JPH0610014A - Production of copper fine powder - Google Patents

Production of copper fine powder

Info

Publication number
JPH0610014A
JPH0610014A JP4190274A JP19027492A JPH0610014A JP H0610014 A JPH0610014 A JP H0610014A JP 4190274 A JP4190274 A JP 4190274A JP 19027492 A JP19027492 A JP 19027492A JP H0610014 A JPH0610014 A JP H0610014A
Authority
JP
Japan
Prior art keywords
copper
particle size
hydrazine
powder
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4190274A
Other languages
Japanese (ja)
Other versions
JP3444608B2 (en
Inventor
Hironori Tateiwa
宏則 立岩
Keiji Suenaga
圭司 末永
Takeshi Osame
武士 納
Akio Ushijima
昭夫 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP19027492A priority Critical patent/JP3444608B2/en
Publication of JPH0610014A publication Critical patent/JPH0610014A/en
Application granted granted Critical
Publication of JP3444608B2 publication Critical patent/JP3444608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain the spherical copper powder having narrow width of grain sizes distribution and prescribed grain sizes by reducing copper compd. by hydrazine in the aq. soln. containing acetic acid. CONSTITUTION:Copper compd. (e.g. copper oxide, copper carbonate, copper acetate, copper sulfate, etc.) is suspended or dissolved in the aq. soln. containing acetic acid. Hydrazine (e.g. hydrazine hydrate, hydrazine sulfate, hydrazine soln. containing compd. anhydride) is added to the aq. soln. containing copper compd. and the copper compd. is reduced. Then, the spherical copper powder which has narrow width of grain sizes distribution for example 2.3mum average grain sizes and 100% of its are in 1-10mum grain sizes range is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿式法による銅微粉末
の製造方法に関し、特に粒度分布幅が狭く、良好な粒径
に制御された球状の銅微粉末を製造する方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine copper powder by a wet method, and more particularly to a method for producing spherical fine copper powder having a narrow particle size distribution width and a controlled good particle size.

【0002】[0002]

【従来の技術およびその問題点】従来、銅微粉末を得る
方法としては、種々の方法が提案されている。本発明に
関連する粒径範囲約10μm以下の平均粒径を持つ銅微
粉を製造する方法としては、溶融銅を霧化させるアトマ
イズ法、陰極上への電解析出法、及び銅を機械的に粉砕
する方法等がある。しかしながら、これらの従来法はい
ずれも平均粒径が通常10μm以上と大きく、製造後に
なんらかの分級操作を加えて初めて10μm以下の微粉
末が得られ、それも粒度分布が広く、しかも粒径制御が
困難であるという問題がある。
2. Description of the Related Art Conventionally, various methods have been proposed as methods for obtaining fine copper powder. The method for producing fine copper powder having an average particle size in the particle size range of about 10 μm or less, which is relevant to the present invention, includes atomizing molten copper, electrolytic deposition on a cathode, and mechanically There are methods such as crushing. However, in all of these conventional methods, the average particle size is as large as 10 μm or more, and fine powder of 10 μm or less can be obtained only after some sort of classification operation after production, which also has a wide particle size distribution and is difficult to control the particle size. There is a problem that is.

【0003】また、不活性ガス中で銅を強制蒸発させる
所謂ガス中蒸発法、プラズマ炎中に銅粗粉を吹き込んで
揮発凝集させるプラズマ炎法、水素富化ガス中でアーク
プラズマにより製造する所謂水素プラズマ法、及び銅イ
オン溶液に水素化ホウ素ナトリウムを加えて銅超微粉末
を還元析出させる方法(特開昭58−224103)等
の従来法は、平均粒径が通常0.1μm以下と小さく、
嵩高で比表面積が大きくて酸化しやすく、しかも設備が
高価で量産性に乏しいという欠点がある。
Further, a so-called gas evaporation method in which copper is forcibly evaporated in an inert gas, a plasma flame method in which copper coarse powder is blown into a plasma flame to volatilize and agglomerate, and a so-called arc plasma in a hydrogen-rich gas is used. Conventional methods such as the hydrogen plasma method and the method of adding sodium borohydride to a copper ion solution to reduce and precipitate ultrafine copper powder (JP-A-58-224103) have a small average particle diameter of usually 0.1 μm or less. ,
It is bulky, has a large specific surface area, is easily oxidized, and has the drawbacks of expensive equipment and poor mass productivity.

