower the creep rupture strength.
【0018】Mo,W:固溶強化元素、炭化物形成元素とし
て高温強度に有効であるが、高価な元素であるため過剰
な添加は経済性を損なう。また、凝固時に偏析しやすい
元素であり、材質の不均一さを生じ靭性等を低下させる
ため、その添加量をそれぞれ0.1〜1.0%にし、かつその
合計含有量を0.2〜1.5%に限定する。Mo, W: Effective as a solid solution strengthening element or a carbide forming element for high-temperature strength, but is an expensive element, so excessive addition impairs economic efficiency. Further, it is an element that is easily segregated at the time of solidification, and causes non-uniformity of the material to reduce toughness and the like. Therefore, the addition amount is each set to 0.1 to 1.0%, and the total content is limited to 0.2 to 1.5%.
【0019】Ti:TiCを形成して、高温強度特に高温側
のクリープ破断強度の向上に有効な元素である。0.10%
未満では、TiCとしての析出量が少ないため目標とする
クリープ破断強度が得られない。0.40%を超えると1000
℃以上の高温加熱を実施しても未固溶の粗大なTiCとし
て残存し、クリープ破断強度低下の原因になる。また、
靭性も低下させるため、その範囲を0.10〜0.40%にす
る。Ti: An element that forms TiC and is effective for improving high-temperature strength, particularly creep rupture strength on the high-temperature side. 0.10%
If it is less than 1, the target creep rupture strength cannot be obtained because the amount of precipitation as TiC is small. 1000 over 0.40%
Even when heating at a high temperature of not less than ℃, it remains as undissolved coarse TiC, which causes a decrease in creep rupture strength. Also,
In order to reduce toughness, the range is set to 0.10 to 0.40%.
【0020】B:Tiの析出強化作用を補助し、クリープ
破断強度の改善に有効な元素であるが、0.0010%未満で
は、その効果が認められず、0.0060%を超えると熱間加
工性を低下させ、キズ等の発生原因になるため、その添
加量を0.0010〜0.0060%とする。B: An element that assists the precipitation strengthening effect of Ti and is effective for improving the creep rupture strength. However, if it is less than 0.0010%, the effect is not recognized, and if it exceeds 0.0060%, the hot workability is reduced. Therefore, the amount of addition is set to 0.0010 to 0.0060% to cause generation of scratches.
【0021】Nb:クリープ破断強度の改善に有効な元素
であるが、Tiと複合添加した場合、その上限が0.01%を
超えると著しく靭性を低下させるため、その範囲を0.01
%以下(0%を含む)とする。Nb: an element effective for improving the creep rupture strength, but when added in combination with Ti, if the upper limit exceeds 0.01%, the toughness is remarkably reduced, so that the range is 0.01%.
% Or less (including 0%).
【0022】上記の成分範囲に調整することにより、蒸
気条件の高温・高圧化に対応可能な高温強度と耐酸化性
に優れた性能を得ることが可能である。By adjusting to the above component ranges, it is possible to obtain a high temperature strength and an excellent oxidation resistance which can cope with high temperature and high pressure of steam conditions.
【0023】このような特性の鋼は、以下の二つの製造
方法で製造することができる。 (2)製造工程 a)第一の製造方法は、上記の好適成分に調整した鋼を1
000℃〜1150℃の温度範囲で焼準して、700℃以上Ac1点
以下で焼き戻す方法である。The steel having such characteristics can be manufactured by the following two manufacturing methods. (2) Manufacturing process a) In the first manufacturing method, steel adjusted to the above-mentioned suitable components is used for one step.
In this method, normalization is performed in the temperature range of 000 ° C to 1150 ° C, and tempering is performed at 700 ° C or higher and one point of Ac or lower.
