JP2000144217A - Production of copper powder having narrow particle size distribution - Google Patents

Production of copper powder having narrow particle size distribution

Info

Publication number
JP2000144217A
JP2000144217A JP10323866A JP32386698A JP2000144217A JP 2000144217 A JP2000144217 A JP 2000144217A JP 10323866 A JP10323866 A JP 10323866A JP 32386698 A JP32386698 A JP 32386698A JP 2000144217 A JP2000144217 A JP 2000144217A
Authority
JP
Japan
Prior art keywords
copper
particle size
copper powder
size distribution
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10323866A
Other languages
Japanese (ja)
Other versions
JP3640552B2 (en
Inventor
Kazuji Sano
和司 佐野
Yoshihiro Okada
美洋 岡田
Hiromasa Miyoshi
宏昌 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP32386698A priority Critical patent/JP3640552B2/en
Publication of JP2000144217A publication Critical patent/JP2000144217A/en
Application granted granted Critical
Publication of JP3640552B2 publication Critical patent/JP3640552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To produce metal copper powder having different particle diameter corresponding to the application while narrowing the particle size distribution. SOLUTION: This producing method for the copper power comprises adding a reducing agent to a suspension, which is prepared by allowing a copper salt aq. solution to react with an alkali agent to deposit copper hydroxide, to intermediately reduce to cuprous oxide, blowing an oxygen-containing gas into the suspension of the cuprous oxide to oxidize and finally reducing to metal copper with a reducing agent in water. In such a case, the particle diameter of the copper power is controlled by adjusting the quantity and time for blowing the oxygen-containing gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,湿式法による銅粉
製造法に係り,特に,粒径の揃った銅粉を,意図する粒
径のものに自在に制御して製造する銅粉製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing copper powder by a wet method, and more particularly to a method for producing copper powder by controlling copper powder having a uniform particle size to an intended particle size. About.

【0002】[0002]

【従来の技術】従来より,絶縁基板上に導電ペーストを
スクリーン印刷して厚膜回路基板を作製する場合,該導
電ペーストとしては銀系ペーストが主に使用されてきた
が,銅ペーストも使用される傾向にある。銅ペーストは
銀系ペーストに比べて次のような利点があるからであ
る。
2. Description of the Related Art Conventionally, when a thick film circuit board is manufactured by screen-printing a conductive paste on an insulating substrate, a silver-based paste has been mainly used as the conductive paste, but a copper paste is also used. Tend to be. This is because copper paste has the following advantages over silver-based paste.

【0003】(1) マイグレーションが起き難いのでショ
ートし難い。 (2) 導体抵抗および高周波損失が小さいので回路の微細
化が可能である。 (3) 耐半田性に優れるので信頼性が高い。 (4) 低コスト化が可能である。
(1) It is difficult to cause a short circuit because migration hardly occurs. (2) Since the conductor resistance and high-frequency loss are small, the circuit can be miniaturized. (3) High reliability due to excellent solder resistance. (4) Cost reduction is possible.

【0004】このような利点をもつ銅ペーストは,粒径
が0.5〜10μm程度の銅粉をビヒクルに分散させる
ことによって得られる。
A copper paste having such advantages can be obtained by dispersing a copper powder having a particle size of about 0.5 to 10 μm in a vehicle.

【0005】銅粉の製造法としては,機械的粉砕法,溶
融銅を噴霧するアトマイズ法,陰極への電解析出法,蒸
発蒸着法,湿式還元法等が知られている。これらはそれ
ぞれ得失があるが,湿式還元法はペースト用に適する粒
径の微細粉を比較的容易に得ることができるので,導電
ペースト用銅粉を製造する場合の主流となっており,例
えば特開平4−116109号公報,特開平2−197
012号公報および特開昭62−99406号公報には
湿式還元法による銅粉の製造法が記載されている。
As a method for producing copper powder, a mechanical pulverizing method, an atomizing method of spraying molten copper, an electrolytic deposition method on a cathode, an evaporation method, a wet reduction method, and the like are known. Although each of these has its advantages and disadvantages, the wet reduction method is the mainstream in the production of copper powder for conductive paste, since fine powder having a particle size suitable for paste can be obtained relatively easily. JP-A-4-116109, JP-A-2-197
No. 012 and Japanese Unexamined Patent Publication No. 62-99406 describe a method for producing copper powder by a wet reduction method.