【0004】一方、銅イオンをヒドラジンあるいはヒド
ラジン化合物で還元し、金属銅として析出させることは
公知であるが(新実験化学講座8「無機化合物の合成
(1)」東京化学同人発行)、これらのヒドラジン(化
合物)による銅イオンの還元方法によると、微細な銅粉
末も得られるが、粒度分布が広く、形状も不規則であ
り、しかも粒径の制御が困難で一定品質の銅粉末が得ら
れにくいという欠点がある。
On the other hand, although it is known that copper ions are reduced with hydrazine or a hydrazine compound and deposited as metallic copper (New Experimental Chemistry Lecture 8 “Synthesis of Inorganic Compounds (1)”, Tokyo Kagaku Dojin), these According to the method of reducing copper ions with hydrazine (compound), fine copper powder can be obtained, but the particle size distribution is wide, the shape is irregular, and it is difficult to control the particle size, and copper powder of constant quality is obtained. It has the drawback of being difficult.

【0005】その中で、炭酸銅の溶液からヒドラジンに
より還元析出させる方法(特公昭59−12723)で
は、球状の銅粉は得られるが、凝集のため、粒度分布が
広いという欠点がある。また、硫酸銅の溶液に界面活性
剤も添加してヒドラジンで還元析出させ、単分散させた
銅微粉を得る方法がある(特開昭62−77407
他)。しかし、界面活性剤は析出銅粉の成長を阻害する
ため、粒径の大きい銅粉を得るのは困難で、平均粒径2
μm以上の銅粉を得るには界面活性剤の添加量を抑える
必要があり、その結果、ある程度の凝集は避けられず、
粒度分布もかなり広くなるという欠点がある。
Among them, in the method of reducing and precipitating from a solution of copper carbonate with hydrazine (Japanese Patent Publication No. 59-12723), spherical copper powder can be obtained, but it has a drawback that the particle size distribution is wide due to aggregation. There is also a method of adding a surfactant to a solution of copper sulfate and reducing and precipitating with hydrazine to obtain monodispersed copper fine powder (JP-A-62-77407).
other). However, since the surfactant inhibits the growth of the deposited copper powder, it is difficult to obtain copper powder having a large particle size, and the average particle size is 2
In order to obtain copper powder of μm or more, it is necessary to suppress the addition amount of the surfactant, and as a result, a certain amount of aggregation cannot be avoided,
It has the drawback that the particle size distribution is also quite wide.

【0006】本発明は、上記した従来法の問題点を解消
し、約1〜10μmの適度の粒径に容易に制御できると
ともに粒度分布幅が小さく、球状の銅微粉末を製造し得
る方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the conventional method and provides a method for producing spherical copper fine powder which can be easily controlled to an appropriate particle size of about 1 to 10 μm and has a small particle size distribution width. The purpose is to provide.

【0007】[0007]

【問題点を解決するための手段】本発明方法は酢酸を含
む水溶液中で銅化合物をヒドラジンで還元するものであ
り、これにより前記した問題点を解決したものである。
The method of the present invention is to reduce a copper compound with hydrazine in an aqueous solution containing acetic acid, thereby solving the above-mentioned problems.

【0008】本発明における還元反応のプロセスは、明
確には解明されていないが、本発明者らは、酢酸が一種
の界面活性剤的な働きをすると同時に、銅表面に銅錯化
合物が析出、還元することにより、球状で単分散された
銅粉末が得られるものと推測している。なお、銅粉末の
粒径は還元温度、ヒドラジン添加量等を調整し制御する
ことができる。
Although the process of the reduction reaction in the present invention has not been clearly clarified, the present inventors have found that acetic acid acts as a kind of surfactant and at the same time, a copper complex compound is deposited on the copper surface. It is speculated that a spherical and monodispersed copper powder is obtained by the reduction. The particle size of the copper powder can be controlled by adjusting the reduction temperature, the amount of hydrazine added, and the like.

