JP2000144232A - Production of highly cleaned steel - Google Patents

Production of highly cleaned steel

Info

Publication number
JP2000144232A
JP2000144232A JP10318709A JP31870998A JP2000144232A JP 2000144232 A JP2000144232 A JP 2000144232A JP 10318709 A JP10318709 A JP 10318709A JP 31870998 A JP31870998 A JP 31870998A JP 2000144232 A JP2000144232 A JP 2000144232A
Authority
JP
Japan
Prior art keywords
slag
molten steel
steel
ladle
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10318709A
Other languages
Japanese (ja)
Inventor
Eiji Sakurai
栄司 櫻井
Hiroaki Ishikawa
博章 石川
Keiji Yoshioka
敬二 吉岡
Shinichi Sugiyama
晋一 杉山
Eiju Matsuno
英寿 松野
Takeshi Murai
剛 村井
Koichi Ozawa
宏一 小澤
Takuji Teraoka
卓治 寺岡
Satoshi Kodaira
悟史 小平
Masao Osame
雅夫 納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10318709A priority Critical patent/JP2000144232A/en
Publication of JP2000144232A publication Critical patent/JP2000144232A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a highly cleaned steel, in which the reaction between molten steel and slag is prevented by sufficiently reducing the slag and the clean steel having little inclusion is stably produced. SOLUTION: The molten steel 5 obtd. with converter refining, is tapped from the converter 2 to a ladle 3 and slag modifier 7 is added into the slag 6 floated up on the tapped molten steel in undeoxidizing state to reduce the iron oxide in the slag. Successively, the molten steel in the undeoxidizing state is decarburized in an RH vacuum degassing apparatus 4 and after decarburizing, Al is added into the molten steel to execute the deoxidation, and after deoxidizing, the surface position of the molten steel in the ladle is vertically shifted to reduce the iron oxide in the slag. At this time, after deoxidizing, the slag modifier is desirable to supplement into the slag on the molten steel in the ladle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物系非金属介
在物の少ない清浄鋼を安定して製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably producing a clean steel having a small amount of oxide-based nonmetallic inclusions.

【0002】[0002]

【従来の技術】近年の鉄鋼材料の高機能化及び高品質化
への要求の高まりから、燐、硫黄等の不純物元素や、脱
酸生成物、転炉スラグ及びモールドパウダー等を起源と
する酸化物系非金属介在物(以下、「介在物」と記す)
を極力低減することが要望されている。この内、介在物
は薄鋼板製品での表面欠陥の主原因となるため、精錬か
ら鋳造に至るまで、その発生原因が検討され、そして、
介在物の主要な発生原因の1つとして、取鍋内における
スラグ中の鉄酸化物やMnO等の低級酸化物による溶鋼
の再酸化が挙げられるに至り、介在物の少ない清浄鋼を
製造する手段として、スラグに脱酸剤を添加し、これら
低級酸化物を還元して溶鋼の再酸化を防止する方法が多
数提案されてきた。
2. Description of the Related Art In recent years, demands for higher functionality and higher quality of steel materials have increased, and oxidation elements originating from impurity elements such as phosphorus and sulfur, deoxidation products, converter slag, mold powder, and the like have been developed. Nonmetallic inclusions (hereinafter referred to as "inclusions")
It is desired to reduce as much as possible. Of these, inclusions are the main cause of surface defects in thin steel products, so from the refining to casting, the causes of their occurrence were examined, and
As one of the main causes of inclusions, reoxidation of molten steel by lower oxides such as iron oxide and MnO in slag in a ladle has led to the production of clean steel with few inclusions. There have been proposed many methods of adding a deoxidizing agent to slag to reduce these lower oxides and prevent reoxidation of molten steel.

【0003】例えば、特開平4−72009号公報に
は、転炉から出鋼された未脱酸の溶鋼上に浮遊するスラ
グに、Al滓と生石灰とを添加してスラグ中の低級酸化
物を還元すると共に、スラグの塩基度(CaO/SiO
2 )を介在物の吸収に都合の良い範囲に調整し、次いで
真空脱ガス設備にて脱酸して清浄鋼を製造する方法が開
示されており、又、特開平2−93017号公報には、
RH真空脱ガス装置での溶鋼の脱炭処理後に、取鍋内ス
ラグ上にAl若しくはAlと生石灰を添加してスラグ中
のFeOを還元し、次いで溶鋼を脱酸して清浄性の高い
極低炭素鋼を製造する方法が開示されている。
[0003] For example, Japanese Patent Application Laid-Open No. 4-72009 discloses that Al slag and quick lime are added to slag floating on undeoxidized molten steel discharged from a converter to reduce lower oxides in the slag. While reducing, the basicity of the slag (CaO / SiO
2 ) is adjusted to a range convenient for absorption of inclusions and then deoxidized in a vacuum degassing facility to produce clean steel. JP-A-2-93017 discloses the method. ,
After decarburizing the molten steel in the RH vacuum degassing device, Al or Al and quick lime are added to the slag in the ladle to reduce FeO in the slag, and then deoxidize the molten steel to obtain a highly clean ultra-low. A method for producing carbon steel is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
特開平4−72009号公報に開示された方法では、還
元されたスラグが、溶鋼が脱酸されるまでの期間で溶鋼
中の溶解酸素により再度酸化され、スラグ中にFeO等
の低級酸化物を再度生成する。そのため、溶鋼を脱酸し
た後にスラグと溶鋼中のAlとが反応して溶鋼中に介在
物を生成し、十分な清浄性を得られないという問題点が
ある。
However, in the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-72009, the reduced slag is reused by the dissolved oxygen in the molten steel until the molten steel is deoxidized. It is oxidized and produces lower oxides such as FeO in the slag again. Therefore, after deoxidizing the molten steel, the slag reacts with Al in the molten steel to generate inclusions in the molten steel, and there is a problem that sufficient cleanliness cannot be obtained.

【0005】又、特開平2−93017号公報に開示さ
れた方法では、RH真空脱ガス装置においては取鍋内の
スラグと溶鋼とを攪拌できないため、RH真空脱ガス装
置での処理中にスラグ上に添加された脱酸剤はスラグを
十分に還元できないという問題点がある。このように、
従来技術では、スラグの還元が未だ十分とは言えず、清
浄性の高い鋼を安定して製造するまでには至っていな
い。
In the method disclosed in JP-A-2-93017, slag and molten steel in a ladle cannot be stirred in an RH vacuum degassing apparatus. The deoxidizer added above has a problem that slag cannot be sufficiently reduced. in this way,
In the prior art, slag reduction cannot be said to be sufficient yet, and it has not yet been possible to stably produce highly clean steel.