【0006】[0006]

【発明が解決しようとする課題】従来の湿式還元法で
は,得られる銅粉の粒径は一義的に決まることが多い。
ところが,銅粉は一般にその平均粒径によってその用途
が異なるので,用途に応じた粒径のものを自由に製造で
きることが望まれる。また,従来の湿式還元法では,粒
径が大きくなると,その粒度の分布も大きくなるのが一
般であり,所定の平均粒径をもつ粒度の銅粉を得ても,
粒度分布が大きいために,必要とする特性が出ない場合
があった。
In the conventional wet reduction method, the particle size of the obtained copper powder is often determined uniquely.
However, the use of copper powder generally depends on its average particle size, and it is therefore desired that copper powder having a particle size suitable for the use can be freely manufactured. In addition, in the conventional wet reduction method, as the particle size increases, the particle size distribution generally increases, and even if a copper powder having a predetermined average particle size is obtained,
In some cases, the required characteristics were not obtained due to the large particle size distribution.

【0007】このように,従来の湿式還元法では粒径が
分布し,形状も一定せず,またその粒径を正確にコント
ロールすることは困難であり,粒径分布,形状および粒
径の制御は経験に頼らざるを得なかった。したがって,
磁気シールド用銅粉,導電ペーストや導電フイラー用銅
粉など,用途に応じて要求される性状を満足するように
銅粉を製造することは必ずしも容易ではなかった。
As described above, in the conventional wet reduction method, the particle size is distributed, the shape is not constant, and it is difficult to accurately control the particle size. Had to rely on experience. Therefore,
It has not always been easy to produce copper powder to satisfy the properties required according to the application, such as copper powder for magnetic shielding, copper powder for conductive paste and conductive filler.

【0008】本発明の課題は,このような問題を解決
し,大きさが任意の粒径の揃った(粒度分布の幅が狭
い)銅粉を湿式還元法で得ることにある。
[0008] An object of the present invention is to solve such a problem and to obtain copper powder having a uniform particle size (narrow particle size distribution) by a wet reduction method.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決すべく
本発明者らは鋭意研究を重ねたところ,従来の湿式還元
法における還元過程で,適正に酸化工程を導入すると,
この酸化工程の条件設定によって,粒径,形状,粒度分
布を自在に調整できることを知見した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, when a proper oxidation step is introduced in the reduction process in the conventional wet reduction method,
It has been found that the particle size, shape, and particle size distribution can be freely adjusted by setting the conditions of this oxidation step.

【0010】本発明はこの知見に基づくものであり,銅
塩水溶液とアルカリ剤を反応させて水酸化銅を析出させ
た懸濁液に還元剤を添加して亜酸化銅にまで中間還元
し,該亜酸化銅の懸濁液に酸素含有ガスを吹き込んで酸
化処理し,次いで還元剤で金属銅にまで水中で最終還元
する銅粉の製造法であって,前記酸素含有ガスの吹き込
み量と時間を調整することにより銅粉の粒径を制御する
ことを特徴とする度分布の小さい銅粉の製造法を提供す
る。
The present invention is based on this finding. A reducing agent is added to a suspension in which an aqueous copper salt solution is reacted with an alkali agent to precipitate copper hydroxide, and the suspension is intermediately reduced to cuprous oxide. A method for producing copper powder in which an oxygen-containing gas is blown into a suspension of the cuprous oxide to oxidize the same, and then finally reduced to metallic copper in water with a reducing agent. And a method for producing a copper powder having a small degree distribution, characterized in that the particle size of the copper powder is controlled by adjusting the particle size of the copper powder.

【0011】ここで,酸素含有ガスは空気を使用するこ
とができ,また銅塩水溶液は硫酸銅水溶液を,アルカリ
剤はNaOH水溶液を使用することができる。
Here, air can be used as the oxygen-containing gas, copper sulfate aqueous solution can be used for the copper salt aqueous solution, and NaOH aqueous solution can be used for the alkaline agent.