【0009】銅化合物としては、酸化銅、亜酸化銅、炭
酸銅、酢酸銅、硫酸銅、硝酸銅等のいずれをも使用でき
るが、硫酸銅、硝酸銅等、強酸との塩を使用したものは
酸化銅、亜酸化銅、炭酸銅、酢酸銅を使ったものと比べ
て還元時のPHが低くなり、還元反応が遅くなり、粒径
が大きい銅粉となる。また、ヒドラジンとしては、抱水
ヒドラジン、無水ヒドラジン、硫酸ヒドラジン等が挙げ
られ、これらヒドラジンは酢酸を含む水溶液中に通常、
銅粉生成に必要な理論量の1〜3倍当量程度添加する。
反応は通常、40〜90℃の還元温度で、1〜48時間
とする。
As the copper compound, any of copper oxide, cuprous oxide, copper carbonate, copper acetate, copper sulfate, copper nitrate and the like can be used, but a salt with a strong acid such as copper sulfate and copper nitrate is used. In comparison with those using copper oxide, cuprous oxide, copper carbonate, and copper acetate, has a lower PH during reduction, slows down the reduction reaction, and becomes a copper powder with a large particle size. Examples of hydrazine include hydrazine hydrate, anhydrous hydrazine, and hydrazine sulfate.These hydrazines are usually added to an aqueous solution containing acetic acid.
Add about 1 to 3 times the equivalent of the theoretical amount required for copper powder production.
The reaction is usually carried out at a reducing temperature of 40 to 90 ° C. for 1 to 48 hours.

【0010】かくして本発明により、粒度分布幅が小さ
く、球状の単分散された平均粒径1〜10μmの銅粉末
が得られる。なお、銅粉末の粒径が1μmより小さい
と、ペーストにした時、凝集が激しくなりスクリーンの
目詰りを生じ、さらにはちくそ性が大となり、レベリン
グが悪くなって印刷面が平滑にならなくなる。逆に10
μmより大きくなると、緻密な膜ができず、導電回路と
して不安定になる。
Thus, according to the present invention, a spherical monodispersed copper powder having an average particle size of 1 to 10 μm having a small particle size distribution width can be obtained. When the particle size of the copper powder is smaller than 1 μm, when it is made into a paste, the agglomeration becomes intense, the screen is clogged, the wicking property becomes large, the leveling becomes poor, and the printed surface becomes not smooth. Conversely 10
If it is larger than μm, a dense film cannot be formed and the conductive circuit becomes unstable.

【0011】[0011]

【実施例1】水4l、酢酸500gに酸化銅600gを
懸濁し、抱水ヒドラジン300gを添加し、90℃で4
時間反応させた。この結果、平均粒径が2.4μmで、
粒径分布が1〜10μmに100%が入る粒度分布幅の
小さい球状の銅粉末が得られた。
Example 1 600 g of copper oxide was suspended in 4 liters of water and 500 g of acetic acid, 300 g of hydrazine hydrate was added, and the suspension was heated at 90 ° C. for 4 hours.
Reacted for hours. As a result, the average particle size is 2.4 μm,
A spherical copper powder having a small particle size distribution width in which 100% of the particle size distribution was 1 to 10 μm was obtained.

【0012】[0012]

【実施例2】水4l、酢酸500gに酸化銅540gを
懸濁し、抱水ヒドラジン280gを添加し、90℃で8
時間反応させた。この結果、平均粒径が2.9μmで、
粒径分布が1〜10μmに100%が入る粒度分布幅の
小さい球状の銅粉末が得られた。
Example 2 540 g of copper oxide was suspended in 4 liters of water and 500 g of acetic acid, 280 g of hydrazine hydrate was added, and the suspension was heated at 90 ° C. for 8 hours.
Reacted for hours. As a result, the average particle size was 2.9 μm,
A spherical copper powder having a small particle size distribution width in which 100% of the particle size distribution was 1 to 10 μm was obtained.