【0006】本発明は、このような事情に鑑みなされた
もので、その目的は、スラグを十分に還元して溶鋼とス
ラグとの反応を防止し、介在物の少ない清浄鋼を安定し
て製造する方法を提供することである。
The present invention has been made in view of such circumstances, and has as its object to reduce the slag sufficiently to prevent the reaction between molten steel and slag, and to stably produce clean steel having few inclusions. Is to provide a way to

【0007】[0007]

【課題を解決するための手段】第1の発明による高清浄
鋼の製造方法は、転炉精錬により得た溶鋼を転炉から取
鍋に出鋼し、出鋼した未脱酸状態の溶鋼上で浮遊するス
ラグにスラグ改質剤を添加してスラグ中の鉄酸化物を還
元し、次いで、RH真空脱ガス装置にて、未脱酸状態の
溶鋼を脱炭し、脱炭後、溶鋼にAlを添加して脱酸し、
脱酸後、取鍋内溶鋼の湯面位置を上下に移動させてスラ
グ中の鉄酸化物を還元することを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a method for producing high-purity steel, comprising: producing molten steel obtained by converter refining from a converter into a ladle; A slag modifier is added to the slag suspended in the slag to reduce iron oxides in the slag, and then the undeoxidized molten steel is decarburized by an RH vacuum degassing device, and after decarburization, the molten steel Deoxidation by adding Al,
After deoxidation, the molten steel in the ladle is moved up and down to reduce the iron oxide in the slag.

【0008】第2の発明による高清浄鋼の製造方法は、
転炉精錬により得た溶鋼を転炉から取鍋に出鋼し、出鋼
した未脱酸状態の溶鋼上で浮遊するスラグにスラグ改質
剤を添加してスラグ中の鉄酸化物を還元し、次いで、R
H真空脱ガス装置にて、未脱酸状態の溶鋼を脱炭し、脱
炭後、溶鋼にAlを添加して行う脱酸と、取鍋内溶鋼上
のスラグにスラグ改質剤を添加して行うスラグ改質と
を、同時又は相前後して行い、その後、取鍋内溶鋼の湯
面位置を上下に移動させてスラグ中の鉄酸化物を還元す
ることを特徴とするものである。
[0008] The method for producing high-purity steel according to the second invention is as follows.
The molten steel obtained by the converter refining is tapped from the converter into a ladle, and a slag modifier is added to the slag floating on the undeoxidized molten steel to reduce iron oxides in the slag. , Then R
In a H vacuum degassing device, undeoxidized molten steel is decarburized. After decarburization, deoxidation is performed by adding Al to the molten steel, and a slag modifier is added to the slag on the molten steel in the ladle. The slag reforming is carried out simultaneously or before and after, and thereafter, the molten steel in the ladle is moved up and down to reduce the iron oxide in the slag.

【0009】第3の発明による高清浄鋼の製造方法は、
第1の発明又は第2の発明において、湯面位置の上下へ
の移動を5分間以上継続することを特徴とするものであ
る。
[0009] The method for producing high-purity steel according to the third invention is as follows.
In the first invention or the second invention, the vertical movement of the molten metal surface position is continued for 5 minutes or more.

【0010】第4の発明による高清浄鋼の製造方法は、
第1の発明乃至第3の発明の何れかにおいて、Alによ
る脱酸後の環流用Arガス流量を、処理溶鋼量1トン当
たり16Nl/min以下とすることを特徴とするもの
である。
[0010] According to a fourth aspect of the present invention, there is provided a method for producing high-purity steel.
In any one of the first to third inventions, the reflux Ar gas flow rate after deoxidation with Al is set to 16 Nl / min or less per ton of treated molten steel.

【0011】本発明では、転炉精錬した溶鋼を未脱酸状
態で取鍋に出鋼し、取鍋内のスラグにスラグ改質剤を添
加してスラグ中のFeOやFe2 3 等の鉄酸化物を還
元する。スラグ改質剤を添加することでスラグ中のT.
[Fe]濃度は2%程度まで低減する。
In the present invention, the molten steel refined by the converter is tapped in a ladle in a non-deoxidized state, and a slag modifier is added to the slag in the ladle to remove FeO or Fe 2 O 3 in the slag. Reduces iron oxides. By adding a slag modifier, T.C.
[Fe] concentration is reduced to about 2%.

【0012】極低炭素鋼に代表されるような、RH真空
脱ガス装置での高真空下での脱炭処理が必要な鋼種で
は、出鋼直後には溶鋼を脱酸せず、未脱酸状態の溶鋼を
RH真空脱ガス装置に搬送し、RH真空脱ガス装置で
は、先ず未脱酸状態の溶鋼で脱炭を行い、脱炭終了後に
Alを添加して溶鋼を脱酸する。これは、脱炭反応が酸
化反応であり、溶鋼中に溶解酸素が必要であるからであ
る。
[0012] For steel types that require decarburization treatment under a high vacuum in an RH vacuum degassing apparatus, such as extremely low carbon steel, the molten steel is not deoxidized immediately after tapping, but is not deoxidized. The molten steel in the state is conveyed to an RH vacuum degassing apparatus. In the RH vacuum degassing apparatus, first, decarbonization is performed using undeoxidized molten steel, and after decarburization, Al is added to deoxidize the molten steel. This is because the decarburization reaction is an oxidation reaction and requires dissolved oxygen in the molten steel.