【0024】ここで、1150℃を超えて焼準した場合、結
晶粒が粗大化するため靭性が低下する。このため上限を
1150℃とする必要がある。また、1000℃未満では、炭化
物析出元素が十分に固溶せず、強度、靭性バランスが劣
化するため、下限を1000℃とする必要がある。Here, if normalizing is performed at a temperature exceeding 1150 ° C., the crystal grains become coarse and the toughness is reduced. Because of this,
It must be 1150 ° C. If the temperature is lower than 1000 ° C., the carbide precipitation element does not sufficiently form a solid solution, and the balance between strength and toughness is deteriorated.
【0025】焼戻し処理は、鋼の靭性改善と溶接、応力
除去処理等による軟化を防止するために必須である。し
かし、その温度が、Ac1点を超えると、オーステナイト
相へのCの再固溶が生じ強度が低下するため、上限をAc1
点とする必要がある。また、700℃未満では、強度が高
くなり、靭性を劣化させるため、下限を700℃とする必
要がある。The tempering treatment is indispensable for improving the toughness of the steel and preventing softening due to welding, stress removal treatment and the like. However, the temperature is greater than 1 point Ac, because the re-dissolution of C into the austenite phase occurs strength is lowered, the upper limit Ac 1
Need to be a point. If the temperature is lower than 700 ° C., the strength is increased and the toughness is deteriorated.
【0026】b)第二の製造方法は、上記の好適成分に
調整した鋼を1000℃以上で加熱して、十分炭化物析出元
素を固溶させ、1000℃〜800℃で30%以上の加工を加えた
のち、200℃以下まで冷却し、700℃以上Ac1点以下で焼
き戻す方法である。B) In the second production method, the steel adjusted to the above-mentioned preferred components is heated at 1000 ° C. or more to sufficiently dissolve the carbide precipitation element, and is processed at 1000 ° C. to 800 ° C. at 30% or more. After the addition, it is cooled to 200 ° C or lower and tempered at 700 ° C or higher and one point of Ac or lower.
【0027】ここで、加熱温度を1000℃未満にすると、
炭化物析出元素が十分に固溶せず、クリープ破断強度が
劣化するため、下限を1000℃とする必要がある。Here, when the heating temperature is less than 1000 ° C.,
Since the carbide precipitation element does not sufficiently form a solid solution and the creep rupture strength deteriorates, the lower limit must be set to 1000 ° C.
【0028】加熱温度を1000℃以上にしても圧延時の加
工量が30%未満の場合、結晶粒の細粒化が十分になされ
ず、靭性が劣化するため、加工量の下限を30%とする必
要がある。If the amount of processing at the time of rolling is less than 30% even when the heating temperature is set to 1000 ° C. or higher, the grain size cannot be sufficiently reduced, and the toughness is deteriorated. There is a need to.
【0029】加工後の冷却を200℃より高い温度で停止
すると、ベイナイト変態が未完了になり強度が低下する
ため、上限を200℃とする必要がある。If the cooling after processing is stopped at a temperature higher than 200 ° C., the bainite transformation is not completed and the strength is reduced. Therefore, it is necessary to set the upper limit to 200 ° C.
【0030】焼戻し処理は、鋼の靭性改善と溶接、応力
除去処理等による軟化を防止するために必須である。し
かし、その温度が、Ac1点を超えると、オーステナイト
相へのCの再固溶が生じ強度が低下するため、上限をAc1
点とする必要がある。また、700℃未満では、強度が高
くなり、靭性を劣化させるため、下限を700℃とする必
要がある。The tempering treatment is indispensable for improving the toughness of the steel and preventing the steel from being softened by welding, stress removing treatment and the like. However, the temperature is greater than 1 point Ac, because the re-dissolution of C into the austenite phase occurs strength is lowered, the upper limit Ac 1
Need to be a point. If the temperature is lower than 700 ° C., the strength is increased and the toughness is deteriorated.
【0031】以下に、本発明の実施例を挙げ、本発明の
効果を立証する。Hereinafter, the effects of the present invention will be proved by giving examples of the present invention.