【0012】[0012]

【発明の実施の形態】湿式還元法による銅粉の一般的な
製造法は,銅塩水溶液とアルカリ剤を反応させて水酸化
銅を析出させる工程,得られた水酸化銅を亜酸化銅にま
で水中で中間還元する工程,得られた亜酸化銅を金属銅
に水中で最終還元する工程からなり,得られた金属銅は
液から分離したあと,耐酸化性付与のための表面処理を
施し或いは施すことなく,乾燥することによって微細銅
粉を得るものである。本発明においては,このような湿
式還元法の還元途中で酸化処理を挿入する点に特徴があ
る。すなわち,亜酸化銅までの還元が完了した段階で,
酸素含有ガス吹き込みによる酸化処理を行い,この酸化
処理後に最終還元を行うのであり,この酸化処理以外の
前後の工程は従来法と同様であってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A general method for producing copper powder by a wet reduction method is a step of reacting a copper salt aqueous solution with an alkali agent to precipitate copper hydroxide, and converting the obtained copper hydroxide into cuprous oxide. Intermediate reduction in water, and final reduction of the resulting cuprous oxide to metallic copper in water. The resulting metallic copper is separated from the solution and subjected to a surface treatment to impart oxidation resistance. Alternatively, fine copper powder is obtained by drying without applying. The present invention is characterized in that an oxidation treatment is inserted during the reduction in such a wet reduction method. That is, when the reduction to cuprous oxide is completed,
The oxidation treatment is performed by blowing an oxygen-containing gas, and the final reduction is performed after the oxidation treatment. The steps before and after the oxidation treatment may be the same as those in the conventional method.

【0013】本発明者らは,この酸化処理を挿入する
と,最終還元後の銅粉の粒径分布が小さくなることを見
い出し,また酸化処理の程度を調節することによりその
平均粒径を自在に変化させることができることを見い出
した。このような酸化処理が,従来の湿式還元法で採用
されたとする報告はない。
The present inventors have found that when this oxidation treatment is inserted, the particle size distribution of the copper powder after the final reduction is reduced, and the average particle size can be freely adjusted by adjusting the degree of the oxidation treatment. I found that it can be changed. There is no report that such an oxidation treatment was employed in the conventional wet reduction method.

【0014】亜酸化銅の懸濁液に吹き込む酸素含有ガス
の量を多くすると最終還元されたときの銅粉の粒径は大
きくなる。酸素含有ガスの吹き込み量は流量と吹き込み
時間で決まるが,この流量と吹き込み時間を調節するこ
とにより,銅粉の粒径制御を正確に行えることがわかっ
た。また,この酸化処理を行うと,行わない場合に比べ
て,粒度分布の幅が狭くなって粒径の揃った粒子が得ら
れ,しかも,その形状も,球状のものを得る場合には,
殆んどが球状になることがわかった。このような成果を
得るに必要な酸素含有ガスの吹き込み量は,液中の銅1
モルに対して酸素量が少なくとも0.1モル以上となる
ように流量と吹き込み時間を調節するのがよい。吹き込
み量の上限については特に規制しないが,あまり吹き込
み量が多くなっても効果が飽和するので,吹き込みの仕
方にもよるが,液中の銅1モルに対して酸素量が20モ
ル以下,場合によっては10モル以下であってもよい。
吹き込む酸素含有ガスとしては空気の使用が最も便利で
あり,特別のことがない限り,常温の空気を常温の懸濁
液に吹き込めばよい。もちろん酸素富化空気や純酸素ガ
スも使用できる。
When the amount of the oxygen-containing gas blown into the suspension of cuprous oxide is increased, the particle size of the copper powder when finally reduced is increased. The amount of oxygen-containing gas to be blown is determined by the flow rate and the blowing time, but it was found that the particle size of the copper powder can be controlled accurately by adjusting the flow rate and the blowing time. In addition, when this oxidation treatment is performed, compared with the case where the oxidation treatment is not performed, the width of the particle size distribution is narrowed and particles having a uniform particle size can be obtained.
It turned out that most became spherical. The amount of oxygen-containing gas blown necessary to achieve such a result depends on the amount of copper 1 in the liquid.
The flow rate and the blowing time are preferably adjusted so that the amount of oxygen is at least 0.1 mol or more per mol. The upper limit of the blowing amount is not particularly limited. However, the effect is saturated even if the blowing amount is too large. Depending on the case, it may be 10 mol or less.
As the oxygen-containing gas to be blown, the use of air is most convenient. Unless otherwise specified, air at room temperature may be blown into the suspension at room temperature. Of course, oxygen-enriched air or pure oxygen gas can also be used.