【0013】しかし、溶鋼がAlにより脱酸されるまで
は、溶鋼の酸素ポテンシャルの方がスラグの酸素ポテン
シャルに比べて高く、そのため、スラグが溶鋼中の溶解
酸素により酸化し、スラグ中のT.[Fe]濃度が増加
する。又、溶鋼が脱酸される時期は、すでに出鋼から長
時間を経過しているので、スラグの表面は固化してお
り、溶鋼とスラグとの反応性は極めて悪い状態になって
いる。従って、この状態のスラグに覆われたままで溶鋼
を脱酸して脱ガス処理を終了すると、T.[Fe]濃度
の高いスラグが鋳造工程に持ち越され、鋳造中に溶鋼中
のAlとスラグ中の鉄酸化物とが徐々に反応して溶鋼中
にAl2 3 を生成し、溶鋼の清浄性が悪化するが、本
発明では、Alによる脱酸後、取鍋内溶鋼の湯面位置を
上下に移動させ、スラグを溶鋼の熱により溶融させるの
で、溶鋼とスラグとの反応が促進し、スラグ中の鉄酸化
物を還元することができる。その結果、スラグ中のT.
[Fe]濃度は低減し、鋳造中での溶鋼中Alのスラグ
による酸化が抑制され、清浄性の高い鋼を安定して製造
することができる。
However, until the molten steel is deoxidized by Al, the oxygen potential of the molten steel is higher than the oxygen potential of the slag. Therefore, the slag is oxidized by the dissolved oxygen in the molten steel, and the T.O. [Fe] concentration increases. In addition, since the molten steel has been deoxidized for a long time since tapping, the surface of the slag is solidified, and the reactivity between the molten steel and the slag is extremely poor. Accordingly, when the molten steel is deoxidized while being covered with the slag in this state and the degassing process is completed, T.T. The slag with a high [Fe] concentration is carried over to the casting process, and during casting, Al in the molten steel and iron oxide in the slag gradually react to form Al 2 O 3 in the molten steel, thereby improving the cleanliness of the molten steel. However, in the present invention, after deoxidation with Al, the molten steel in the ladle is moved up and down so that the slag is melted by the heat of the molten steel, so that the reaction between the molten steel and the slag is promoted. The iron oxide in it can be reduced. As a result, T.C.
[Fe] concentration is reduced, oxidation of Al in molten steel during casting by slag is suppressed, and a highly clean steel can be stably manufactured.

【0014】Al脱酸と同時に、又はAl脱酸と相前後
して取鍋内のスラグにスラグ改質剤を新たに添加し、そ
の後溶鋼を上下移動させることで、新たに添加したスラ
グ改質剤とスラグ中の鉄酸化物とが直接反応するので、
スラグ中の鉄酸化物の還元がより一層促進し、極めて清
浄性の高い鋼を製造することが可能となる。又、取鍋内
の溶鋼湯面の上下移動を5分間以上継続することで、常
に安定してスラグ中の鉄酸化物を還元することができ
る。
Simultaneously with or before or after Al deoxidation, a new slag modifier is added to the slag in the ladle, and then the molten steel is moved up and down to improve the newly added slag. Since the agent and the iron oxide in the slag react directly,
The reduction of iron oxide in the slag is further promoted, and it is possible to produce steel with extremely high cleanliness. Further, by continuing the vertical movement of the molten steel surface in the ladle for 5 minutes or more, the iron oxide in the slag can always be stably reduced.

【0015】又、本発明者等は、Al脱酸後に上昇側浸
漬管から吹き込む環流用Arガス量が、溶鋼の清浄性を
左右することを確認した。図4は、Al脱酸後の環流用
Arガス量を処理溶鋼量1トン当たり8〜27Nl/m
inの範囲に変更して、圧延された薄鋼板における介在
物性欠陥の発生状況を調査した結果を示す図である。図
4に示すように、Al脱酸後の環流用Arガス量を処理
溶鋼量1トン当たり16Nl/min以下とすること
で、介在物性欠陥はより一層低減する。これは、Al脱
酸後の環流用Arガス量を処理溶鋼量1トン当たり16
Nl/min以下とすることで、真空槽内の溶鋼攪拌が
抑制され、その結果、Al脱酸前に真空槽内壁に付着し
た酸素濃度の高い地金の溶解が防止される、即ち、酸素
濃度の高い地金の再溶解による溶鋼の再酸化が防止され
るからである。又、Al脱酸後、環流用Arを吹き込む
ことで、Al脱酸により生成したAl2 3 の浮上分離
は促進する。
The present inventors have also confirmed that the amount of reflux Ar gas blown from the rising side immersion pipe after Al deoxidation affects the cleanliness of the molten steel. FIG. 4 shows that the amount of Ar gas for reflux after Al deoxidation is 8 to 27 Nl / m per ton of treated molten steel.
It is a figure which shows the result of having investigated the generation | occurrence | production state of the inclusion defect in the rolled thin steel plate, changing to the range of in. As shown in FIG. 4, by setting the amount of reflux Ar gas after Al deoxidization to 16 Nl / min or less per ton of treated molten steel, inclusion defect is further reduced. This means that the amount of reflux Ar gas after Al deoxidation is reduced to 16 per ton of treated molten steel.
By controlling the flow rate to Nl / min or less, the stirring of molten steel in the vacuum chamber is suppressed, and as a result, the metal with a high oxygen concentration attached to the inner wall of the vacuum chamber before Al deoxidation is prevented from being dissolved. This is because re-oxidation of the molten steel due to re-melting of the ingot having a high level is prevented. In addition, by blowing Ar for reflux after Al deoxidation, flotation separation of Al 2 O 3 generated by Al deoxidation is promoted.

【0016】尚、本発明に用いるスラグ改質剤は、金属
Al、Al合金、Al滓、及びこれらの混合物、又は、
これらと生石灰等のフラックスとの混合物であり、又、
T.[Fe]とは、スラグ中の全ての鉄酸化物(FeO
やFe2 3 等)中の鉄分の総和を表わすものであり、
更に、処理溶鋼量とは、取鍋内の1ヒート分の溶鋼量で
ある。
The slag modifier used in the present invention may be metal Al, Al alloy, Al slag, a mixture thereof, or
It is a mixture of these and fluxes such as quicklime,
T. [Fe] refers to all iron oxides (FeO
, Fe 2 O 3, etc.)
Further, the amount of molten steel treated is the amount of molten steel for one heat in the ladle.

【0017】[0017]

【発明の実施の形態】本発明を図面に基づき説明する。
図1は、本発明の工程を示す概要図、図2は、本発明を
実施したRH真空脱ガス装置の縦断面概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing the steps of the present invention, and FIG. 2 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus embodying the present invention.

【0018】図1に示すように、高炉1から出銑された
溶銑を転炉2に装入し、上吹き酸素ランス8を介して酸
素ガスを溶銑に吹き付けて脱炭精錬を行い、転炉2内に
溶鋼5とスラグ6とを得る。次いで、溶鋼5にAl、C
a、Ti、Zr等の強脱酸剤を添加せずに未脱酸状態の
ままで取鍋3に出鋼する。尚、高炉1からの出銑後、脱
硫や脱燐等の溶銑予備処理を行っても良い。
As shown in FIG. 1, hot metal poured from a blast furnace 1 is charged into a converter 2 and oxygen gas is blown onto the hot metal through an upper-blowing oxygen lance 8 to perform decarburization refining. A molten steel 5 and a slag 6 are obtained in 2. Then, Al, C
The steel is poured onto the ladle 3 in the undeoxidized state without adding a strong deoxidizing agent such as a, Ti, and Zr. After tapping from the blast furnace 1, hot metal pretreatment such as desulfurization or dephosphorization may be performed.

