JP2000143387A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JP2000143387A
JP2000143387A JP10317871A JP31787198A JP2000143387A JP 2000143387 A JP2000143387 A JP 2000143387A JP 10317871 A JP10317871 A JP 10317871A JP 31787198 A JP31787198 A JP 31787198A JP 2000143387 A JP2000143387 A JP 2000143387A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
space
compound semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10317871A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10317871A priority Critical patent/JP2000143387A/en
Publication of JP2000143387A publication Critical patent/JP2000143387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing a continuous compound semiconductor single crystal in high reproducibility with low power consumption. SOLUTION: This method for producing a compound semiconductor single crystal has such advantages that, since the crystal pull-up space A disposed with a PBN crucible 31 inside a high-pressure vessel 16 as an oven and the heating space B disposed with a heater 7 are partitioned from each other with space-partitioning jigs 8, 9, 17 as walls, the amount of a feedstock to be charged can be increased without increasing the amount of the gas to be encapsulated inside the vessel; furthermore, heat can be moderately allowed to escape from crystal surface, therefore increasing no electric power to be charged into the heater 7 during crystal growth; as a result, the aimed continuous compound semiconductor single crystal can be produced stably and in high reproducibility; besides, when a crystal growth is to be conducted by encapsulating the crystal pull-up space A with a gas higher in thermal conductivity than the heating space B, heat is released from crystal surface more efficiently.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体単結
晶の製造方法に関する。
The present invention relates to a method for producing a compound semiconductor single crystal.

【0002】[0002]

【従来の技術】化合物単結晶としてのGaAs単結晶
は、磁電変換素子、電界効果トランジスタ(FET)、
IC、LSI等の高速高周波素子等の基板として非常に
広い用途で使用されている。これら素子に用いられる基
板材料の単結晶の製造方法の一つに液体封止引上げ法
(以下「LEC」という)がある。
2. Description of the Related Art A GaAs single crystal as a compound single crystal includes a magnetoelectric conversion element, a field effect transistor (FET),
It is used in a very wide range of applications as a substrate for high-speed high-frequency devices such as ICs and LSIs. One of the methods for producing a single crystal of a substrate material used in these devices is a liquid sealing pulling method (hereinafter referred to as “LEC”).

【0003】LEC法では、以下のように単結晶を製造
する。圧力容器内に設置したPBNルツボに原料及び原
料元素と反応性の低い液体封止剤を収容して、容器内部
に所定量の不活性ガス(Arガス等)を圧力封入する。
この後、ルツボの外周部に位置するヒータで加熱して、
GaAs融液を作る。この後、GaAs融液に種結晶を
接触させ、徐々に種結晶を引上げ、所定の径に制御しな
がら引上げていくことによりGaAsの単結晶が得られ
る。
[0003] In the LEC method, a single crystal is produced as follows. A raw material and a liquid sealant having low reactivity with the raw material elements are accommodated in a PBN crucible installed in a pressure vessel, and a predetermined amount of an inert gas (Ar gas or the like) is pressure-sealed inside the vessel.
After that, it is heated by a heater located on the outer periphery of the crucible,
Make a GaAs melt. Thereafter, the seed crystal is brought into contact with the GaAs melt, the seed crystal is gradually pulled up, and the seed crystal is pulled up while controlling to a predetermined diameter, whereby a GaAs single crystal is obtained.