【0015】この酸化処理は,亜酸化銅にまで還元され
た還元途中の段階で行うことが望ましく,銅塩水溶液と
アルカリ剤を反応させて水酸化銅を析出させた段階で酸
化処理を行っても,最終銅粉の粒度分布や粒径の制御性
はそれほどよくはなく,かえって酸化処理が無駄な工程
となってしまうことにもなりかねない。
This oxidation treatment is desirably carried out in the course of reduction during the reduction to cuprous oxide. The oxidation treatment is carried out at the stage in which a copper salt aqueous solution is reacted with an alkali agent to precipitate copper hydroxide. However, the controllability of the particle size distribution and particle size of the final copper powder is not so good, and the oxidation treatment may be a useless process.

【0016】本発明法において,亜酸化銅にまで還元さ
れた段階で酸化処理を行うこと以外は,従来の湿式還元
法と同様の処理を行うことができる。すなわち,まず銅
塩水溶液とアルカリ剤を反応させて水酸化銅を析出させ
る工程では,銅塩水溶液としては硫酸銅水溶液を,また
アルカリ剤としてはNaOH水溶液が最も普通に使用で
き,場合によっては,前者は塩化銅,炭酸銅,硝酸銅な
どの水溶液であってもよく,後者についても他に影響を
与えないアルカリ剤であれば使用可能である。水酸化銅
の析出反応は,所定濃度の銅塩水溶液と所定の濃度のア
ルカリ水溶液を別途に作製し,両液を混ぜ合わせて直ち
に強攪拌する方法,或いは銅塩水溶液にアルカリ水溶液
を攪拌下に添加し続けるという方法で進行させるのがよ
い。これにより粒状の水酸化銅が析出した懸濁液が得ら
れる。
In the method of the present invention, the same treatment as in the conventional wet reduction method can be performed except that the oxidation treatment is performed at the stage of reducing to cuprous oxide. That is, in the step of first reacting an aqueous copper salt solution with an alkaline agent to precipitate copper hydroxide, an aqueous copper sulfate solution can be used as the aqueous copper salt solution, and an aqueous NaOH solution can be most commonly used as the alkaline agent. The former may be an aqueous solution of copper chloride, copper carbonate, copper nitrate or the like, and the latter can be used as long as it is an alkali agent that does not affect the other. For the precipitation reaction of copper hydroxide, a method of separately preparing an aqueous solution of a copper salt having a predetermined concentration and an aqueous solution of an alkali having a predetermined concentration, mixing the two solutions and immediately stirring vigorously, or stirring the aqueous alkali solution in the aqueous copper salt solution with stirring It is preferable to proceed by a method of continuously adding. As a result, a suspension in which granular copper hydroxide is precipitated is obtained.

【0017】ついで,得られた水酸化銅懸濁液に対し
て,還元剤を添加して水酸化銅を亜酸化銅に還元(中間
還元)するが,この還元剤にはグリコース(ブドウ糖)
が使用できる。この中間還元工程は不活性ガス雰囲気下
で昇温しながら行うのがよい。そして,この中間還元処
理を終えたあと,雰囲気ガスを酸素含有ガスに代え,こ
の酸素含有ガスを液中にバブリングするという前記の酸
化処理を行う。この中間還元後に酸化処理を行うことに
より,液のpHは5〜9となる。次いで,この懸濁液を
不活性ガス雰囲気下でデカンテーションし,その上澄液
を除去することにより,沈殿を採取する。
Next, a reducing agent is added to the obtained copper hydroxide suspension to reduce the copper hydroxide to cuprous oxide (intermediate reduction). The reducing agent includes glucose (glucose).
Can be used. This intermediate reduction step is preferably performed while raising the temperature in an inert gas atmosphere. After the completion of the intermediate reduction treatment, the above-mentioned oxidation treatment of replacing the atmosphere gas with the oxygen-containing gas and bubbling the oxygen-containing gas into the liquid is performed. By performing the oxidation treatment after the intermediate reduction, the pH of the solution becomes 5 to 9. Next, the suspension is decanted under an inert gas atmosphere, and the supernatant is removed to collect a precipitate.