【0019】出鋼後、取鍋3の上方に位置するホッパー
9から取鍋3内のスラグ6にスラグ改質剤7を添加し
て、スラグ6中の鉄酸化物を還元する。その際にスラグ
改質剤7の添加量は、スラグ改質剤7中のAl量がスラ
グ6のkg当たりで0.1〜0.5kgの範囲となるよ
うにすることが好ましい。スラグ6のkg当たり0.1
kg未満では十分にスラグ6中の鉄酸化物を還元できな
い虞があり、又、0.5kgを越えると空気と反応する
Alが多くなり、歩留りが悪化するからである。取鍋3
内のスラグ6の量は、例えば、取鍋3内のスラグ6の厚
みを測定することで把握することができる。取鍋3内に
スラグ改質剤7を添加する時期は、スラグ6とスラグ改
質剤7との反応が促進されるので、スラグ6の大部分が
溶融状態である出鋼直後が好ましいが、設備上出鋼直後
の添加が不可能の場合には、RH真空脱ガス装置4での
処理開始の直前であっても良い。スラグ改質剤7の添加
後、取鍋3をRH真空脱ガス装置4に搬送する。
After tapping, the slag modifier 7 is added to the slag 6 in the ladle 3 from the hopper 9 located above the ladle 3 to reduce the iron oxide in the slag 6. At this time, it is preferable that the amount of the slag modifier 7 added is such that the amount of Al in the slag modifier 7 is in the range of 0.1 to 0.5 kg per kg of the slag 6. 0.1 per kg of slag 6
If the amount is less than 0.5 kg, the iron oxide in the slag 6 may not be sufficiently reduced. If the amount exceeds 0.5 kg, the amount of Al reacting with air increases, and the yield deteriorates. Ladle 3
The amount of the slag 6 in the ladle 3 can be grasped, for example, by measuring the thickness of the slag 6 in the ladle 3. When the slag modifying agent 7 is added to the ladle 3, since the reaction between the slag 6 and the slag modifying agent 7 is promoted, it is preferable immediately after tapping when most of the slag 6 is in a molten state. If the addition is not possible immediately after tapping on the equipment, it may be immediately before the start of treatment in the RH vacuum degassing device 4. After the addition of the slag modifier 7, the ladle 3 is transported to the RH vacuum degassing device 4.

【0020】RH真空脱ガス装置4は、図2に示すよう
に、上部槽11及び下部槽12からなる真空槽10と、
下部槽12の下部に設けた上昇側浸漬管13及び下降側
浸漬管14と、取鍋3を昇降させる昇降機20と、スラ
グ改質剤7を収納するホッパー19とから構成されてい
る。上部槽11には、上吹きランス16と、原料投入口
17と、排気装置(図示せず)と接続するダクト18と
が設けられ、又、上昇側浸漬管13にはArガス吹き込
み管15が設けられ、上昇側浸漬管13内に環流用Ar
ガスが吹き込まれる構造となっている。
As shown in FIG. 2, the RH vacuum degassing device 4 comprises a vacuum tank 10 comprising an upper tank 11 and a lower tank 12;
It comprises an ascending immersion pipe 13 and a descending immersion pipe 14 provided below the lower tank 12, an elevator 20 for raising and lowering the ladle 3, and a hopper 19 for storing the slag modifier 7. The upper tank 11 is provided with an upper blowing lance 16, a raw material inlet 17, and a duct 18 connected to an exhaust device (not shown). The rising side immersion pipe 13 has an Ar gas blowing pipe 15. Ar gas for reflux is provided in the rising side immersion pipe 13.
Gas is blown.

【0021】真空槽10の直下に取鍋3を搬入し、次い
で、昇降装置20にて取鍋3を上昇させ、上昇側浸漬管
13及び下降側浸漬管14を取鍋3内の溶鋼5に浸漬さ
せる。そして、Arガス吹き込み管15から上昇側浸漬
管13内にArガスを吹き込むと共に、真空槽10内を
排気装置にて排気して真空槽10内を減圧する。真空槽
10内が減圧されると、取鍋3内の溶鋼5は、Arガス
吹き込み管15から吹き込まれるArガスと共に上昇側
浸漬管13を上昇して真空槽10内に流入し、その後、
下降側浸漬管14を介して取鍋3に戻る流れ、所謂、環
流を形成して脱ガス処理が施される。
The ladle 3 is carried in just below the vacuum chamber 10, and then the ladle 3 is raised by the elevating device 20, and the ascending-side immersion pipe 13 and the descending-side immersion pipe 14 are transferred to the molten steel 5 in the ladle 3. Let it soak. Then, Ar gas is blown into the ascending side immersion pipe 13 from the Ar gas blowing pipe 15 and the inside of the vacuum tank 10 is depressurized by evacuating the inside of the vacuum tank 10 with an exhaust device. When the pressure in the vacuum chamber 10 is reduced, the molten steel 5 in the ladle 3 rises along the rising side immersion pipe 13 together with the Ar gas blown from the Ar gas blowing pipe 15 and flows into the vacuum chamber 10.
The flow returning to the ladle 3 via the descending side immersion pipe 14, forming a so-called reflux, is subjected to degassing.

【0022】先ず、脱炭処理を施すが、脱炭反応は未脱
酸状態の溶鋼5を真空槽10内に環流するだけでも起こ
るが、溶鋼5の酸素ポテンシャルを上昇させて脱炭反応
を促進させるため、上吹きランス16から真空槽10内
の溶鋼5に向けて酸素ガスを吹き付けることが好まし
い。脱炭反応により溶鋼5の炭素濃度が所定値になった
ら、原料投入口17から金属Alを添加して溶鋼5を脱
酸する。Al脱酸後の環流用Arガス量は、前述したよ
うに、処理溶鋼量1トン当たり16Nl/min以下と
することが好ましい。
First, a decarburization treatment is performed. Although the decarburization reaction occurs only by circulating the undeoxidized molten steel 5 into the vacuum chamber 10, the decarburization reaction is accelerated by increasing the oxygen potential of the molten steel 5. For this purpose, it is preferable to blow oxygen gas from the upper blowing lance 16 toward the molten steel 5 in the vacuum chamber 10. When the carbon concentration of the molten steel 5 reaches a predetermined value by the decarburization reaction, metal Al is added from the raw material inlet 17 to deoxidize the molten steel 5. As described above, the amount of the Ar gas for recirculation after Al deoxidation is preferably 16 Nl / min or less per ton of treated molten steel.

【0023】金属Alの添加量は、予め酸素メーター
(図示せず)等で溶鋼5中の溶解酸素濃度を測定し、こ
の溶解酸素をAl2 3 として全量除去し、且つ溶鋼5
中に0.01wt%以上のAlが残留する量に相当する
量とする。残留するAl濃度が0.01wt%未満では
脱酸が弱く、清浄鋼を安定して製造することができな
い。尚、残留するAl濃度の上限は、鋼種によって決め
られた範囲とする。
The amount of metal Al to be added is determined in advance by measuring the dissolved oxygen concentration in the molten steel 5 with an oxygen meter (not shown) or the like, and removing the dissolved oxygen as Al 2 O 3 in total.
An amount corresponding to the amount of 0.01 wt% or more of Al remaining therein. If the residual Al concentration is less than 0.01% by weight, deoxidation is weak, and it is not possible to stably produce clean steel. The upper limit of the residual Al concentration is in a range determined by the type of steel.

【0024】その後、昇降機20を昇降させるか、若し
くは、真空槽10内の圧力を増減させて、取鍋3内の溶
鋼5の湯面位置を上下に移動させる。湯面位置の移動の
下限は、上昇側浸漬管13及び下降側浸漬管14の下端
を越えない範囲とし、上限は上昇側浸漬管13及び下降
側浸漬管14を下部槽12と固定するフランジ(図示せ
ず)が、溶鋼5の熱により損傷しない範囲とする。即
ち、脱ガス処理を行いつつ湯面位置を移動させる。これ
は、脱ガス処理により溶鋼5中の介在物の浮上・分離が
促進し、溶鋼5の清浄性が向上するからである。溶鋼5
の湯面位置を移動させることで、スラグ6は溶鋼5の熱
を受けて溶融し、溶鋼5中のAlとスラグ中の鉄酸化物
との反応が促進される。
Thereafter, the elevator 20 is moved up or down, or the pressure in the vacuum tank 10 is increased or decreased to move the molten steel 5 in the ladle 3 vertically. The lower limit of the movement of the metal surface position is set so as not to exceed the lower ends of the ascending immersion pipe 13 and the descending immersion pipe 14, and the upper limit is a flange (which fixes the ascending immersion pipe 13 and the descending immersion pipe 14 to the lower tank 12). (Not shown) is set so as not to be damaged by the heat of the molten steel 5. That is, the position of the molten metal surface is moved while performing the degassing process. This is because the degassing promotes the floating and separation of inclusions in the molten steel 5 and improves the cleanliness of the molten steel 5. Molten steel 5
The slag 6 is melted by the heat of the molten steel 5 by moving the molten metal surface position, and the reaction between Al in the molten steel 5 and iron oxide in the slag is promoted.

【0025】又、その際に、予めホッパー19を介して
スラグ改質剤7をスラグ6上に添加しておくことが好ま
しい。スラグ改質剤7が溶鋼5及びスラグ6の熱により
溶融し、湯面の上下移動によりスラグ改質剤7中のAl
とスラグ6中の鉄酸化物とが直接反応してスラグ6の還
元が促進される。このスラグ改質剤7の添加量は、スラ
グ改質剤7中のAl量がスラグ6のkg当たりで0.0
2〜0.2kgの範囲となるようにする。この場合、す
でにスラグ改質剤7を添加しているので、0.02〜
0.2kgで十分還元できることを確認している。
At this time, it is preferable that the slag modifier 7 is previously added to the slag 6 via the hopper 19. The slag modifier 7 is melted by the heat of the molten steel 5 and the slag 6, and the aluminum in the slag modifier 7 is moved up and down by the molten metal surface.
And the iron oxide in the slag 6 react directly to promote the reduction of the slag 6. The amount of the slag modifier 7 added is such that the amount of Al in the slag modifier 7 is 0.0
The range is 2 to 0.2 kg. In this case, since the slag modifier 7 has already been added,
It has been confirmed that 0.2 kg can be sufficiently reduced.

【0026】湯面の上下移動は、5分間以上継続するこ
とが好ましい。そして、湯面移動の周期は、3分以下と
することが好ましい。周期が3分を越えると、溶鋼5と
スラグ6との相対的な動きが緩慢となり、溶鋼5とスラ
グ6との反応が遅く、処理時間が延長してRH真空脱ガ
ス装置4の処理能力が低下するためである。湯面の上下
移動の周期は短ければ短いほど、溶鋼5とスラグ6との
反応が進み好ましいが、昇降装置20又は排気装置の能
力を加味し、3分以内で且つ設備能力に見合った最短時
間を移動の周期とすれば良い。又、湯面移動の回数は、
少なくとも2回以上、即ち2周期以上とすることが好ま
しい。回数が2回未満では、スラグ6の還元が不十分
で、その後も、スラグ6による溶鋼5の再酸化が発生す
る虞があるからである。
The vertical movement of the molten metal surface is preferably continued for 5 minutes or more. It is preferable that the cycle of the molten metal surface movement be 3 minutes or less. If the period exceeds 3 minutes, the relative movement between the molten steel 5 and the slag 6 becomes slow, the reaction between the molten steel 5 and the slag 6 is slow, and the processing time is prolonged, and the processing capacity of the RH vacuum degassing device 4 is reduced. It is because it falls. The shorter the period of the vertical movement of the molten metal surface, the more preferable the reaction between the molten steel 5 and the slag 6 is. However, taking into account the capacity of the elevating device 20 or the exhaust device, the shortest time within 3 minutes and the equipment capacity May be set as the movement cycle. Also, the number of movements
It is preferable that the period be at least two times, that is, two periods or more. If the number of times is less than two, the reduction of the slag 6 is insufficient, and the slag 6 may cause the reoxidation of the molten steel 5 even thereafter.

【0027】又、取鍋3内の湯面位置を上下に移動させ
ると溶鋼5とスラグ6とが反応して、溶鋼5中のAl濃
度が減少する。溶鋼5中のAl濃度が0.01wt%以
下になるとスラグ6の還元速度が遅くなるので、溶鋼5
からサンプルを定期的に採取して溶鋼5中のAl濃度を
分析し、Al濃度が0.01wt%以下となる場合に
は、溶鋼5のAl濃度が0.01wt%以上となるよう
に、金属Alを原料投入口17から追加投入することが
好ましい。
When the position of the molten metal in the ladle 3 is moved up and down, the molten steel 5 reacts with the slag 6, and the Al concentration in the molten steel 5 decreases. When the Al concentration in the molten steel 5 is 0.01 wt% or less, the reduction rate of the slag 6 is reduced.
Is periodically collected and the Al concentration in the molten steel 5 is analyzed. When the Al concentration is 0.01 wt% or less, the metal is adjusted so that the Al concentration of the molten steel 5 becomes 0.01 wt% or more. It is preferable that Al is additionally introduced from the material inlet 17.

【0028】そして、溶鋼5の成分調整等を行った後、
真空槽10内を大気圧に戻して脱ガス処理を終了し、昇
降機20を下降して取鍋3を次工程の連続鋳造設備等の
鋳造設備に搬出し、溶鋼5を鋳造する。
After adjusting the composition of the molten steel 5, etc.,
The inside of the vacuum chamber 10 is returned to the atmospheric pressure to end the degassing process, the elevator 20 is lowered, the ladle 3 is carried out to a casting facility such as a continuous casting facility in the next step, and the molten steel 5 is cast.

【0029】このようにして溶鋼5上のスラグ6を改質
することで、スラグ6を十分に還元することができ、そ
の結果、スラグ6による溶鋼5の再酸化を防止して介在
物の少ない清浄鋼を安定して製造することができる。
By modifying the slag 6 on the molten steel 5 in this way, the slag 6 can be sufficiently reduced, and as a result, the reoxidation of the molten steel 5 by the slag 6 is prevented, and the amount of inclusions is reduced. Clean steel can be manufactured stably.

【0030】尚、上記説明では、上吹き型の転炉2で説
明したが、転炉2は上吹き型に限るものではなく、底吹
き型転炉や上底吹き型転炉であっても、上記に従って本
発明を適用することができる。又、転炉2からの出鋼後
RH真空脱ガス装置4での処理開始までに、スラグ改質
剤7を1回添加する方法で説明したが、1回に限るもの
ではなく、2回以上添加しても良い。
In the above description, the converter 2 of the top-blowing type has been described. However, the converter 2 is not limited to the top-blowing type. The present invention can be applied according to the above. In addition, the method has been described in which the slag modifier 7 is added once after the tapping from the converter 2 and before the processing in the RH vacuum degassing device 4 is started. It may be added.

【0031】[0031]

【実施例】本発明を適用した18ヒートの極低炭素鋼の
実施例を説明する。予備処理にて脱硫及び脱燐された溶
銑を上底吹き型転炉に装入し、生石灰をフラックスとし
て添加して脱炭精錬し、0.04%〜0.05%の炭素
濃度の250トンの溶鋼を取鍋に出鋼した。スラグ改質
剤として金属Alを用い、出鋼後、取鍋内に金属Alを
350kg添加した。取鍋内のスラグ量は、1.5〜
2.0トンであった。スラグ改質剤の添加後、スラグか
ら試料を採取してスラグ中のT.[Fe]濃度を分析し
た。そして、未脱酸のままRH真空脱ガス装置に取鍋を
搬送した。
EXAMPLE An example of an ultra-low carbon steel of 18 heat to which the present invention is applied will be described. The hot metal that has been desulfurized and dephosphorized in the pretreatment is charged into a top-bottom blow-type converter, and calcined and refined by adding quicklime as a flux, and 250 tons with a carbon concentration of 0.04% to 0.05%. Was poured into a ladle. Using metal Al as a slag modifier, after tapping, 350 kg of metal Al was added to the ladle. The amount of slag in the ladle is 1.5 ~
2.0 tons. After the addition of the slag modifier, a sample was taken from the slag and T.C. [Fe] concentration was analyzed. Then, the ladle was transported to the RH vacuum degassing apparatus without being deoxidized.

【0032】そして、RH真空脱ガス装置では、上吹き
ランスから酸素を吹き込み、溶鋼の炭素濃度を50pp
m以下にまで脱炭した。脱炭終了後、取鍋内のスラグか
らT.[Fe]濃度の分析用試料を採取し、スラグ中の
T.[Fe]濃度を分析した。次いで、酸素メーターに
て溶解酸素濃度を測定し、溶解酸素濃度に基づいて算出
した所定量の金属Alを溶鋼に添加して脱酸した。実施
例1〜実施例9では、脱酸後スラグ改質剤として100
kgの金属Alをスラグ上に添加した。尚、実施例10
〜実施例18は、脱酸後にはスラグ改質剤を添加してい
ない。
In the RH vacuum degassing apparatus, oxygen is blown from the upper blowing lance to reduce the carbon concentration of the molten steel to 50 pp.
m or less. After the decarburization, the slag in the ladle is used for T. A sample for analysis having a [Fe] concentration was collected, and T.C. [Fe] concentration was analyzed. Next, the dissolved oxygen concentration was measured with an oxygen meter, and a predetermined amount of metal Al calculated based on the dissolved oxygen concentration was added to the molten steel to be deoxidized. In Examples 1 to 9, 100 was used as the slag modifier after deoxidation.
kg of metal Al was added on the slag. Example 10
Example 18 does not add a slag modifier after deoxidation.

【0033】そして、溶鋼の脱酸後、昇降機にて取鍋を
1分周期で上下移動させてスラグを還元した。この上下
移動の時間を2分間から8分間まで変化させ、その影響
も調査した。そして、溶鋼成分を調整した後、取鍋内の
スラグからT.[Fe]濃度の分析用試料を採取して脱
ガス処理を終え、次いで、スラブ連続鋳造機に溶鋼を搬
送して厚み220mm、幅950mmの鋳片に鋳造し、
鋳造した鋳片を熱間圧延及び冷間圧延して薄鋼板を製造
し、薄鋼板において介在物による表面欠陥を調査し、鋳
片の清浄性を調査した。表面欠陥の調査結果は、指数化
して表わし、表面疵が発生しないものを指数=0とし、
疵の発生量に応じて指数を増加させ、その合格水準を経
験から指数=2とした。表1に、18ヒートの実施例の
操業条件及び操業結果を示す。
After the deoxidation of the molten steel, the slag was reduced by moving the ladle up and down in one-minute cycles using an elevator. The time of this vertical movement was changed from 2 minutes to 8 minutes, and the effect was also investigated. Then, after adjusting the molten steel component, the slag in the ladle is subjected to T.P. A sample for analysis of [Fe] concentration was collected to complete the degassing process, and then the molten steel was transported to a continuous slab casting machine and cast into a slab having a thickness of 220 mm and a width of 950 mm.
The cast slab was hot-rolled and cold-rolled to produce a thin steel sheet, surface defects due to inclusions in the thin steel sheet were investigated, and cleanliness of the slab was investigated. Investigation results of surface defects are expressed as an index, and those without surface flaws are set to index = 0,
The index was increased according to the amount of flaws, and the acceptable level was set to index = 2 from experience. Table 1 shows the operation conditions and operation results of the example of 18 heats.