【0032】[0032]
【実施例】表1に示す化学組成の鋼(本発明鋼No.1〜N
o.8、比較鋼No.9〜No.15)を、真空溶解し10kgの鋼塊と
したのち1000℃〜1200℃に加熱し、熱間圧延で厚さ12mm
の板にした。熱間での加工率は85%である。比較鋼のNo.
9は、規格化されており現用のSTBA24(2.25Cr-1Mo)鋼で
ある。また比較鋼のNo.10も、規格化されており、耐酸
化性は有するが高温強度が不足しているSTBA25(5Cr-0.5
Mo)鋼である。No.11は本発明鋼にNbを添加した鋼、No.1
2,13,14は、Mo,Wを過剰に添加した鋼、No.15はTiを過剰
に添加した鋼である。EXAMPLES Steels having the chemical compositions shown in Table 1 (Steel Nos. 1 to N of the present invention)
o.8, Comparative steel No.9 ~ No.15) is melted in vacuum to make a 10kg steel ingot, then heated to 1000 ℃ ~ 1200 ℃ and hot rolled to 12mm thick
Of the board. The hot working ratio is 85%. No. of comparative steel
9 is a standardized and working STBA24 (2.25Cr-1Mo) steel. STBA25 (5Cr-0.5), which is standardized and has oxidation resistance but lacks high-temperature strength, is also standardized.
Mo) steel. No. 11 is a steel obtained by adding Nb to the steel of the present invention, No. 1
Nos. 2, 13, and 14 are steels to which Mo and W are excessively added, and No. 15 is a steel to which Ti is excessively added.
【0033】[0033]
【表1】 [Table 1]
【0034】熱処理は、No.9,10鋼は、通常の930℃のオ
ーステナイト化後徐冷し690℃で保持する恒温焼鈍を
し、No.9,10鋼以外は、1050℃×1hの加熱、空冷ののち7
80℃×1hの焼戻し処理を施した。In the heat treatment, No. 9 and 10 steels were austenitized to a normal temperature of 930 ° C., then gradually cooled, and subjected to constant temperature annealing at 690 ° C., except for No. 9 and 10 steels, which were heated at 1050 ° C. × 1 hour. After air cooling 7
Tempering at 80 ° C. × 1 h was performed.
【0035】各鋼の熱処理材から、試験片を採取し常温
の引張り試験、クリープ破断試験、シャルピー衝撃試験
および水蒸気酸化試験を実施した。クリープ破断試験
は、600℃および650℃で実施し、600℃、1万時間の破断
強度を求めた。また、水蒸気酸化試験は、600℃×1000h
で実施し、生成した酸化スケールの全厚さを測定した。
これらの結果を表2に示す。A test piece was taken from the heat-treated material of each steel and subjected to a room temperature tensile test, a creep rupture test, a Charpy impact test and a steam oxidation test. The creep rupture test was performed at 600 ° C. and 650 ° C., and the breaking strength at 600 ° C. for 10,000 hours was determined. The steam oxidation test was performed at 600 ° C x 1000h.
And the total thickness of the formed oxide scale was measured.
Table 2 shows the results.
【0036】[0036]
【表2】 [Table 2]
【0037】比較鋼No.9の現用2.25Cr-1Mo鋼は、クリー
プ破断強度が12kgf/mm2以下である。また、水蒸気酸化
スケール生成量も多く、耐酸化性も劣る。比較鋼No.10
の規格5Cr-0.5Mo鋼は、耐酸化性は良好ながらも、クリ
ープ破断強度は、2.25Cr-1Mo鋼よりもさらに低い。一
方、比較鋼No.11〜14は、クリープ破断強度は12kgf/mm2
以上であるが、衝撃特性がいずれも10kgf・m以下にな
り、靭性が劣る。特にNb添加の比較鋼No.11は、2kgf・
m程度の著しく低い吸収エネルギーしか示さない。The working 2.25Cr-1Mo steel of Comparative steel No. 9 has a creep rupture strength of 12 kgf / mm 2 or less. In addition, a large amount of steam oxidation scale is generated, and the oxidation resistance is poor. Comparative steel No.10
No. 5Cr-0.5Mo steel has good oxidation resistance, but has a lower creep rupture strength than 2.25Cr-1Mo steel. On the other hand, the comparative steel Nos. 11 to 14 had a creep rupture strength of 12 kgf / mm 2
As described above, all of the impact characteristics are 10 kgf · m or less, and the toughness is poor. In particular, Nb-added comparative steel No. 11 has 2 kgf
It shows only a very low absorption energy of the order of m.