【0004】このLEC法による単結晶の製造では、生
産コスト低減、生産性向上のため、一回の結晶成長で原
料をより多くチャージし、できるだけ長尺の単結晶を成
長させることが要望されている。また、こうした単結晶
を再現性良く成長させる方法が必要とされている。
In the production of a single crystal by the LEC method, it is required to charge a larger amount of raw material in a single crystal growth and grow a single crystal as long as possible in order to reduce production cost and improve productivity. I have. There is also a need for a method for growing such single crystals with good reproducibility.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、結晶を
より長く引上げ成長させようとし、原料のチャージ量を
増やそうとすると、より内容量の大きい炉が必要となっ
てくる。内容積の大きな炉では、容積の増加する分、中
に封入するガスの量も増加し、このガスを通して逃げる
熱量も多くなるため、成長中にヒータに通電する電力量
も多くせざるを得ない。
However, if the crystal is to be pulled up and grown for a longer time and the charge amount of the raw material is to be increased, a furnace having a larger internal capacity is required. In a furnace with a large internal volume, the amount of gas enclosed therein increases as the volume increases, and the amount of heat escaping through this gas also increases, so the amount of power supplied to the heater during growth must be increased. .

【0006】一方、電力量が多くなると、ヒータからの
輻射により結晶表面が加熱されやすくなる。
On the other hand, when the amount of electric power increases, the crystal surface is easily heated by radiation from the heater.

【0007】単結晶を成長させる場合、結晶表面から適
度に熱を逃がしてやる必要がある。結晶表面が加熱され
すぎると、結晶表面からAsが解離しGaのみが残り、
このGaが表面を伝わって下に垂れ、結晶と融液との界
面に落下し多結晶化することがある。また、こうしたA
sの解離が起こらなくても固液界面形状が単結晶を成長
させる適当な形状に維持できなくなり、多結晶化しやす
くなるなどの問題があった。
When growing a single crystal, it is necessary to release heat from the crystal surface appropriately. If the crystal surface is excessively heated, As dissociates from the crystal surface, leaving only Ga,
This Ga may travel down the surface and drop down, drop to the interface between the crystal and the melt, and become polycrystalline. Also, such A
Even if dissociation of s does not occur, the solid-liquid interface shape cannot be maintained at an appropriate shape for growing a single crystal, and there is a problem that polycrystallization is easily caused.

【0008】そこで、本発明の目的は、上記課題を解決
し、長尺の化合物半導体単結晶を再現性よく、安定に製
造することができ、かつ消費電力の小さい化合物半導体
単結晶の製造方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for producing a compound semiconductor single crystal which can stably produce a long compound semiconductor single crystal with good reproducibility and consumes low power. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の化合物半導体単結晶の製造方法は、液体封止
引上げ法によって化合物単結晶を製造する方法におい
て、ルツボが配置された結晶引上げ空間と、ヒータが配
置された加熱空間とが壁体で区画された炉を有する製造
装置を用いて化合物単結晶を製造するものである。
In order to achieve the above object, a method of manufacturing a compound semiconductor single crystal according to the present invention is directed to a method of manufacturing a compound single crystal by a liquid sealing pulling method. A compound single crystal is manufactured using a manufacturing apparatus having a furnace in which a space and a heating space in which a heater is arranged are partitioned by walls.

【0010】上記構成に加え本発明の化合物半導体単結
晶の製造方法は、結晶引上げ空間には、加熱空間より熱
伝導率の良いガスを封入して成長させるのが好ましい。
In addition to the above structure, in the method of manufacturing a compound semiconductor single crystal of the present invention, it is preferable that a crystal having a higher thermal conductivity than the heating space is sealed in the crystal pulling space and grown.

【0011】本発明によれば、結晶引上げ空間と、ヒー
タを配置した加熱空間とが壁体で区画されているため、
中に封入するガスの量を増加させずに原料のチャージ量
を増加させることができ、しかも結晶表面からの熱を適
度に逃がすことができ、成長中にヒータに通電する電力
量を増加させることがない。その結果、長尺の化合物半
導体単結晶を再現性よく、安定に製造することができ
る。
According to the present invention, since the crystal pulling space and the heating space in which the heater is arranged are partitioned by the wall,
It is possible to increase the amount of charge of the raw material without increasing the amount of gas to be filled therein, and to release heat from the crystal surface appropriately, and to increase the amount of power supplied to the heater during growth. There is no. As a result, a long compound semiconductor single crystal can be stably manufactured with good reproducibility.

【0012】結晶引上げ空間に、加熱空間より熱伝導率
の良いガスを封入して成長させる場合には結晶表面の排
熱がより効率的に行われる。
When a gas having a higher thermal conductivity than that of the heating space is sealed in the crystal pulling space for growth, the heat of the crystal surface is more efficiently exhausted.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は本発明の化合物半導体単結晶の製造
方法を適用した装置の一実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing an embodiment of an apparatus to which the method of manufacturing a compound semiconductor single crystal according to the present invention is applied.

【0015】本製造装置の炉としての高圧容器16が壁
体としての空間仕切治具8、9、17によって区画され
ている。空間仕切治具8、9、17は高圧容器16を上
側及び中央内部と、中央外周部及び下側とに区画するよ
うに形成されている。上側及び中央内部の空間は化合物
単結晶を引き上げるためのPBNルツボ31が配置され
た結晶引上げ空間Aであり、中央外周部及び下側の空間
はヒータ7が配置された加熱空間Bである。
A high-pressure vessel 16 as a furnace of the present manufacturing apparatus is partitioned by space partitioning jigs 8, 9 and 17 as walls. The space partitioning jigs 8, 9, 17 are formed so as to partition the high-pressure container 16 into an upper part and a central part, and a central peripheral part and a lower part. The upper and central spaces are a crystal pulling space A in which a PBN crucible 31 for pulling a compound single crystal is disposed, and the central outer peripheral portion and a lower space are a heating space B in which a heater 7 is disposed.

【0016】結晶引上げ空間Aにおいて、PBNルツボ
31は、高圧容器16に下側に設けられ上下移動自在な
ルツボ支持軸6に支持されている。PBNルツボ31に
はGaAsが収容されており、中央に穴の形成された液
体封止具4で封止されている。高圧容器16の上側に
は、上下移動、回転自在な引上げ軸1が設けられてお
り、引上げ軸1の下端には種結晶2が取り付けられてい
る。結晶引上げ空間Aにはガス配管12を介してN2
スボンベ13が接続されている。
In the crystal pulling space A, the PBN crucible 31 is provided on the lower side of the high-pressure vessel 16 and is supported by a crucible support shaft 6 which can move up and down. GaAs is housed in the PBN crucible 31 and is sealed with the liquid sealing tool 4 having a hole formed in the center. A vertically movable and rotatable pulling shaft 1 is provided above the high pressure vessel 16, and a seed crystal 2 is attached to a lower end of the pulling shaft 1. An N 2 gas cylinder 13 is connected to the crystal pulling space A via a gas pipe 12.

【0017】加熱空間Bにおいて、高圧容器16の中央
外周にはPBNルツボ31を取り囲むようにヒータ7が
配置されており、ヒータ7の外周及び下側には断熱材1
0、11が配置されている。加熱空間Bにはガス配管1
4を介してArガスボンベ15が接続されている。
In the heating space B, a heater 7 is arranged on the outer periphery of the center of the high-pressure vessel 16 so as to surround the PBN crucible 31.
0 and 11 are arranged. Gas piping 1 in heating space B
The Ar gas cylinder 15 is connected through the connection 4.

【0018】このような装置を用いてLEC法により化
合物単結晶を製造する。
A compound single crystal is produced by the LEC method using such an apparatus.

【0019】高圧容器16内部に所定量のArガス及び
2 ガスを圧力封入する。この後、PBNルツボ31を
ヒータ7で加熱して、PBNルツボ31内にGaAs融
液5を作る。引上げ軸1の下端に取り付けられた種結晶
2をGaAs融液5に接触させ、徐々に種結晶2を引上
げることによりGaAs単結晶3が得られる。
A predetermined amount of Ar gas and N 2 gas are pressure-filled in the high-pressure vessel 16. Thereafter, the PBN crucible 31 is heated by the heater 7 to form the GaAs melt 5 in the PBN crucible 31. The GaAs single crystal 3 is obtained by bringing the seed crystal 2 attached to the lower end of the pulling shaft 1 into contact with the GaAs melt 5 and gradually pulling the seed crystal 2.

【0020】[0020]

【実施例】(実施例1)図1に示す装置を用いてGaA
s単結晶を5本成長させた。
(Embodiment 1) GaAs using the apparatus shown in FIG.
Five s single crystals were grown.

【0021】ここで、N2 ガスの熱伝導率はArガスに
比べて高いことが知られている。20kg/cm2 の圧
力下でPBNルツボ31にAsが過剰組成となるような
GaAs融液5を25kg形成した後、二つの空間を2
0kg/cm2 となるように調節して、種結晶2をGa
As融液5に浸漬させて、直径約110mm、長さ約4
30mmのGaAs単結晶3を5本引き上げた。
Here, it is known that the thermal conductivity of N 2 gas is higher than that of Ar gas. After forming 25 kg of a GaAs melt 5 having an excess composition of As in the PBN crucible 31 under a pressure of 20 kg / cm 2 , two spaces are formed.
0 kg / cm 2 to adjust the seed crystal 2 to Ga
As dipped in As melt 5, diameter about 110 mm, length about 4
Five 30 mm GaAs single crystals 3 were pulled up.

【0022】ここで、空間仕切治具8、9としては、ガ
スの透過性の低いPBNをグラファイトにコーティング
したものを用いた。
Here, the space partitioning jigs 8 and 9 were formed by coating PBN with low gas permeability on graphite.

【0023】(比較例1)図2は従来の化合物半導体単
結晶の製造方法を適用した装置の概念図である。
Comparative Example 1 FIG. 2 is a conceptual view of an apparatus to which a conventional method for manufacturing a compound semiconductor single crystal is applied.

【0024】図1に示した装置との相違点は、高圧容器
16の結晶引上げ空間Aと、加熱空間Bとが区画されて
いない点と、高圧容器16内に封入されるガスを一種類
とした点である。尚、図1に示した部材と同様の部材に
は共通の符号を用いた。
The difference from the apparatus shown in FIG. 1 is that the crystal pulling space A and the heating space B of the high-pressure vessel 16 are not partitioned, and the gas sealed in the high-pressure vessel 16 is one type. That is the point. The same members as those shown in FIG. 1 have the same reference numerals.

【0025】図2に示す装置を用いて結晶を成長させ
た。同図に示す装置には、空間仕切治具8と空間仕切治
具9とが配置されているが、空間仕切治具8と空間仕切
治具9との間には空間仕切治具がないので、結晶引上げ
空間Aと加熱空間Bとが連通した状態となっている。高
圧容器16は配管19を介してガスボンベ18に接続さ
れている。ガスボンベ18にはN2 ガスが充填されてい
る。20kg/cm2 の圧力下でPBNルツボ31にA
sが過剰組成となるようなGaAs融液を25kg形成
した後、実施例1と同様の形状の結晶を5本引き上げ
た。
Crystals were grown using the apparatus shown in FIG. In the apparatus shown in FIG. 1, a space partition jig 8 and a space partition jig 9 are arranged, but there is no space partition jig between the space partition jig 8 and the space partition jig 9. The crystal pulling space A and the heating space B are in communication. The high-pressure vessel 16 is connected to a gas cylinder 18 via a pipe 19. The gas cylinder 18 is filled with N 2 gas. Under pressure of 20 kg / cm 2 , PBN crucible 31
After forming 25 kg of a GaAs melt in which s has an excess composition, five crystals having the same shape as in Example 1 were pulled up.

【0026】(比較例2)図2に示す装置を用いて結晶
を成長させた。ガスボンベ18にはArガスが充填され
ている。20kg/cm2 の圧力下でPBNルツボ31
にAsが過剰組成となるようなGaAs融液21を25
kg形成した後、実施例1と同様の形状の結晶を5本引
き上げた。
Comparative Example 2 A crystal was grown using the apparatus shown in FIG. The gas cylinder 18 is filled with Ar gas. PBN crucible 31 under a pressure of 20 kg / cm 2
The GaAs melt 21 having an excess composition of As
After the formation of kg, five crystals having the same shape as in Example 1 were pulled up.

【0027】(最適条件についての根拠)表1は実施例
1及び比較例1、2に示した方法で引き上げた計15本
の結晶の発生位置を調べた結果を示す。
(Basis for Optimum Conditions) Table 1 shows the results obtained by examining the generation positions of a total of 15 crystals pulled up by the method shown in Example 1 and Comparative Examples 1 and 2.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より実施例1の方法で成長した結晶は
全て単結晶であり、二つの比較例の方法に比べ安定して
成長させることができることが分かる。
From Table 1, it can be seen that the crystals grown by the method of Example 1 are all single crystals and can be grown more stably than the methods of the two comparative examples.

【0030】図3は結晶成長中のヒータの消費電力にお
ける実施例と比較例とを示した図である。すなわち、実
施例1及び比較例1、2に示した方法で成長させた結晶
のうち1本、計3本について、ヒータパワー(消費電
力)を引上げ長に対してプロットした結果を示す図であ
り、横軸が引上長であり、縦軸がヒータ消費電力であ
る。
FIG. 3 shows an example and a comparative example of the power consumption of the heater during the crystal growth. That is, for one crystal in total grown by the method shown in Example 1 and Comparative Examples 1 and 2, the heater power (power consumption) is plotted against the pull length. , The horizontal axis is the pull-up length, and the vertical axis is the heater power consumption.

【0031】なお、図3において白丸が実施例1、三角
が比較例1、黒丸が比較例2をそれぞれ示す。
In FIG. 3, white circles indicate Example 1, triangles indicate Comparative Example 1, and black circles indicate Comparative Example 2.

【0032】図3より、実施例1の方法は、比較例1及
び比較例2の方法より消費電力が少ないことが分かる。
FIG. 3 shows that the method of Example 1 consumes less power than the methods of Comparative Examples 1 and 2.

【0033】本実施例では、結晶引上げ空間AにN2
スを封入して成長させた場合で説明したが、N2 ガスの
代わりにN2 ガスより熱伝導率の高いHeガスやH2
スを用いてもよい。また加熱空間にArガスを封入した
場合で説明したが、Arガスの代わりにArガスより熱
伝導率が低いXe等の不活性ガスを用いてもよい。
[0033] In this embodiment, crystal pulling but space A described when grown encapsulating a N 2 gas, N 2 gas high He gas and H 2 gas from a N 2 gas thermal conductivity in place of May be used. Further, although the case where Ar gas is sealed in the heating space has been described, an inert gas such as Xe having a lower thermal conductivity than Ar gas may be used instead of Ar gas.

【0034】以上において、従来の引上げ法によるGa
As単結晶の成長方法より、より少ないヒータ消費電力
で、長尺の単結晶を再現性よく安定して成長させること
ができる。このためGaAs基板を従来法より安価に生
産でき、これらを基板として使用する素子の製造コスト
を下げることができ、その産業的、経済的貢献は大き
い。
In the above description, Ga by the conventional pulling method is used.
Long single crystals can be stably grown with good reproducibility with less heater power consumption than the method of growing As single crystals. For this reason, GaAs substrates can be produced at a lower cost than conventional methods, and the manufacturing cost of elements using these as substrates can be reduced, and their industrial and economic contributions are large.

【0035】[0035]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0036】長尺の化合物半導体単結晶を再現性よく、
安定に製造することができ、かつ消費電力の小さい化合
物半導体単結晶の製造方法の提供を実現できる。
A long compound semiconductor single crystal can be formed with good reproducibility.
A method for manufacturing a compound semiconductor single crystal that can be manufactured stably and consumes low power can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の化合物半導体単結晶の製造方法を適用
した装置の一実施の形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an apparatus to which a method for manufacturing a compound semiconductor single crystal of the present invention is applied.

【図2】従来の化合物半導体単結晶の製造方法を適用し
た装置の概念図である。
FIG. 2 is a conceptual diagram of an apparatus to which a conventional method of manufacturing a compound semiconductor single crystal is applied.

【図3】結晶成長中のヒータの消費電力のにおける実施
例と比較例とを示した図である。
FIG. 3 is a diagram showing an example and a comparative example of power consumption of a heater during crystal growth.

【符号の説明】[Explanation of symbols]

7 ヒータ 8、9、17 空間仕切治具 16 高圧容器 31 PBNルツボ 7 Heater 8, 9, 17 Space partition jig 16 High pressure vessel 31 PBN crucible

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体封止引上げ法によって化合物単結晶
を製造する方法において、ルツボが配置された結晶引上
げ空間と、ヒータが配置された加熱空間とが壁体で区画
された炉を有する製造装置を用いて化合物単結晶を製造
することを特徴とする化合物半導体単結晶の製造方法。
1. A method for producing a compound single crystal by a liquid sealing and pulling method, comprising a furnace in which a crystal pulling space in which a crucible is disposed and a heating space in which a heater is disposed are partitioned by a wall. A method for producing a compound semiconductor single crystal, comprising producing a compound single crystal using the method.
【請求項2】 上記結晶引上げ空間には、加熱空間より
熱伝導率の良いガスを封入して成長させる請求項1に記
載の化合物半導体単結晶の製造方法。
2. The method for producing a compound semiconductor single crystal according to claim 1, wherein said crystal pulling space is grown by enclosing a gas having a higher thermal conductivity than said heating space.
JP10317871A 1998-11-09 1998-11-09 Production of compound semiconductor single crystal Pending JP2000143387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10317871A JP2000143387A (en) 1998-11-09 1998-11-09 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10317871A JP2000143387A (en) 1998-11-09 1998-11-09 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2000143387A true JP2000143387A (en) 2000-05-23

Family

ID=18092997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10317871A Pending JP2000143387A (en) 1998-11-09 1998-11-09 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2000143387A (en)

Similar Documents

Publication Publication Date Title
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP2000143387A (en) Production of compound semiconductor single crystal
CN212451745U (en) Quick expanding growth system for silicon carbide single crystal
JPS61222911A (en) Synthesis of phosphorated compound
KR100530889B1 (en) Graphite crucible with the cone shape at the bottom part, which is used in growing SiC single crystal
KR100835293B1 (en) Manufacturing method of silicon single crystal ingot
JPH09157083A (en) Use method of graphite heater
JPH04198084A (en) Jig for preventing bottom adhesion in pull-up of semiconductor single crystal
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JPH03193694A (en) Crystal growing device
JPH0474788A (en) Production of compound semiconductor single crystal
JPS59131598A (en) Production of gaas single crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JPH06340493A (en) Apparatus for growing single crystal and growing method
JPH06271395A (en) Production of compound semiconductor crystal
JPS63303893A (en) Method and device for growing silicon single crystal
JPS6251237B2 (en)
JPH03131589A (en) Production of compound semiconductor single crystal
JP2004315269A (en) Vessel for growing semiconductor single crystal and method for manufacturing compound semiconductor single-crystal
JP2004123444A (en) Apparatus for manufacturing compound semiconductor single crystal
JPS61132597A (en) Apparatus for producing compound semiconductor single crystal
JP2003095784A (en) Method of growing compound semiconductor crystal
JPH0365585A (en) Production of compound semiconductor single crystal
JPH07206589A (en) Method for producing compound semiconductor single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221