【0034】[0034]

【表1】 [Table 1]

【0035】又、比較のために、RH真空脱ガス装置で
の脱酸後に湯面の上下移動を行わない極低炭素鋼の操業
を10ヒート実施した。その内の5ヒート(比較例1〜
5)では、スラグ改質剤を出鋼後と脱酸後との2回添加
し、又、他の5ヒート(従来例1〜5)では、スラグ改
質剤を脱酸後のみ添加した。比較例及び従来例でも、実
施例に準じてスラグのT.[Fe]濃度と薄鋼板での表
面欠陥とを調査した。表1に、比較例及び従来例での操
業条件及び操業結果を示す。
For comparison, the operation of ultra-low carbon steel which did not move up and down the molten metal surface after deoxidation in the RH vacuum degassing apparatus was performed for 10 heats. Five of them (Comparative Examples 1 to 5)
In 5), the slag modifier was added twice after tapping and after deoxidation, and in the other five heats (conventional examples 1 to 5), the slag modifier was added only after deoxidation. Also in the comparative example and the conventional example, the slag T.D. [Fe] concentration and surface defects in a thin steel plate were investigated. Table 1 shows operation conditions and operation results in the comparative example and the conventional example.

【0036】表1に示すように、RH真空脱ガス装置で
の脱炭により、スラグ中のT.[Fe]濃度は一旦上昇
するが、本発明の実施例では、その後の湯面の上下移動
により、スラグ中の鉄酸化物が還元され、低減する。こ
れに対して、比較例及び従来例では、スラグの還元が十
分でなく、従って、その後の鋳造工程でもスラグの還元
反応が継続して発生することを示唆している。図3は、
表1の結果に基づき、脱ガス処理後のスラグ中のT.
[Fe]濃度と製品欠陥指数との関係を図示したもので
あるが、実施例では脱ガス処理後のスラグ中のT.[F
e]濃度を1.5%以下にすることができ、製品欠陥を
安定して抑えることができた。そして、スラグ改質剤を
2回添加した実施例1〜実施例9においても、湯面の上
下移動を5分間以上としたヒートでは、薄鋼板における
表面欠陥は皆無であり、特に清浄性が優れていた。
As shown in Table 1, the decarburization in the RH vacuum degassing apparatus caused T.C. Although the [Fe] concentration increases once, in the embodiment of the present invention, the iron oxide in the slag is reduced and reduced by the subsequent vertical movement of the molten metal surface. On the other hand, in the comparative example and the conventional example, the reduction of the slag is not sufficient, which suggests that the reduction reaction of the slag continues to occur in the subsequent casting process. FIG.
Based on the results in Table 1, T.O.
FIG. 4 shows the relationship between the [Fe] concentration and the product defect index. In the example, the T.F. [F
e] The concentration could be 1.5% or less, and product defects could be stably suppressed. Also, in Examples 1 to 9 in which the slag modifier was added twice, in the heat in which the vertical movement of the molten metal surface was 5 minutes or more, there was no surface defect in the thin steel sheet, and the cleanliness was particularly excellent. I was

【0037】[0037]

【発明の効果】本発明では、未脱酸状態でRH真空脱ガ
ス装置にて真空脱炭処理を施す鋼種において、溶鋼上に
存在するスラグを十分に還元することができるので、ス
ラグによる溶鋼の再酸化が防止され、介在物の極めて少
ない清浄鋼を安定して製造することができる。
According to the present invention, the slag existing on the molten steel can be sufficiently reduced in the steel type subjected to the vacuum decarburization treatment by the RH vacuum degassing apparatus in the undeoxidized state. Reoxidation is prevented, and clean steel with extremely few inclusions can be stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工程を示す概要図である。FIG. 1 is a schematic diagram showing the steps of the present invention.

【図2】本発明を実施したRH真空脱ガス装置の縦断面
概略図である。
FIG. 2 is a schematic longitudinal sectional view of an RH vacuum degassing apparatus embodying the present invention.

【図3】脱ガス処理後のスラグ中のT.[Fe]濃度と
製品欠陥指数との関係を示す図である。
FIG. 3 shows T.G. in slag after degassing. It is a figure which shows the relationship between [Fe] density | concentration and a product defect index.

【図4】介在物性欠陥の発生状況に及ぼすAl脱酸後の
環流用Arガス量の影響を調査した結果を示す図であ
る。
FIG. 4 is a graph showing the results of an investigation on the effect of the amount of reflux Ar gas after Al deoxidation on the occurrence of inclusion defect.

【符号の説明】[Explanation of symbols]

1 高炉 2 転炉 3 取鍋 4 RH真空脱ガス装置 5 溶鋼 6 スラグ 7 スラグ改質剤 8 上吹き酸素ランス 9 ホッパー 10 真空槽 11 上部槽 12 下部槽 13 上昇側浸漬管 14 下降側浸漬管 15 Arガス吹き込み管 16 上吹きランス 17 原料投入口 18 ダクト 19 ホッパー 20 昇降機 DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Converter 3 Ladle 4 RH vacuum degassing device 5 Molten steel 6 Slag 7 Slag modifier 8 Top blown oxygen lance 9 Hopper 10 Vacuum tank 11 Upper tank 12 Lower tank 13 Upside dipping pipe 14 Downside dipping pipe 15 Ar gas injection pipe 16 Top blowing lance 17 Raw material input port 18 Duct 19 Hopper 20 Elevator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 敬二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉山 晋一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松野 英寿 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村井 剛 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小澤 宏一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 寺岡 卓治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小平 悟史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 納 雅夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K013 AA07 BA14 CA02 CA04 CB02 CE01 CF13 DA01 DA08 EA19 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Keiji Yoshioka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Shinichi Sugiyama 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Hidetoshi Matsuno 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Inventor Tsuyoshi Murai 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Co., Ltd. (72) Inventor Koichi Ozawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Takuji Teraoka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Satoshi Kodaira 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Masao Nori Chiyoda-ku, Tokyo Chome No. 1 No. 2 Date. This steel pipe Co., Ltd. in the F-term of the (reference) 4K013 AA07 BA14 CA02 CA04 CB02 CE01 CF13 DA01 DA08 EA19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 転炉精錬により得た溶鋼を転炉から取鍋
に出鋼し、出鋼した未脱酸状態の溶鋼上で浮遊するスラ
グにスラグ改質剤を添加してスラグ中の鉄酸化物を還元
し、次いで、RH真空脱ガス装置にて、未脱酸状態の溶
鋼を脱炭し、脱炭後、溶鋼にAlを添加して脱酸し、脱
酸後、取鍋内溶鋼の湯面位置を上下に移動させてスラグ
中の鉄酸化物を還元することを特徴とする高清浄鋼の製
造方法。
1. The molten steel obtained by the converter refining is tapped from a converter into a ladle, and a slag modifier is added to the slag floating on the undeoxidized molten steel that has been tapped to add iron in the slag. The oxide is reduced, and then the undeoxidized molten steel is decarburized by an RH vacuum degassing device. After decarburization, Al is added to the molten steel to deoxidize it. A method for producing high-purity steel, characterized by reducing the iron oxide in slag by moving the molten metal surface up and down.
【請求項2】 転炉精錬により得た溶鋼を転炉から取鍋
に出鋼し、出鋼した未脱酸状態の溶鋼上で浮遊するスラ
グにスラグ改質剤を添加してスラグ中の鉄酸化物を還元
し、次いで、RH真空脱ガス装置にて、未脱酸状態の溶
鋼を脱炭し、脱炭後、溶鋼にAlを添加して行う脱酸
と、取鍋内溶鋼上のスラグにスラグ改質剤を添加して行
うスラグ改質とを、同時又は相前後して行い、その後、
取鍋内溶鋼の湯面位置を上下に移動させてスラグ中の鉄
酸化物を還元することを特徴とする高清浄鋼の製造方
法。
2. The molten steel obtained by the converter refining is tapped from a converter into a ladle, and a slag modifier is added to the slag floating on the tapped undeoxidized molten steel to add iron in the slag. The oxide is reduced, and then the undeoxidized molten steel is decarburized by an RH vacuum degassing apparatus. After decarburization, Al is added to the molten steel to perform deoxidation and slag on the molten steel in the ladle. Slag reforming by adding a slag modifying agent to, simultaneously or before and after, then,
A method for producing high-purity steel, characterized by reducing the iron oxide in slag by moving the molten steel surface in a ladle up and down.
【請求項3】 前記湯面位置の上下への移動を5分間以
上継続することを特徴とする請求項1又は請求項2に記
載の高清浄鋼の製造方法。
3. The method for producing high-cleanliness steel according to claim 1, wherein the vertical movement of the surface level is continued for 5 minutes or more.
【請求項4】 前記脱酸後の環流用Arガス流量を、処
理溶鋼量1トン当たり16Nl/min以下とすること
を特徴とする請求項1乃至請求項3の何れか1つに記載
の高清浄鋼の製造方法。
4. The method according to claim 1, wherein the flow rate of the Ar gas for reflux after the deoxidation is set to 16 Nl / min or less per 1 ton of treated molten steel. Manufacturing method of clean steel.
JP10318709A 1998-11-10 1998-11-10 Production of highly cleaned steel Pending JP2000144232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10318709A JP2000144232A (en) 1998-11-10 1998-11-10 Production of highly cleaned steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10318709A JP2000144232A (en) 1998-11-10 1998-11-10 Production of highly cleaned steel

Publications (1)

Publication Number Publication Date
JP2000144232A true JP2000144232A (en) 2000-05-26

Family

ID=18102119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10318709A Pending JP2000144232A (en) 1998-11-10 1998-11-10 Production of highly cleaned steel

Country Status (1)

Country Link
JP (1) JP2000144232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957199A (en) * 2021-10-20 2022-01-21 山东钢铁集团日照有限公司 Ultra-low carbon IF steel molten steel peroxidation treatment method
CN115558742A (en) * 2022-09-26 2023-01-03 首钢集团有限公司 Deoxidation method after vacuum decarburization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957199A (en) * 2021-10-20 2022-01-21 山东钢铁集团日照有限公司 Ultra-low carbon IF steel molten steel peroxidation treatment method
CN115558742A (en) * 2022-09-26 2023-01-03 首钢集团有限公司 Deoxidation method after vacuum decarburization
CN115558742B (en) * 2022-09-26 2023-10-13 首钢集团有限公司 Deoxidizing method after vacuum decarburization

Similar Documents

Publication Publication Date Title
JP3885387B2 (en) Method for producing ultra-low sulfur steel with excellent cleanability
JP5601132B2 (en) Melting method of low carbon aluminum killed steel with excellent cleanability
JP5217478B2 (en) Method of melting ultra-low carbon steel
JP3915386B2 (en) Manufacturing method of clean steel
JP2018100427A (en) Method for producing low sulfur steel
JP5200380B2 (en) Desulfurization method for molten steel
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
KR101258785B1 (en) Manufacturing method of duplex stainless steel
JP2000144232A (en) Production of highly cleaned steel
JP3777630B2 (en) Method for heat refining of molten steel
JP3719056B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP3891013B2 (en) Method of refining molten steel with RH degassing equipment
JP4352898B2 (en) Method of melting high cleanliness steel
JP4042225B2 (en) Manufacturing method of high clean steel
JPH1192821A (en) Production of clean steel in rh degassing apparatus
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP2880842B2 (en) How to make clean steel
JP2000087131A (en) Method for melting extra-low carbon steel
JP2009114491A (en) Method for refining molten steel by rh-vacuum degassing apparatus
JP3747653B2 (en) Method for producing clean steel in RH vacuum degassing apparatus
JP2001152238A (en) Method of melting high cleanliness low carbon steel
JP4020125B2 (en) Method of melting high cleanliness steel
JP2002161309A (en) Production process for steel with superior cleanliness
JP2009173994A (en) Method for producing al-less extra-low carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108