【0018】この沈殿を新たな水中に懸濁させ,還元剤
として抱水ヒドラジンを用いて金属銅にまで最終還元す
る。こうして得られた液中の金属銅を液から分離し,こ
れを耐酸化性付与のための表面処理を施し,或いは施す
ことなく,乾燥することにより,金属銅粉を得ることが
できる。
The precipitate is suspended in fresh water and finally reduced to metallic copper using hydrazine hydrate as a reducing agent. The metallic copper in the liquid thus obtained is separated from the liquid, and is subjected to a surface treatment for imparting oxidation resistance or dried without being subjected to the treatment, whereby a metallic copper powder can be obtained.

【0019】このようにして本発明は,水酸化銅から金
属銅粉に還元する通常の湿式還元法において,その還元
途中で酸化処理工程を導入することにより,粒径の揃っ
た金属銅粉を得ることに成功したもので,しかも,その
粒径の大きさも任意に調整できるので,用途に適した性
質の銅粉を効率よく製造できるようになり,金属銅粉の
価値を大いに高めることができる。
As described above, according to the present invention, in an ordinary wet reduction method for reducing copper hydroxide to copper metal powder, an oxidation treatment step is introduced during the reduction, whereby metal copper powder having a uniform particle size is obtained. Since it is successfully obtained, and the size of the particle size can be adjusted arbitrarily, it becomes possible to efficiently produce copper powder having properties suitable for the intended use, thereby greatly increasing the value of metallic copper powder. .

【0020】[0020]

【実施例】〔実施例1〕次の硫酸銅水溶液Aとアルカリ
水溶液Bを準備した。 硫酸銅水溶液A: 〔CuSO4・5H2O:0.6925Kg〕+〔純水:
2.20Kg〕 アルカリ水溶液B: 〔濃度48.3%のNaOH水溶液:0.578Kg〕+
〔純水:4.12Kg〕
EXAMPLES Example 1 The following aqueous copper sulfate solution A and aqueous alkali solution B were prepared. Copper sulfate aqueous solution A: [CuSO 4 .5H 2 O: 0.6925 kg] + [pure water:
2.20 Kg] Alkaline aqueous solution B: [48.3% NaOH aqueous solution: 0.578 Kg] +
[Pure water: 4.12 kg]

【0021】温度27℃に保持した該アルカリ水溶液B
に,温度29℃の該硫酸銅水溶液Aを全量添加し強攪拌
する。発熱によりA+Bの液の温度は34℃まで上昇
し,液中に水酸化銅が析出した懸濁液が得られる。この
液のpHは13.74である。A液とB液の混合量比
は,液中の銅に対して苛性ソーダの当量比が1.25で
ある。
The alkaline aqueous solution B maintained at a temperature of 27 ° C.
, The entire amount of the aqueous copper sulfate solution A at a temperature of 29 ° C. is added thereto, and vigorously stirred. The temperature of the liquid A + B rises to 34 ° C. due to heat generation, and a suspension in which copper hydroxide is precipitated in the liquid is obtained. The pH of this solution is 13.74. As for the mixing ratio of the liquid A and the liquid B, the equivalent ratio of caustic soda to copper in the liquid is 1.25.

【0022】得られた水酸化銅懸濁液の全量に対し,純
水1.41Kgに0.9935Kgのブドウ糖を溶かした
ブドウ糖溶液を添加し,添加後30分間で液の温度を7
0℃まで昇温したあと,15分間保持する。ここまでの
処理操作は全て窒素雰囲気下で行う。
To a total amount of the obtained copper hydroxide suspension, a glucose solution obtained by dissolving 0.9935 kg of glucose in 1.41 kg of pure water was added.
After heating to 0 ° C., hold for 15 minutes. All the processing operations so far are performed in a nitrogen atmosphere.

【0023】ついで,この液中に0.7リットル/分の
流量で200分間にわたって空気をバブリングさせる。
これにより,液のpHは6.2となる。
Next, air is bubbled into the liquid at a flow rate of 0.7 liter / min for 200 minutes.
As a result, the pH of the solution becomes 6.2.

【0024】この懸濁液を窒素雰囲気中で2日間静置し
たあと,上澄液(pH6.92)を除去し,沈殿をほぼ
全量採取し,この沈殿物に純水0.7Kgを追加する。
After the suspension is allowed to stand in a nitrogen atmosphere for 2 days, the supernatant (pH 6.92) is removed, almost all of the precipitate is collected, and 0.7 kg of pure water is added to the precipitate. .

【0025】この懸濁液全量に対し,抱水ヒドラジン
0.065Kgを添加する。発熱反応により液の温度は
50℃に昇温し,最終的に80℃まで昇温し,反応が終
了する。反応終了後の懸濁液を固液分離し,銅粉を採取
し,これを120℃の窒素雰囲気中で乾燥して粒状銅粉
を得る。
To this suspension, 0.065 kg of hydrazine hydrate is added. Due to the exothermic reaction, the temperature of the liquid is raised to 50 ° C. and finally to 80 ° C., and the reaction is completed. After the reaction is completed, the suspension is subjected to solid-liquid separation, and copper powder is collected and dried in a nitrogen atmosphere at 120 ° C. to obtain granular copper powder.

【0026】得られた銅粉を電子顕微鏡SEM像で,平
均粒径,粒度分布,形状の調査を行い,その結果を表1
および図1に示した。これらの調査は,該SEM像中に
100〜200個の粒子が入る視野を囲い,この視野内
で見える全粒子について,長径と短径を計測することに
よって行った。すなわち,平均粒径=(ΣX3/粒子個
数)1/3で求めた。ただし,X=(長径+短径)/2であ
る。また,粒度分布は(長径+短径)/2の値を横軸に
とり,その頻度数を縦軸にして粒度分布を図面上にプロ
ットして統計処理した。図1にその結果を示した。粒子
の形状については,長径/短径の値が0.9〜1.0の範
囲に入る粒子数を数え,この範囲に入る粒子数の割合が
90%以上の場合には球形,70〜90%未満の場合に
はほぼ球形,70%未満の場合には非球形とした。
The average particle size, particle size distribution, and shape of the obtained copper powder were examined with an electron microscope SEM image.
And FIG. These investigations were performed by enclosing a field of view in which 100 to 200 particles were included in the SEM image, and measuring the major axis and the minor axis of all particles visible in this field. That is, the average particle size was determined by (ΣX 3 / number of particles) 1/3 . However, X = (major axis + minor axis) / 2. Further, the particle size distribution was statistically processed by plotting the particle size distribution on the drawing with the value of (major axis + minor axis) / 2 as the horizontal axis and the frequency as the vertical axis. FIG. 1 shows the result. Regarding the shape of the particles, the number of particles whose major axis / minor axis value falls within the range of 0.9 to 1.0 is counted. %, It was almost spherical, and when it was less than 70%, it was non-spherical.

【0027】〔実施例2〜3〕空気のバブリング条件を
表1のように各種変化させた以外は,実施例1を繰り返
した。その結果,各例において表1および図2〜3に示
す特性の銅粉が得られた。また,実施例1〜3で得られ
た銅粉の各電子顕微鏡SEM像をそれぞれ図5〜図7に
示した。
[Examples 2 to 3] Example 1 was repeated except that the air bubbling conditions were varied as shown in Table 1. As a result, a copper powder having the characteristics shown in Table 1 and FIGS. FIGS. 5 to 7 show SEM images of each of the copper powders obtained in Examples 1 to 3 under an electron microscope.

【0028】〔対照例〕空気のバブリングを行わなかっ
た以外は,実施例1を繰り返した。その結果,表1およ
び図4に示す特性の銅粉が得られた。その電子顕微鏡S
EM像を図8に示した。
Comparative Example Example 1 was repeated except that no air bubbling was performed. As a result, copper powder having the characteristics shown in Table 1 and FIG. 4 was obtained. The electron microscope S
The EM image is shown in FIG.

【0029】[0029]

【表1】 [Table 1]

【0030】表1および図1〜8の結果から,実施例1
〜3ではいずれも粒径分布が小さい球状の銅粉が得られ
たがことがわかる。また,その平均粒径は空気のバブリ
ング条件を変えると変わることがわかる。すなわち,空
気のバブリング量と時間を調整することにより,粒径分
布の小さい,意図する粒径の球状銅粉を得ることができ
ることが明らかである。これに対して,空気のバブリン
グを行わない対照例では粒度分布が大きくなり,また形
状もばらついている。
From the results shown in Table 1 and FIGS.
It can be seen that spherical copper powders having small particle size distributions were obtained in all of the samples Nos. 1 to 3. In addition, it can be seen that the average particle size changes when the air bubbling condition is changed. That is, it is clear that by adjusting the amount of bubbling of air and the time, spherical copper powder having a small particle size distribution and an intended particle size can be obtained. On the other hand, in the control example in which air bubbling was not performed, the particle size distribution was large and the shape varied.

【0031】[0031]

【発明の効果】以上説明したように,本発明によると,
湿式還元法によって粒度分布の小さな形状が一定の銅粉
を意図する粒度で得ることができる。したがって,用途
に応じた形状と粒径をもつ銅粉の製造が可能となり,銅
粉用途での品質向上に寄与することができる。
As described above, according to the present invention,
By the wet reduction method, it is possible to obtain a copper powder having a small particle size distribution with a desired particle size. Therefore, it is possible to produce copper powder having a shape and a particle size according to the use, and it is possible to contribute to quality improvement in copper powder use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1で得られた銅粉の粒度分布示
した図である。
FIG. 1 is a view showing a particle size distribution of a copper powder obtained in Example 1 of the present invention.

【図2】本発明の実施例2で得られた銅粉の粒度分布示
した図である。
FIG. 2 is a view showing a particle size distribution of a copper powder obtained in Example 2 of the present invention.

【図3】本発明の実施例3で得られた銅粉の粒度分布示
した図である。
FIG. 3 is a diagram showing a particle size distribution of a copper powder obtained in Example 3 of the present invention.

【図4】本発明の対照例で得られた銅粉の粒度分布示し
た図である。
FIG. 4 is a view showing a particle size distribution of copper powder obtained in a control example of the present invention.

【図5】本発明の実施例1で得られた銅粉の電子顕微鏡
写真像であり,倍率5000倍で見たものである。
FIG. 5 is an electron micrograph image of the copper powder obtained in Example 1 of the present invention, viewed at a magnification of 5,000.

【図6】本発明の実施例2で得られた銅粉の電子顕微鏡
写真像であり,倍率5000倍で見たものである。
FIG. 6 is an electron micrograph image of the copper powder obtained in Example 2 of the present invention, viewed at a magnification of 5,000.

【図7】本発明の実施例3で得られた銅粉の電子顕微鏡
写真像であり,倍率5000倍で見たものである。
FIG. 7 is an electron micrograph of the copper powder obtained in Example 3 of the present invention, viewed at a magnification of 5,000.

【図8】本発明の対照例で得られた銅粉の電子顕微鏡写
真像であり,倍率5000倍で見たものである。
FIG. 8 is an electron micrograph image of the copper powder obtained in the control example of the present invention, as viewed at a magnification of 5,000.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三好 宏昌 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4K001 AA09 BA19 DB22 EA03 HA12 JA01 4K017 AA03 BA05 CA01 DA01 DA07 EJ01 EK04 FB01 FB03 FB07 5E343 BB24 BB72 BB78  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiromasa Miyoshi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. (Reference) 4K001 AA09 BA19 DB22 EA03 HA12 JA01 4K017 AA03 BA05 CA01 DA01 DA07 EJ01 EK04 FB01 FB03 FB07 5E343 BB24 BB72 BB78

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅塩水溶液とアルカリ剤を反応させて水
酸化銅を析出させた懸濁液に還元剤を添加して亜酸化銅
にまで中間還元し,該亜酸化銅の懸濁液に酸素含有ガス
を吹き込んで酸化処理し,次いで還元剤で金属銅にまで
水中で最終還元する銅粉の製造法であって,前記酸素含
有ガスの吹き込み量と時間を調整することにより銅粉の
粒径を制御することを特徴とする粒度分布の小さい銅粉
の製造法。
1. A reducing agent is added to a suspension in which copper hydroxide is precipitated by reacting an aqueous solution of copper salt with an alkali agent to intermediately reduce the suspension to cuprous oxide. A method for producing copper powder in which an oxygen-containing gas is blown to oxidize and then reduced to metallic copper with a reducing agent in water in a final step. The amount and time of the oxygen-containing gas blown are adjusted to adjust the particle size of the copper powder. A method for producing copper powder having a small particle size distribution, characterized by controlling the diameter.
【請求項2】 酸素含有ガスは空気である請求項1に記
載の粒度分布の小さい銅粉の製造法。
2. The method for producing copper powder having a small particle size distribution according to claim 1, wherein the oxygen-containing gas is air.
【請求項3】 銅塩水溶液は硫酸銅水溶液であり,アル
カリ剤はNaOH水溶液である請求項1または2に記載
の板状銅粉の製法。
3. The method according to claim 1, wherein the aqueous copper salt solution is an aqueous copper sulfate solution, and the alkaline agent is an aqueous NaOH solution.
JP32386698A 1998-11-13 1998-11-13 Manufacturing method of copper powder with small particle size distribution Expired - Lifetime JP3640552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32386698A JP3640552B2 (en) 1998-11-13 1998-11-13 Manufacturing method of copper powder with small particle size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32386698A JP3640552B2 (en) 1998-11-13 1998-11-13 Manufacturing method of copper powder with small particle size distribution