【0013】[0013]

【実施例3】水4l、酢酸500gに炭酸銅930gを
懸濁し、抱水ヒドラジン300gを添加し、90℃で4
時間反応させた。この結果、平均粒径が2.3μmで、
粒径分布が1〜10μmに100%が入る粒度分布幅の
小さい球状の銅粉末が得られた。
Example 3 930 g of copper carbonate was suspended in 4 liters of water and 500 g of acetic acid, 300 g of hydrazine hydrate was added, and the suspension was heated at 90 ° C. for 4 hours.
Reacted for hours. As a result, the average particle size is 2.3 μm,
A spherical copper powder having a small particle size distribution width in which 100% of the particle size distribution was 1 to 10 μm was obtained.

【0014】[0014]

【実施例4】水2.5l、酢酸500gに硫酸銅5水和
物2kgを懸濁し、抱水ヒドラジン350gを添加し、
90℃で48時間反応させた。この結果、平均粒径が
6.3μmで、粒径分布が1〜10μmに90%が入る
粒度分布幅の小さい球状の銅粉末が得られた。
EXAMPLE 4 2 kg of copper sulfate pentahydrate was suspended in 2.5 l of water and 500 g of acetic acid, and 350 g of hydrazine hydrate was added,
The reaction was carried out at 90 ° C for 48 hours. As a result, spherical copper powder having an average particle size of 6.3 μm and a small particle size distribution width of 90% in a particle size distribution of 1 to 10 μm was obtained.

【0015】[0015]

【比較例1】水5lに硫酸銅5水和物2kgを溶解し
た。次に抱水ヒドラジン350gを添加し、90℃で4
8時間反応させた。この結果、平均粒径8.5μmで粒
度分布が1〜10μmに30%が入る粒度分布幅の大き
い銅粉末が得られた。
Comparative Example 1 2 kg of copper sulfate pentahydrate was dissolved in 5 l of water. Next, add 350 g of hydrazine hydrate,
The reaction was carried out for 8 hours. As a result, a copper powder having an average particle size of 8.5 μm and a large particle size distribution width of 30% in a particle size distribution of 1 to 10 μm was obtained.

【0016】[0016]

【比較例2】水4lに、炭酸銅1350gを懸濁し、抱
水ヒドラジン300gを添加し、90℃で4時間反応さ
せた。この結果、平均粒径が2.8μmで、粒径分布が
1〜10μmに40%が入る粒度分布幅の大きい銅粉末
が得られた。
Comparative Example 2 1350 g of copper carbonate was suspended in 4 liters of water, 300 g of hydrazine hydrate was added, and the mixture was reacted at 90 ° C. for 4 hours. As a result, a copper powder having a wide particle size distribution with an average particle size of 2.8 μm and 40% in the particle size distribution of 1 to 10 μm was obtained.

【0017】[0017]

【比較例3】水5lに硫酸銅5水和物2kgを溶解し、
硫酸銅水溶液とした。この硫酸銅水溶液に界面活性剤C
1021NHCH2COONaを2.0g添加した。次に
抱水ヒドラジン350gを添加し、90℃で48時間反
応させた。この結果、平均粒径2.6μmで粒度分布が
1〜10μmに70%が入る粒度分布幅の大きい銅粉末
が得られた。
Comparative Example 3 2 kg of copper sulfate pentahydrate was dissolved in 5 l of water,
A copper sulfate aqueous solution was used. Surfactant C is added to this copper sulfate aqueous solution.
2.0 g of 10 H 21 NHCH 2 COONa was added. Next, 350 g of hydrazine hydrate was added and reacted at 90 ° C. for 48 hours. As a result, a copper powder having an average particle size of 2.6 μm and a particle size distribution of 70% in 1 to 10 μm and having a wide particle size distribution width was obtained.