【0038】比較鋼No.15は、衝撃特性は比較的良好で
あるが、クリープ破断強度の低下が顕著であり、12kgf/
mm2以下になる。[0038] Comparative steel No. 15 has relatively good impact properties, but has a remarkable decrease in creep rupture strength.
mm 2 or less.
【0039】これに対して、本発明鋼はいずれも良好な
12kgf/mm2以上のクリープ破断強度、衝撃特性および耐
酸化性を有している。On the other hand, the steels of the present invention were all good.
It has a creep rupture strength of 12 kgf / mm 2 or more, impact properties and oxidation resistance.
【0040】表3に、本発明鋼のNo.2を用いて、熱処理
条件を変化させた場合の結果を示す。素材の加熱、圧延
条件は1150℃加熱で85%加工し、970℃の圧延仕上がり温
度である。焼準温度が高い場合、クリープ破断強度は向
上するが、1150℃超えで焼準した場合、結晶粒が粗大化
するため、衝撃特性が低下する。また、1000℃未満の場
合は、クリープ破断強度が明らかに低下し、12kgf/mm2
以下となる。Table 3 shows the results when the heat treatment conditions were changed using No. 2 of the steel of the present invention. The heating and rolling conditions of the material are 85% processing at 1150 ° C heating, and the rolling finish temperature is 970 ° C. When the normalizing temperature is high, the creep rupture strength is improved, but when normalizing at a temperature higher than 1150 ° C., the crystal grains are coarsened, and the impact characteristics are reduced. On the other hand, when the temperature is lower than 1000 ° C., the creep rupture strength is clearly reduced, and 12 kgf / mm 2
It is as follows.
【0041】[0041]
【表3】 [Table 3]
【0042】また、焼準温度と600℃、1万時間クリープ
破断強度の関係を図1に示す。1000℃以上の焼準温度で
クリープ破断強度が12kgf/mm2以上に向上する。FIG. 1 shows the relationship between normalizing temperature and creep rupture strength at 600 ° C. for 10,000 hours. The creep rupture strength increases to 12 kgf / mm 2 or more at a normal temperature of 1000 ° C. or more.
【0043】表4に、本発明鋼のNo.2を用いて、加熱温
度、圧延仕上がり温度、加工率を変化させた場合の結果
を示す。加熱温度が1000℃より低い比較鋼3Eは、クリー
プ破断強度が12kgf/mm2以下になる。加熱温度を1000℃
以上にしても、圧延時の加工量が30%より少ない場合、
比較鋼3Dに示すようにクリープ破断強度は高いが衝撃特
性が低下する。Table 4 shows the results when the heating temperature, the finished rolling temperature, and the working ratio were changed using No. 2 of the steel of the present invention. The comparative steel 3E having a heating temperature lower than 1000 ° C. has a creep rupture strength of 12 kgf / mm 2 or less. Heating temperature up to 1000 ℃
Even with the above, if the processing amount during rolling is less than 30%,
As shown in Comparative Steel 3D, the creep rupture strength is high, but the impact properties are reduced.
【0044】[0044]
【表4】 [Table 4]
【0045】[0045]
【発明の効果】本発明によれば、鋼組成及び製造条件を
特定することにより、Crを大量に添加しないで、耐酸化
性を有する適性量の添加で蒸気条件の高温・高圧化に対
応可能な高温強度と耐酸化性に優れた耐熱鋼を製造する
ことができる。この鋼は、高温強度と耐酸化性に優れる
とともに、靭性、溶接性、加工性にも優れていることか
ら、ボイラ用鋼管として、蒸気条件を高温高圧にした火
力発電設備の実現を可能にする。According to the present invention, by specifying the steel composition and the manufacturing conditions, it is possible to cope with high temperature and high pressure steam conditions by adding an appropriate amount having oxidation resistance without adding a large amount of Cr. Heat resistant steel with excellent high temperature strength and excellent oxidation resistance can be manufactured. This steel has excellent high-temperature strength and oxidation resistance, and also has excellent toughness, weldability, and workability, making it possible to realize thermal power generation equipment with high steam and high temperature steam conditions for boiler steel pipes. .
【0046】また、石油精製プラント用配管としても、
その優れた高温強度により、設計肉厚の許容範囲が広が
ることから、プラント全体の低コスト化に寄与しうるも
のである。Also, as piping for an oil refinery plant,
Due to its excellent high-temperature strength, the allowable range of the design thickness is widened, which can contribute to cost reduction of the whole plant.
【図1】本発明の実施例に係る焼準温度と、600℃、1万
時間クリープ破断強度の関係を示す図である。FIG. 1 is a diagram showing the relationship between normalization temperature and creep rupture strength at 600 ° C. for 10,000 hours according to an example of the present invention.
フロントページの続き Fターム(参考) 4K032 AA02 AA04 AA05 AA12 AA16 AA19 AA22 AA31 AA35 AA37 BA01 CA02 CB01 CB02 CC03 CC04 CF02 CL01 Continued on the front page F term (reference) 4K032 AA02 AA04 AA05 AA12 AA16 AA19 AA22 AA31 AA35 AA37 BA01 CA02 CB01 CB02 CC03 CC04 CF02 CL01
Claims (3)
0.40%と、Mn:0.1〜1.0%と、Cr:4.5〜5.5%と、Mo:0.1〜
1.0%と、W:0.1〜1.0%と、Ti:0.10〜0.40%と、B:0.0010
〜0.0060%と、Nb:0.01%以下(0%を含む)とを含み、残部
はFe及び不可避的不純物からなり、(Mo%+W%):0.2〜1.5%
であることを特徴とする高温強度と耐酸化性に優れた低
合金耐熱鋼。(1) C: 0.05 to 0.20% by weight and Si: 0.05 to
0.40%, Mn: 0.1 to 1.0%, Cr: 4.5 to 5.5%, Mo: 0.1 to
1.0%, W: 0.1 to 1.0%, Ti: 0.10 to 0.40%, B: 0.0010
~ 0.0060%, Nb: 0.01% or less (including 0%), the balance consists of Fe and unavoidable impurities, (Mo% + W%): 0.2 ~ 1.5%
A low-alloy heat-resistant steel having excellent high-temperature strength and oxidation resistance.
0.40%と、Mn:0.1〜1.0%と、Cr:4.5〜5.5%と、Mo:0.1〜
1.0%と、W:0.1〜1.0%と、Ti:0.10〜0.40%と、B:0.0010
〜0.0060%と、Nb:0.01%以下(0%を含む)とを含み、残部
はFe及び不可避的不純物からなり、(Mo%+W%):0.2〜1.5%
である鋼を1000℃〜1150℃で焼準し、700℃以上Ac1点以
下で焼き戻すことを特徴とする高温強度と耐酸化性に優
れた低合金耐熱鋼の製造方法。2. C: 0.05 to 0.20% by weight and Si: 0.05 to 2% by weight.
0.40%, Mn: 0.1 to 1.0%, Cr: 4.5 to 5.5%, Mo: 0.1 to
1.0%, W: 0.1 to 1.0%, Ti: 0.10 to 0.40%, B: 0.0010
~ 0.0060%, Nb: 0.01% or less (including 0%), the balance consists of Fe and unavoidable impurities, (Mo% + W%): 0.2 ~ 1.5%
A method for producing a low-alloy heat-resistant steel excellent in high-temperature strength and oxidation resistance, characterized by normalizing steel at 1000 ° C to 1150 ° C and tempering at 700 ° C to 1 point Ac.
0.40%と、Mn:0.1〜1.0%と、Cr:4.5〜5.5%と、Mo:0.1〜
1.0%と、W:0.1〜1.0%と、Ti:0.10〜0.40%と、B:0.0010
〜0.0060%と、Nb:0.01%以下(0%を含む)とを含み、残部
はFe及び不可避的不純物からなり、(Mo%+W%):0.2〜1.5%
である鋼を1000℃以上で加熱し、1000℃〜800℃で30%以
上の加工を加えたのち200℃以下まで冷却し、700℃以上
Ac1点以下で焼き戻すことを特徴とする高温強度と耐酸
化性に優れた低合金耐熱鋼の製造方法。3. The method according to claim 1, wherein C: 0.05 to 0.20% and Si: 0.05 to 0.2% by weight.
0.40%, Mn: 0.1 to 1.0%, Cr: 4.5 to 5.5%, Mo: 0.1 to
1.0%, W: 0.1 to 1.0%, Ti: 0.10 to 0.40%, B: 0.0010
~ 0.0060%, Nb: 0.01% or less (including 0%), the balance consists of Fe and unavoidable impurities, (Mo% + W%): 0.2 ~ 1.5%
The steel is heated at 1000 ℃ or more, processed at 1000 ℃ ~ 800 ℃ for 30% or more, then cooled to 200 ℃ or less, 700 ℃ or more
A method for producing a low-alloy heat-resistant steel excellent in high-temperature strength and oxidation resistance, characterized by tempering at one point or less of Ac.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10324755A JP2000144308A (en) | 1998-11-16 | 1998-11-16 | Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10324755A JP2000144308A (en) | 1998-11-16 | 1998-11-16 | Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000144308A true JP2000144308A (en) | 2000-05-26 |
Family
ID=18169325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10324755A Pending JP2000144308A (en) | 1998-11-16 | 1998-11-16 | Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000144308A (en) |
-
1998
- 1998-11-16 JP JP10324755A patent/JP2000144308A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5659758B2 (en) | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability | |
JP2001271134A (en) | Low-alloy steel excellent in sulfide stress cracking resistance and toughness | |
JP2567150B2 (en) | Manufacturing method of high strength low yield ratio line pipe material for low temperature | |
JP5630322B2 (en) | High-tensile steel plate with excellent toughness and manufacturing method thereof | |
JP2007270194A (en) | Method for producing high-strength steel sheet excellent in sr resistance property | |
JP2012172242A (en) | High-tensile steel sheet having superior toughness and method for manufacturing the same | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP4385622B2 (en) | Manufacturing method of high-strength steel sheet | |
JPH09137253A (en) | High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production | |
JP5747398B2 (en) | High strength steel | |
JP2659813B2 (en) | Manufacturing method of high strength low alloy heat resistant steel | |
JP3319222B2 (en) | Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint | |
JP3301284B2 (en) | High Cr ferritic heat resistant steel | |
JP3705391B2 (en) | Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet | |
JPH101737A (en) | Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production | |
JP2705946B2 (en) | Manufacturing method of high strength steel sheet with excellent SSC resistance | |
JP2000144308A (en) | Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance and its production | |
JP2001026838A (en) | Heat resistant low alloy steel having high corrosion resistance and excellent in high temperature strength and weldability, and its manufacture | |
JP3756795B2 (en) | High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles | |
JP3250263B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP3804087B2 (en) | Manufacturing method of hot-bending steel pipe | |
JP2001152293A (en) | HIGH Cr FERRITIC HEAT RESISTING STEEL | |
JPH07150251A (en) | Production of seamless martensitic stainless steel tube excellent in hot workability and corrosion resistance and having high toughness | |
JPH101739A (en) | Low alloy heat resistant steel, excellent in high temperature strength and weldability, and its production | |
JP2659814B2 (en) | Manufacturing method of high strength low alloy heat resistant steel |