Publications (2)

Publication Number Publication Date
JP2000144217A true JP2000144217A (en) 2000-05-26
JP3640552B2 JP3640552B2 (en) 2005-04-20

Family

ID=18159477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32386698A Expired - Lifetime JP3640552B2 (en) 1998-11-13 1998-11-13 Manufacturing method of copper powder with small particle size distribution

Country Status (1)

Country Link
JP (1) JP3640552B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222613A (en) * 2000-09-14 2002-08-09 Dowa Mining Co Ltd Copper powder for conductive paste, copper powder particles and the conductive paste
US6881240B2 (en) 2000-09-18 2005-04-19 Dowa Mining Co., Ltd. Copper powder for electrically conductive paste
KR100786544B1 (en) * 2000-09-14 2007-12-21 도와 홀딩스 가부시끼가이샤 Copper powder for electrically conductive paste
US8182574B2 (en) 2003-09-05 2012-05-22 Mitsubishi Materials Corporation Metal fine particles, composition containing the same, and production method for producing metal fine particles
CN102558954A (en) * 2012-03-01 2012-07-11 复旦大学 Preparation method for nano-copper ink applied to printed electronics
JP2013006145A (en) * 2011-06-23 2013-01-10 Central Research Institute Of Electric Power Industry Mist generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222613A (en) * 2000-09-14 2002-08-09 Dowa Mining Co Ltd Copper powder for conductive paste, copper powder particles and the conductive paste
KR100786544B1 (en) * 2000-09-14 2007-12-21 도와 홀딩스 가부시끼가이샤 Copper powder for electrically conductive paste
US6881240B2 (en) 2000-09-18 2005-04-19 Dowa Mining Co., Ltd. Copper powder for electrically conductive paste
US8182574B2 (en) 2003-09-05 2012-05-22 Mitsubishi Materials Corporation Metal fine particles, composition containing the same, and production method for producing metal fine particles
JP2013006145A (en) * 2011-06-23 2013-01-10 Central Research Institute Of Electric Power Industry Mist generator
CN102558954A (en) * 2012-03-01 2012-07-11 复旦大学 Preparation method for nano-copper ink applied to printed electronics

Also Published As

Publication number Publication date
JP3640552B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US6875252B2 (en) Copper powder and process for producing copper powder
US7235119B2 (en) Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
US6620219B1 (en) Metal powder, method for producing the same, and conductive paste
US7534283B2 (en) Method of producing copper powder and copper powder
JP6130209B2 (en) Conductive film
JP3570591B2 (en) Production method of copper powder
JP2010534280A (en) Method for producing copper particle composition
JP3640552B2 (en) Manufacturing method of copper powder with small particle size distribution
US20020117652A1 (en) Silver-dispersed copper powder, process for producing the powder and conductive paste utilizing the powder
JP2900650B2 (en) Method for producing nickel fine powder
CN112264629A (en) Preparation method and application of low-cost high-dispersion silver powder
JP2001240904A (en) Production method for copper powder small in grain size distribution
JP4012961B2 (en) Production method of plate copper powder
JP2017025380A (en) Silver-coated copper powder and method for producing the same
JP4352121B2 (en) Copper powder manufacturing method
JP3918036B2 (en) Copper powder manufacturing method
TW201338893A (en) Silver powder
JP3343283B2 (en) Silver-palladium coprecipitated powder and method for producing the same
JP4660784B2 (en) Conductive paste
JP2007204795A (en) Method of manufacturing fine silver powder
JPH0610014A (en) Production of copper fine powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
KR102460219B1 (en) Manufacturing method of metal powder
JP2001043734A (en) Nickel powder and manufacture thereof
JP2019142726A (en) Method of producing copper fine particle, method of producing cuprous oxide fine particle, and method of producing copper oxide fine particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term