【0018】[0018]

【比較例4】水5lに硫酸銅5水和物2kgを溶解し、
水素化ホウ素ナトリウム130gを添加し、90℃で4
時間反応させた。この結果、得られた銅粉の粒径は0.
1μm以下であった。
Comparative Example 4 2 kg of copper sulfate pentahydrate was dissolved in 5 l of water,
Add 130 g of sodium borohydride and add 4 at 90 ° C.
Reacted for hours. As a result, the particle size of the obtained copper powder was 0.
It was 1 μm or less.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
約1〜10μmの適度の粒径に容易に制御できるととも
に粒度分布幅が極めて小さい球状の銅微粉末が得られ、
スクリーン印刷等をはじめとして各種用途に広範囲に使
用し得る銅微粉末が安価に製造し得る。
As described above, according to the present invention,
Spherical copper fine powder having a very small particle size distribution range can be obtained, which can be easily controlled to an appropriate particle size of about 1 to 10 μm.
Copper fine powder that can be widely used for various purposes including screen printing can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛島 昭夫 山口県下関市彦島西山町2−8−2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Ushijima 2-8-2 Hikoshima Nishiyama-cho, Shimonoseki City, Yamaguchi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酢酸を含む水溶液中で銅化合物をヒドラ
ジンで還元することを特徴とする銅微粉末の製造方法。
1. A method for producing a fine copper powder, which comprises reducing a copper compound with hydrazine in an aqueous solution containing acetic acid.
JP19027492A 1992-06-25 1992-06-25 Production method of copper fine powder Expired - Fee Related JP3444608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19027492A JP3444608B2 (en) 1992-06-25 1992-06-25 Production method of copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19027492A JP3444608B2 (en) 1992-06-25 1992-06-25 Production method of copper fine powder

Publications (2)

Publication Number Publication Date
JPH0610014A true JPH0610014A (en) 1994-01-18
JP3444608B2 JP3444608B2 (en) 2003-09-08

Family

ID=16255432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19027492A Expired - Fee Related JP3444608B2 (en) 1992-06-25 1992-06-25 Production method of copper fine powder

Country Status (1)

Country Link
JP (1) JP3444608B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741347A (en) * 1995-02-24 1998-04-21 Murata Manufacturing Co., Ltd. Method for producing copper powder
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
JP2013047365A (en) * 2011-08-29 2013-03-07 Hitachi Cable Ltd Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741347A (en) * 1995-02-24 1998-04-21 Murata Manufacturing Co., Ltd. Method for producing copper powder
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
JP2013047365A (en) * 2011-08-29 2013-03-07 Hitachi Cable Ltd Copper fine particle dispersion and preparation method therefor, copper fine particle and preparation method therefor, copper paste containing copper fine particle, copper film and preparation method therefor

Also Published As

Publication number Publication date
JP3444608B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
US6620219B1 (en) Metal powder, method for producing the same, and conductive paste
JP2638271B2 (en) Production method of copper fine powder
US20040221685A1 (en) Method for manufacturing nano-scaled copper powder by wet reduction process
JP2001107101A (en) High dispersibility spherical silver powder and its producing method
JPS59116303A (en) Manufacture of fine copper powder
US7909908B2 (en) Method of improving the weatherability of copper powder
JPH09241709A (en) Production of copper powder
JPH0610014A (en) Production of copper fine powder
JPH0557324B2 (en)
JPH10265812A (en) Production of superfine silver particle
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JP3640552B2 (en) Manufacturing method of copper powder with small particle size distribution
JPH04235205A (en) Production of copper powder
JP4074637B2 (en) Method for producing fine silver powder
JP3918036B2 (en) Copper powder manufacturing method
JPH07118013A (en) Production of cuprous oxide
JP2002363618A (en) Copper ultrafine grain and production method therefor
JPH032302A (en) Manufacture of high purity copper fine powder
JPH11350009A (en) Production of plate-like copper powder
JPH03287707A (en) Production of copper powder
JPH05331508A (en) Production of copper powder
JPS5912723B2 (en) Copper powder manufacturing method
JPH07109505A (en) Production of silver-palladium composite powder and silver-palladium composite powder
JPH04321523A (en) Production of tricobalt tetroxide
JPH08325612A (en) Fine flake copper powder and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees