JP2000143361A - Ceramic structure and its production - Google Patents

Ceramic structure and its production

Info

Publication number
JP2000143361A
JP2000143361A JP31164998A JP31164998A JP2000143361A JP 2000143361 A JP2000143361 A JP 2000143361A JP 31164998 A JP31164998 A JP 31164998A JP 31164998 A JP31164998 A JP 31164998A JP 2000143361 A JP2000143361 A JP 2000143361A
Authority
JP
Japan
Prior art keywords
ceramic
joining
solder
thermal expansion
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31164998A
Other languages
Japanese (ja)
Other versions
JP3904746B2 (en
Inventor
Toshiyuki Ihara
俊之 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31164998A priority Critical patent/JP3904746B2/en
Publication of JP2000143361A publication Critical patent/JP2000143361A/en
Application granted granted Critical
Publication of JP3904746B2 publication Critical patent/JP3904746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic structure having a high joint strength and good joint characteristics substantially without causing irregularity by joining a plurality of ceramic members to each other through a joining material having a specific thermal expansion coefficient ratio to those of the ceramic members. SOLUTION: This ceramic structure is obtained by baking a joining material having a thermal expansion coefficient of 90-97% based on those of a plurality of ceramic members on the joining surfaces of the ceramic members, polishing the surfaces in a flatness degree of <=50 μm and a joining material thickness of 20-50 μm, pressing the faced surfaces of the members onto each other and subsequently thermally treating the pressed members at 700-1,000 deg.C to join each other. The thermal expansion coefficient of the joining material is obtained by using at least two of SiO2, Al2O3, B2O3, Bi2O3, BaO and ZnO. For example, a ceramic plate 1 for producing semiconductors can be obtained as a hollow lightweight ceramic structure 4 by separately producing a ceramic ceiling plate 2 and a box 3 and subsequently joining the members.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数のセラミック
ス部材を接合してなるセラミックス構造体とその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic structure formed by joining a plurality of ceramic members and a method for manufacturing the same.

【0002】[0002]

【従来の技術】セラミックスは軽量、高剛性、高強度、
高硬度という特徴を有し、また、耐熱性、耐食性に優れ
ているという特性を活かし、構造部材・耐摩耗部材・耐
触部材として広く使用されており、また、その期待も高
い素材である。
2. Description of the Related Art Ceramics are lightweight, high rigidity, high strength,
It is widely used as a structural member, a wear-resistant member, and a contact-resistant member by utilizing its high hardness and excellent heat resistance and corrosion resistance.

【0003】また、現在、半導体業界ではLSIの高集
積化に伴い微細化が進み、パターン最小線幅は年々減少
している。現在の設計線幅0.35μmであるが199
8年には0.25μm、2001年には0.18μm、
2004年には0.13μmへ移行すると予想されてい
る。デバイスの製作に用いる露光方式は現在、光露光方
式であるが、将来的には高精度・高品質な処理が可能な
電子ビーム描画方式、X線描画方式に変更されるように
なるといわれている。
At present, in the semiconductor industry, miniaturization is progressing with high integration of LSI, and the minimum line width of a pattern is decreasing year by year. Although the current design line width is 0.35 μm, 199
0.25 μm in 8 years, 0.18 μm in 2001,
It is expected to shift to 0.13 μm in 2004. The exposure method used for device fabrication is currently a light exposure method, but it is said that in the future, it will be changed to an electron beam drawing method and an X-ray drawing method capable of high-accuracy and high-quality processing. .

【0004】さらに、ウェハーサイズは、現在の200
mmから2000年もしくは1999年に300mmへ
のサイズアップが予定されている。サイズアップに伴う
描画面積の増大のため、より高精度な対応と高速描画対
応の2点が半導体製造装置に望まれる。
Further, the wafer size is currently 200
The size is planned to be increased from 2000 mm to 300 mm in 2000 or 1999. In order to increase the drawing area as the size increases, two points of higher precision and higher speed drawing are desired for the semiconductor manufacturing apparatus.

【0005】この時に用いられる露光装置は、図5に構
成を示すように、光源にあたる照明工学系11、石英マ
スク(レチクル )を搭載したレチクルステージ12、
光線誘導用鏡筒13、シリコンウェハーを搭載したウェ
ハーステージ14、レチクルステージ・鏡筒を支持する
鏡筒定盤15、装置全体を支持する定盤16から構成さ
れる。
As shown in FIG. 5, the exposure apparatus used at this time has an illumination engineering system 11 as a light source, a reticle stage 12 having a quartz mask (reticle) mounted thereon, and
It comprises a light guiding barrel 13, a wafer stage 14 on which a silicon wafer is mounted, a barrel base 15 for supporting the reticle stage and the barrel, and a base 16 for supporting the entire apparatus.

【0006】露光装置は現在、縮小投影露光方式を採る
ものが主流である。露光装置ではウェハーを移動させつ
つ、ウェハー全面に数十回のパターンを順次露光してい
く。このため、露光装置では、ウェハーを高速にステッ
プ移動し、高精度に位置決めする要素が描画速度向上の
重要な構成要素となる。位置決め時間の短縮は、機構系
自体の重量の軽減と、案内機構の精度向上が具体的なア
プローチの手段といえる。
[0006] Currently, the mainstream of the exposure apparatus employs a reduced projection exposure system. The exposure apparatus sequentially exposes the surface of the wafer several tens of times while moving the wafer. For this reason, in the exposure apparatus, an element that moves the wafer stepwise at a high speed and positions the wafer with high accuracy is an important component for improving the drawing speed. To shorten the positioning time, it can be said that a specific approach is to reduce the weight of the mechanical system itself and to improve the accuracy of the guide mechanism.

【0007】 また、 F=1/2 ・mv2 a∝F a:慣性力 に示すように重量の軽減は、慣性力の軽減と同義であ
る。
Further, as shown in F = 1/2 · mv 2 a F a: inertia force, reduction of weight is synonymous with reduction of inertia force.

【0008】具体的に、機構系の重量軽減についての選
択肢は大きく以下の2点が考えられる。(1) 機構系を構
成する部材に軽比重材料を使用すれば良く、例えば金属
材料からセラミック材料に置き換わってきている。(2)
部材の設計変更し、軽量化を行えば良く、例えば部材設
計を肉抜き構造・中空化構造とする対応が見られる。ま
た、(1) 項と(2) 項の併用による対応も見られる。
More specifically, the following two points can be considered as options for reducing the weight of the mechanical system. (1) A light specific gravity material may be used as a member constituting the mechanical system. For example, a metal material has been replaced with a ceramic material. (2)
What is necessary is just to change the design of the member and reduce the weight. For example, it is seen that the member is designed to have a hollow structure or a hollow structure. In addition, there are some cases where both (1) and (2) are used together.

【0009】先に述べたように、セラミックスは高強度
・高硬度である特性を有する反面、難削性の材料である
ため、製品形状に制限が多い。従って、金属や樹脂と比
較して、製品コストが高いのが実状である。製品コスト
を低く抑えるには、加工工数または、加工量を低減する
ことが有効な方法の一つであり、単純な形状に作製した
もの同士を接合する方法は具体的な手法である。そし
て、セラミックスの用途拡大のためにセラミックスの接
合方法が研究されている。
As described above, ceramics have high strength and high hardness, but are difficult-to-cut materials. Therefore, the actual cost of the product is higher than that of a metal or a resin. One of the effective methods to keep the product cost low is to reduce the number of processing steps or the amount of processing, and a specific method is to join together those formed in a simple shape. In order to expand the uses of ceramics, methods for joining ceramics are being studied.

【0010】近年、金属同士、または、金属とセラミッ
クスとを強固に接合する方法として有用なホットプレス
法(HP法)または熱間等方加圧(HIP法)をセラミ
ックス同士の接合に適用する研究が進められている。
In recent years, research has been applied to the joining of ceramics using a hot press method (HP method) or hot isostatic pressing (HIP method), which is useful as a method for firmly joining metals or a metal and ceramics. Is being promoted.

【0011】HP法とは、接合する部材をプレスパンチ
部で挟持し、高温に加熱しつつ、パンチで一軸加圧する
ことにより接合する方法である。HIP法とは、加圧媒
体としてガスを使用する方法で高圧円筒内に構成される
高圧容器内に接合する部材を加熱しつつ圧縮し、接合す
る方法である。これらの研究は、C.Scoffらによ
って行われている。日本では、特開平5−97530等
に研究事例が見られる。
[0011] The HP method is a method in which members to be joined are sandwiched by a press punch portion, and are heated to a high temperature while being uniaxially pressed by a punch to join. The HIP method is a method of using a gas as a pressurized medium, compressing a member to be joined in a high-pressure container formed in a high-pressure cylinder while heating and joining the members. These studies are based on C.I. Scoff et al. In Japan, research cases are found in Japanese Patent Application Laid-Open No. Hei 5-97530.

【0012】この他の方法では、酸化物を接合媒体とし
て接合する酸化物ソルダー法がある。酸化物ソルダーに
は各種あり、PbOを多く含み、融点が300℃〜40
0℃程度かそれ以下の低融点ソルダーから、Al
2 3 、CaO、MgO、ZrO2、Y2 3 、ThO
2 、Si3 4 、SiC、AlNなどを主成分とする融
点が1200℃から2000℃以上に至る高融点ソルダ
ーまで各種ある。ソルダー法の一般的な手順は、被接合
体の接合面にソルダーを塗布し、同様に処理された部材
の接合面を対向圧着の後、およそ500〜1200℃、
大気雰囲気中で熱処理行う方法である。
As another method, there is an oxide solder method in which an oxide is used as a bonding medium for bonding. There are various types of oxide solders, which contain a large amount of PbO and have a melting point of 300 ° C to 40 ° C.
From a low melting point solder of about 0 ° C or lower,
2 O 3 , CaO, MgO, ZrO 2 , Y 2 O 3 , ThO
2. There are various types of solders having a melting point of 1200 ° C. to 2000 ° C. or higher, whose main components are Si 3 N 4 , SiC, and AlN. The general procedure of the soldering method is to apply solder to the joint surface of the object to be joined, and to press the joint surface of the member that has been processed in the same manner, to approximately 500 to 1200 ° C.
This is a method of performing heat treatment in an air atmosphere.

【0013】以上が磁器同士の接合であるのに対し、焼
成前の成形体を用いた接合方法では、鋳込み成型法で得
られた成形体同士を成形前前駆体である泥しょうを接合
媒体とするノタ付けまたはヌタ付け、とも付け法と称す
コーヒーカップの取っ手の接合方法として知られている
接合方法がある。
[0013] In contrast to the above-mentioned joining of porcelains, in the joining method using the compacts before sintering, the compacts obtained by the casting method are combined with the pre-molding precursor, the slurry, as a joining medium. There is a joining method known as a joining method of a handle of a coffee cup, which is called a sticking method or a sticking method.

【0014】[0014]

【発明が解決しようとする課題】上記、接合方法の問題
点を以下に述べる。
The problems of the above joining method will be described below.

【0015】HPまたはHIPは、一般的な設備の内径
がおよそφ300〜400mmであり、これ以下の寸法
の製品しか得られなかった。この設備内径に対して、現
在、300mmウェハーに主流が移行しつつある半導体
製造装置用部材で適応できる製品は限定されるという問
題があった。
In the case of HP or HIP, the inner diameter of general equipment is about φ300 to 400 mm, and only products with dimensions smaller than this are obtained. With respect to this equipment inner diameter, there has been a problem that products which can be applied to members for semiconductor manufacturing equipment whose mainstream is currently shifting to 300 mm wafers are limited.

【0016】酸化物ソルダー法は、接合層に空気、水分
等の気泡による欠陥または、ソルダー成分の凝集による
接合特性バラツキが生じやすく、接合特性のバラツキは
熱処理条件への依存が大きいため、制御が難しいという
問題があった。
In the oxide solder method, defects in the bonding layer due to bubbles such as air and moisture, or variations in bonding characteristics due to aggregation of solder components are apt to occur. There was a problem that it was difficult.

【0017】成形体同士の接合方法であるノタ付け法
は、鋳込み成形による成形体を用いる製法であるため鋳
込み成形で適応できる成形体形状に限定されてしまう問
題があった。
The notching method, which is a method of joining the molded bodies, is a manufacturing method using a molded body by casting, and thus has a problem in that the shape of the molded body is limited to a shape applicable to the casting.

【0018】以上のように、従来の接合方法では、さま
ざまな寸法、形状の製品に対応できず、また接合特性の
バラツキという課題があった。
As described above, the conventional joining method cannot cope with products having various dimensions and shapes, and has a problem that the joining characteristics vary.

【0019】[0019]

【課題を解決するための手段】本発明では、前記の問題
点を解決するために、大気雰囲気で、かつ常圧下での熱
処理仕様とすることで製品寸法の制限を緩和し、また、
セラミックス焼結体を使用することで形状の制限を緩和
し、また、接合特性が良好でバラツキが少ない製品の提
供を可能とするべく、以下の仕様を確立した。
According to the present invention, in order to solve the above-mentioned problems, the size of the product is reduced by using a heat treatment in an air atmosphere and under normal pressure.
The following specifications were established in order to ease the restriction on the shape by using ceramic sintered bodies, and to provide products with good bonding characteristics and less variation.

【0020】本発明では、複数のセラミックス部材の接
合面を接合材として酸化物ソルダーで被覆した後、ソル
ダー層厚みと平面度を整え、該接合面を対向させたまま
熱処理を行う。具体的には、空気および水分による欠陥
は、ソルダー内から表面への移行をスムースに行わせる
ために、オープン状態で熱処理温度をソルダー融点より
も十分に高く設定することで低減することが出来る。ソ
ルダーの凝集は、ソルダー厚み0.2mm未満に制御し
て表面に塗布することで抑えることが出来る。ここまで
の仕様にて、ソルダー層に欠陥・凝集は解決することが
出来る。
In the present invention, the joint surface of a plurality of ceramic members is covered with an oxide solder as a joining material, then the thickness and flatness of the solder layer are adjusted, and heat treatment is performed with the joined surfaces facing each other. Specifically, defects due to air and moisture can be reduced by setting the heat treatment temperature sufficiently higher than the melting point of the solder in the open state in order to smoothly transfer from the inside of the solder to the surface. Aggregation of the solder can be suppressed by controlling the thickness of the solder to less than 0.2 mm and applying it to the surface. With the specifications up to this point, defects and agglomeration in the solder layer can be solved.

【0021】次に、この接合前駆体の表面を平面度50
μm未満、ソルダー層厚み20〜50μmに研磨し、こ
のソルダー被覆面を互いに対向圧着した状態で700〜
1100℃で熱処理行うことで欠陥・凝集のない接合体
を得ることが出来る。
Next, the surface of the bonding precursor is set to a flatness of 50.
polished to a solder layer thickness of less than 20 μm and a solder layer thickness of less than 700 μm.
By performing the heat treatment at 1100 ° C., a bonded body free from defects and aggregation can be obtained.

【0022】また、本発明は、上記接合材を那須ソルダ
ーとして、セラミックス部材に対して90〜97%の熱
膨張係数を有する、SiO2 、Al2 3 、B2 3
Bi2 3 、BaO、ZnOのうち少なくとも2種以上
で構成された接合材を使用することにより、安定した接
合体を得られるようにしたものである。
Further, the present invention provides a method for manufacturing a semiconductor device using the above-mentioned bonding material as a Nasu solder, which has a thermal expansion coefficient of 90 to 97% with respect to a ceramic member, such as SiO 2 , Al 2 O 3 , B 2 O 3 ,
By using a bonding material composed of at least two of Bi 2 O 3 , BaO, and ZnO, a stable bonded body can be obtained.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施形態を図によ
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0024】図1(a)に示す構造体1は半導体製造装
置用ステージ等に利用されるセラミックス製板状体であ
るが、これを図1(b)に示すようにセラミックス製の
天板2と箱材3に分割製作し、図1(c)に示すように
接合することで本発明のセラミックス構造体4を得るこ
とができる。このセラミックス構造体4は、中空で軽量
部材とすることができる。
The structure 1 shown in FIG. 1 (a) is a ceramic plate used for a stage for a semiconductor manufacturing apparatus or the like. As shown in FIG. Then, the ceramic structure 4 of the present invention can be obtained by dividing and manufacturing into a box material 3 and joining as shown in FIG. The ceramic structure 4 can be a hollow and lightweight member.

【0025】図2(a)に示す構造体1は、図1と同様
のステージに配線部材5を接合したものであるが、これ
を図2(b)(c)に示すようにセラミックス製の天板
2と箱材3に分割製作し、接合することで本発明のセラ
ミックス構造体4を得ることができる。これは、中空、
軽量でかつ配線部材5を中空内部に収納することでコン
パクト構造とすることができる。
The structure 1 shown in FIG. 2 (a) is obtained by joining a wiring member 5 to the same stage as that shown in FIG. 1, and this is made of ceramics as shown in FIGS. 2 (b) and 2 (c). The ceramic structure 4 of the present invention can be obtained by separately manufacturing the top plate 2 and the box material 3 and joining them. This is hollow,
Light weight and a compact structure can be obtained by housing the wiring member 5 in the hollow interior.

【0026】図3(a)に示す構造体1は定盤である
が、これを図3(b)(c)に示すようにセラミックス
製の平定盤6と支持部材7に分割製作し、接合すること
により本発明のセラミックス構造体4を得ることができ
る。これは、一体製作で発生する加工代、原料ロスを低
減させ、安価部材を供給することを可能とし、半導体製
造装置の支持部材に利用することができる。
The structure 1 shown in FIG. 3A is a surface plate, which is divided into a ceramic flat surface plate 6 and a support member 7 as shown in FIGS. 3B and 3C, and joined. By doing so, the ceramic structure 4 of the present invention can be obtained. This reduces the processing cost and raw material loss generated in the integrated manufacturing, makes it possible to supply inexpensive members, and can be used as a support member of a semiconductor manufacturing apparatus.

【0027】図4(a)に示す構造体1は、半導体製造
装置用ステージ、チャックに利用するテーブルであるが
図4(b)(c)に示すように、これを天板2と溝付き
支持台8に分割製作し、接合することにより本発明のセ
ラミックス構造体4を得ることができる。これは、温度
調整用配管を内蔵する付加機能付き部材とすることがで
きる。
The structure 1 shown in FIG. 4A is a table used for a stage and a chuck for a semiconductor manufacturing apparatus. As shown in FIGS. 4B and 4C, the structure 1 is provided with a top plate 2 and a groove. The ceramic structure 4 of the present invention can be obtained by separately manufacturing and joining the support 8. This can be a member with an additional function that incorporates a temperature adjustment pipe.

【0028】以上のセラミックス構造体1において、接
合材を成すソルダーは、被接合体となるセラミックス部
材の熱膨張係数に対して、90〜97%の熱膨張係数を
有するものを用いる。
In the above-described ceramic structure 1, the solder constituting the joining material has a coefficient of thermal expansion of 90 to 97% with respect to the coefficient of thermal expansion of the ceramic member to be joined.

【0029】基本的には熱膨張差が無いことが望ましい
が、熱処理後の冷却時、セラミックス部材がソルダー部
を圧縮する形態、すなわちソルダーの熱膨張係数がセラ
ミックスより小さいことが安定な接合体が得られやすい
傾向にある。この点からソルダーの熱膨張係数は、セラ
ミックス部材に対して97%以下のものを用いる。ただ
し、熱膨張差が大きくなると圧縮破壊を引き起こすよう
になるため、ソルダーの熱膨張係数は、セラミックス部
材に対して90%以上とする。
Basically, it is desirable that there is no difference in thermal expansion. However, when cooling after the heat treatment, a form in which the ceramic member compresses the solder portion, that is, a bonded body that is stable when the thermal expansion coefficient of the solder is smaller than that of the ceramic is required. It tends to be easily obtained. From this point, the thermal expansion coefficient of the solder is 97% or less of the ceramic member. However, when the difference in thermal expansion becomes large, compression failure occurs. Therefore, the thermal expansion coefficient of the solder is set to 90% or more of the ceramic member.

【0030】以上の理由で、接合部に圧縮が加わる構造
とすることにより、安定したセラミックスの接合が可能
となる。
[0030] For the above reasons, by adopting a structure in which compression is applied to the joining portion, stable joining of ceramics becomes possible.

【0031】なお、ソルダーの熱膨張係数を上記範囲に
調整するためには、ソルダーとして、SiO2 、Al2
3 、B2 3 、Bi2 3 、BaO、ZnOのうち少
なくとも2種以上で構成されたものを用いればよく、上
記各成分の比率を調整することによって、自由にソルダ
ーの熱膨張係数を調整することができる。
In order to adjust the thermal expansion coefficient of the solder to the above range, SiO 2 , Al 2
Any of at least two of O 3 , B 2 O 3 , Bi 2 O 3 , BaO, and ZnO may be used, and the coefficient of thermal expansion of the solder can be freely adjusted by adjusting the ratio of the above components. Can be adjusted.

【0032】また、最終的なソルダーの熱膨張係数は、
ソルダーを成す各成分の組成比率から求められる。例え
ば、Al2 3 の熱膨張係数は7ppmで、SiO2
0ppmであることから、ソルダーの熱膨張係数を3.
5ppmとしたい場合、Al2 3 とSiO2 を体積比
率で1:1の組成比率とすれば良い。
The final thermal expansion coefficient of the solder is:
It is determined from the composition ratio of each component constituting the solder. For example, since the thermal expansion coefficient of Al 2 O 3 is 7 ppm and that of SiO 2 is 0 ppm, the thermal expansion coefficient of the solder is 3.
If it is desired to be 5 ppm, the composition ratio of Al 2 O 3 and SiO 2 may be 1: 1 by volume.

【0033】ただし、実際には互いの反応生成物が存在
するため、正確な計算はその反応生成物の存在比率を計
算式に加えなければならない。
However, since there is actually a reaction product of each other, accurate calculation requires adding the abundance ratio of the reaction product to the calculation formula.

【0034】なお、ソルダー自体からの熱膨張係数の測
定は、測定用試験片を製品の接合部ごと切り出し、先
ず、全体の熱膨張係数を測定する。次に被接合体となる
セラミックスの総長さの試験片に占める比率を求め、セ
ラミックスの熱膨張係数から試験片中の伸び率を求め
る。従って、全体の伸び率との差が接合層の伸び率とな
り、以上の作業から、接合層の実際の熱膨張係数を求め
ることが出来る。
For the measurement of the coefficient of thermal expansion from the solder itself, a test piece for measurement is cut out together with the joint of the product, and first, the entire coefficient of thermal expansion is measured. Next, the ratio of the total length of the ceramics to be joined to the test piece is determined, and the elongation percentage in the test piece is determined from the coefficient of thermal expansion of the ceramics. Therefore, the difference from the total elongation is the elongation of the bonding layer, and the actual thermal expansion coefficient of the bonding layer can be obtained from the above operation.

【0035】また、接合に用いるソルダーの溶融点は、
出来るだけ低いことがセラミックスの熱劣化を防ぐため
に望ましい。例えばAl2 3 とSiO2 の組成では、
融点が期待するほど下げられないような場合、さらにB
2 3 を加えるとソルダーの融点を下げることが出来
る。
The melting point of the solder used for joining is as follows:
It is desirable that the temperature is as low as possible to prevent thermal degradation of the ceramic. For example, in the composition of Al 2 O 3 and SiO 2 ,
If the melting point is not as low as expected,
Adding 2 O 3 can lower the melting point of the solder.

【0036】以上のように、ソルダーの選定には、熱膨
張係数と溶融点の要素を基準に行い、SiO2 、Al2
3 、B2 3 、Bi2 3 、BaO、ZnOの2種以
上の組み合わせによるものが有効である。以上の組み合
わせの結果、熱膨張係数で2.0〜9.8ppmの設定
と溶融点で400〜1100℃の設定が可能となる。
As described above, the selection of the solder is made on the basis of the factors of the thermal expansion coefficient and the melting point, and SiO 2 , Al 2
A combination of two or more of O 3 , B 2 O 3 , Bi 2 O 3 , BaO, and ZnO is effective. As a result of the above combination, it is possible to set a coefficient of thermal expansion of 2.0 to 9.8 ppm and a melting point of 400 to 1100 ° C.

【0037】また、本発明におけるセラミックス部材の
対象セラミックスとしては、酸化物セラミックスでは、
アルミナ、ジルコニア、チタニア等が挙げられる。非酸
化物セラミックスでは、窒化珪素、炭化珪素、サイアロ
ン等が挙げられる。
As the target ceramic of the ceramic member in the present invention, oxide ceramics include:
Alumina, zirconia, titania and the like can be mentioned. Non-oxide ceramics include silicon nitride, silicon carbide, sialon, and the like.

【0038】次に、本発明の接合方法について説明す
る。
Next, the joining method of the present invention will be described.

【0039】先ず、被接合体となるセラミックス部材を
準備する。セラミックス部材の接合面は、平面度20〜
40μm、表面粗さRa0.2〜0.5μmμmに研磨
・ラップ加工行う。加工後、接合面を400〜500℃
にて熱処理の後、アセトンを使用して脱脂処理行う。
First, a ceramic member to be joined is prepared. The joining surface of the ceramic member has a flatness of 20 to
Polishing and lapping are performed to 40 μm and a surface roughness Ra of 0.2 to 0.5 μm μm. After processing, the bonding surface is 400 ~ 500 ℃
After the heat treatment, a degreasing treatment is performed using acetone.

【0040】次に、ソルダーはペースト状に調整するた
め、粉体充填率50〜60体積%の割合で樹脂と有機溶
媒と混合する。原料粘度40〜80PaSとなるように
粉体充填率と樹脂/有機溶媒比率を調整する。
Next, in order to adjust the solder into a paste, the resin and the organic solvent are mixed at a powder filling rate of 50 to 60% by volume. The powder filling ratio and the resin / organic solvent ratio are adjusted so that the raw material viscosity becomes 40 to 80 PaS.

【0041】次に、ソルダーを接合面へ塗布する。塗布
は、#100〜#200のスクリーンを使用し、膜圧
0.1〜0.2mmに設定し行う。塗布後、ソルダーを
700〜1100℃にて熱処理しソルダーを被接合体に
焼き付ける。
Next, a solder is applied to the joint surface. The coating is performed by using a screen of # 100 to # 200 and setting the film pressure to 0.1 to 0.2 mm. After the application, the solder is heat-treated at 700 to 1100 ° C., and the solder is baked on the joined body.

【0042】焼付け後、接合面の研磨・ラップ加工を行
い、平面度50μm未満、ソルダー層厚み20〜50μ
mとする。加工後、接合面をアセトンを使用して脱脂処
理行う。以上の手順にて準備された接合前駆体を接合面
同士を対向後、700〜1100℃にて熱処理行い、接
合体を得る。
After baking, the joining surface is polished and wrapped to a flatness of less than 50 μm and a solder layer thickness of 20 to 50 μm.
m. After processing, the joint surface is degreased using acetone. After bonding surfaces of the bonding precursor prepared in the above procedure are opposed to each other, heat treatment is performed at 700 to 1100 ° C. to obtain a bonded body.

【0043】以上のようにして得られた本発明のセラミ
ックス構造体の用途は、半導体製造装置用の部材とし
て、ステージ部材、支持支柱、テーブル、治具(ホルダ
ー)、ガイドレール、スライダー、計測用部材等、ある
いは一般構造部材として、繊維用ガイド材、治具等に用
いることができる。
The ceramic structure of the present invention obtained as described above is used as a member for a semiconductor manufacturing apparatus, such as a stage member, a supporting column, a table, a jig (holder), a guide rail, a slider, and a measuring member. As a member or the like or a general structural member, it can be used for a fiber guide material, a jig or the like.

【0044】[0044]

【実施例】実施例1 セラミックス部材の試験片として、アルミナセラミック
ス(アルミナ純度99.5%、比重3.85)を用い、
試験片形状は10×10×20mmとした。その熱膨張
係数は、7.2×10-6/℃(測定範囲;室温〜500
℃)である。以下のような接合を行い、それぞれ接合状
態の良否は、接合面積率が95%以上であれば良好接合
体と判断することとした。
EXAMPLE 1 Alumina ceramics (alumina purity 99.5%, specific gravity 3.85) was used as a test piece of a ceramic member.
The test piece shape was 10 × 10 × 20 mm. Its thermal expansion coefficient is 7.2 × 10 −6 / ° C. (measurement range: room temperature to 500
° C). The following bonding was performed, and the quality of the bonded state was determined to be a good bonded body if the bonding area ratio was 95% or more.

【0045】酸化物ソルダーは、以下の〜の材料を
選定した。それぞれ、かっこ内は室温〜500℃の熱膨
張係数を示す。
The following materials were selected for the oxide solder. The values in parentheses indicate the coefficients of thermal expansion from room temperature to 500 ° C.

【0046】ZnO−B2 3 −SiO2 (4.8
×10-6/℃) SiO2 −BaO−B2 3 −Al2 3 (6.0
×10-6/℃) SiO2 −B2 3 −ZnO−Na2 O (6.5
×10-6/℃) SiO2 −B2 3 −ZnO−Al2 3 −Na2
(6.9×10-6/℃) SiO2 −B2 3 −Bi2 3 −Na2 O (8.
4×10-6/℃) 上記、ソルダーが凝集することなしに気泡を生じさせな
い温度条件の確認を行った結果、700〜1100℃で
あることが確認できた。確認は接合部の観察で空隙の存
在の有無で判断を行った。ソルダーの凝集に対しては、
昇温速度50℃/hが効果的な条件であることを確認で
きた。これは、熱処理温度一定の場合、昇温速度が遅く
なるほど総熱量が増加するため、ソルダーの凝集を促進
することが要因と考えられる。
ZnO—B 2 O 3 —SiO 2 (4.8
× 10 −6 / ° C.) SiO 2 —BaO—B 2 O 3 —Al 2 O 3 (6.0
× 10 −6 / ° C.) SiO 2 —B 2 O 3 —ZnO—Na 2 O (6.5
× 10 −6 / ° C.) SiO 2 —B 2 O 3 —ZnO—Al 2 O 3 —Na 2 O
(6.9 × 10 −6 / ° C.) SiO 2 —B 2 O 3 —Bi 2 O 3 —Na 2 O (8.
(4 × 10 −6 / ° C.) As a result of confirming the above temperature conditions that do not cause bubbles without causing agglomeration of the solder, it was confirmed that the temperature was 700 to 1100 ° C. Confirmation was made by observing the joint and judging the presence or absence of a void. For solder aggregation,
It was confirmed that a heating rate of 50 ° C./h was an effective condition. This is considered to be due to the fact that, when the heat treatment temperature is constant, the total amount of heat increases as the heating rate decreases, so that the aggregation of the solder is promoted.

【0047】作業の手順は、上記試験片の端面にスクリ
ーン印刷法にて、厚み0.1〜0.2mmでソルダーを
塗布した後、上記温度設定で熱処理行う。塗布厚みは、
0.2mmを超えると凝集が見られるようになるため前
記条件に設定を行った。以上の工程で、被接合材の表面
にソルダー被膜を有する接合前駆体が得られる。
The procedure of the work is such that a solder having a thickness of 0.1 to 0.2 mm is applied to the end face of the test piece by a screen printing method, and then a heat treatment is performed at the above temperature setting. The coating thickness is
When the thickness exceeds 0.2 mm, agglomeration is observed, so that the above conditions were set. Through the above steps, a joining precursor having a solder coating on the surface of the material to be joined is obtained.

【0048】次に、ソルダー被膜を平面度50μm未満
となるように研磨加工を施す。平面度50μmの仕様で
得られる特性は、平面度が更に小さい値となる表面条件
であっても同等の特性が得られることが予想できる。最
終的に、膜厚み20〜50μmに仕上げを行った接合前
駆体のソルダー被覆面を対向させ、先に述べた温度条件
で接合処理を行った。接合処理温度は、800℃とし
た。加重は特に設定しなかった。得られた接合体の接合
層厚みは30〜80μmであった。
Next, the solder film is polished so as to have a flatness of less than 50 μm. It can be expected that the characteristics obtained with the flatness specification of 50 μm will have the same characteristics even under the surface conditions where the flatness becomes even smaller. Finally, the solder coating surfaces of the bonding precursors finished to a film thickness of 20 to 50 μm were opposed to each other, and the bonding treatment was performed under the above-described temperature conditions. The bonding temperature was 800 ° C. The weight was not specifically set. The bonding layer thickness of the obtained bonded body was 30 to 80 μm.

【0049】得られた接合体を4点曲げ試験法で曲げ強
度の測定を行い、サンプル数5本の平均値を求めた。ま
た、超音波探傷法で得られた接合層マップから接合面積
率(=接合面積/接合総面積)を求めた。
The bending strength of the obtained joined body was measured by a four-point bending test method, and an average value of five samples was obtained. Further, a bonding area ratio (= bonding area / total bonding area) was determined from a bonding layer map obtained by the ultrasonic flaw detection method.

【0050】結果を表1に示すように、、のソルダ
ーで良好な接合状態の接合体が得られ、試験片をなすセ
ラミックスの熱膨張係数7.2×10-6/℃に対し、9
0〜97%の範囲内のソルダーを用いれば良いことがわ
かる。
The results are shown in Table 1. As shown in Table 1, a joined body in a good joined state was obtained with the above solder, and the thermal expansion coefficient of the ceramic forming the test piece was 7.2 × 10 −6 / ° C.
It can be seen that a solder within the range of 0 to 97% may be used.

【0051】なお、ソルダーの成分として、Al
2 3 、SiO2 、MgO、CaO、Y23 、B2
3 、Bi2 3 、ZnO、ZrO2 、Na2 O等のいず
れの成分を用いても、熱膨張係数値を被接合材の90〜
97%に合わせれば、同様に良好な接合体が得られた。
As a component of the solder, Al
2 O 3 , SiO 2 , MgO, CaO, Y 2 O 3 , B 2 O
3 , the thermal expansion coefficient of any of the components such as Bi 2 O 3 , ZnO, ZrO 2 , Na 2 O, etc.
By adjusting to 97%, a similarly good joined body was obtained.

【0052】[0052]

【表1】 [Table 1]

【0053】ソルダーの熱膨張係数が90%未満または
97%を超えた場合、接合部には引っ張りまたは圧縮応
力の発生による接合部の剥離が発生すると考えられる。
その現象が接合面積率の低下となって現れていると考え
られる。
When the thermal expansion coefficient of the solder is less than 90% or more than 97%, it is considered that the joint is peeled off due to the generation of tensile or compressive stress.
It is considered that such a phenomenon appears as a decrease in the bonding area ratio.

【0054】また、比較例として単純にソルダーを試験
片の間に挟んだだけで熱処理を行った接合体についても
同様の測定を行った。結果を表2に示すように、強度接
合面積率ともに低い値であった。
Further, as a comparative example, the same measurement was performed on a joined body which was subjected to a heat treatment simply by sandwiching a solder between test pieces. As shown in Table 2, the strength joint area ratio was a low value.

【0055】[0055]

【表2】 [Table 2]

【0056】以上の結果、アルミナセラミックスの接合
において、熱膨張係数6.5及び6.9×10-6/℃
(セラミックスの熱膨張係数に対して、それぞれ90
%、97%)のソルダーを使用して、被接合材の表面に
被覆後、表面を平面度50μmに仕上げ、対向圧着させ
800℃で処理することによって良好な接合強度が得ら
れた。
As a result, the thermal expansion coefficients of 6.5 and 6.9 × 10 -6 / ° C.
(For the coefficient of thermal expansion of ceramics, 90
%, 97%), the surface of the material to be joined was coated, then the surface was finished to a flatness of 50 μm, and the surface was pressure-bonded and treated at 800 ° C. to obtain good joining strength.

【0057】実施例2 実施例1に記載のアルミナセラミックスを用いて、図1
に概略図を示す300×280×15mm、肉厚3mm
で内部が中空構造のセラミックス構造体1を作製した。
Example 2 Using the alumina ceramic described in Example 1, FIG.
300 × 280 × 15 mm, thickness 3 mm
Thus, a ceramic structure 1 having a hollow inside was produced.

【0058】比較例として、同じ外径の中実体を作製し
た。それぞれの重量・固有振動数を計算したところ、表
3に示す通り、本発明のセラミックス構造体は、中空化
により、製品重量は中実体の72%となる。肉厚を更に
薄くすることで重量の軽減は可能となるが製品強度・剛
性が低下することが予想されるため、肉厚3mmに限定
した。なお、接合は、接合材に実施例1の素材を選定
し、800℃で熱処理を行った。接合面の処理も平面度
20μmとし、対向接合仕様とした。
As a comparative example, a solid body having the same outer diameter was manufactured. When the respective weights and natural frequencies were calculated, as shown in Table 3, the product weight of the ceramic structure of the present invention was 72% of that of the solid body due to hollowing. By further reducing the wall thickness, the weight can be reduced, but the strength and rigidity of the product are expected to decrease, so the wall thickness was limited to 3 mm. In addition, for the joining, the material of Example 1 was selected as the joining material, and heat treatment was performed at 800 ° C. The treatment of the joint surface was also set to a flatness of 20 μm, and the opposed joint specification was used.

【0059】実際に作製されたセラミックス構造体の重
量、固有振動数を実測した結果は表4の通り、表3に示
す計算値と同様の値であった。
As a result of actually measuring the weight and the natural frequency of the actually manufactured ceramic structure, as shown in Table 4, the values were the same as the calculated values shown in Table 3.

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】次に、得られたセラミックス構造体の信頼
性評価を行った。評価は、セラミックス構造体に下記の
熱サイクル試験と加速度試験を行い、試験前後での固有
振動数の変化発生の有無で判断した。
Next, the reliability of the obtained ceramic structure was evaluated. In the evaluation, the following thermal cycle test and acceleration test were performed on the ceramic structure, and it was determined whether or not the natural frequency had changed before and after the test.

【0063】熱サイクル試験は、−30℃→室温→80
℃→室温を1サイクルとして、100サイクルの熱サイ
クル試験を行った。加速度試験は、3G(200Hz、
正弦波振動)の加速度を720時間与えた。
The heat cycle test was performed at -30 ° C. → room temperature → 80
A heat cycle test of 100 cycles was performed with one cycle of ℃ → room temperature. The acceleration test is 3G (200Hz,
(Sinusoidal vibration) for 720 hours.

【0064】試験結果を表5に示すように、本発明のセ
ラミックス構造体は、固有振動数に変化は生じることが
なく、本発明による接合体の信頼性を確認することがで
きた。
As shown in the test results in Table 5, the ceramic structure of the present invention did not change in the natural frequency, and the reliability of the joined body according to the present invention could be confirmed.

【0065】[0065]

【表5】 [Table 5]

【0066】[0066]

【発明の効果】以上のように本発明によれば、複数のセ
ラミックス部材同士を、該セラミックス部材に対して9
0〜97%の熱膨張係数を有する、SiO2 、Al2
3 、B2 3 、Bi2 3 、BaO、ZnOのうち少な
くとも2種以上で構成された接合材を使用して接合した
ことによって、高い接合強度と信頼性を有するセラミッ
クス構造体を提供することができる。
As described above, according to the present invention, a plurality of ceramic members are moved 9
SiO 2 , Al 2 O having a coefficient of thermal expansion of 0 to 97%
3, B 2 O 3, Bi 2 O 3, BaO, by joined by using a bonding material composed of at least two or more of ZnO, which provides a ceramic structure with high bonding strength and reliability be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明のセラミックス接合体
とその製造方法を示す図である。
1 (a) to 1 (c) are views showing a ceramic joined body of the present invention and a method for manufacturing the same.

【図2】(a)〜(c)は本発明のセラミックス接合体
とその製造方法を示す図である。
FIGS. 2A to 2C are views showing a ceramic joined body of the present invention and a method of manufacturing the same.

【図3】(a)〜(c)は本発明のセラミックス接合体
とその製造方法を示す図である。
FIGS. 3A to 3C are views showing a ceramic joined body of the present invention and a method of manufacturing the same.

【図4】(a)〜(c)は本発明のセラミックス接合体
とその製造方法を示す図である。
4 (a) to 4 (c) are views showing a ceramic joined body of the present invention and a method for producing the same.

【図5】半導体製造装置の一例である露光装置の概略図
である。
FIG. 5 is a schematic view of an exposure apparatus which is an example of a semiconductor manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1:構造体 2:天板 3:箱材 4:セラミックス接合体 5:配線部材 1: Structure 2: Top plate 3: Box material 4: Ceramics joined body 5: Wiring member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiO2 、Al2 3 、B2 3 、Bi2
3 、BaO、ZnOのうち少なくとも2種以上を調合
し、被接合材であるセラミックス部材の90〜97%の
熱膨張係数とした接合材を用いて、上記複数のセラミッ
クス部材同士を接合したことを特徴とするセラミックス
構造体。
1. The method according to claim 1, wherein the first and second layers are SiO 2 , Al 2 O 3 , B 2 O 3 and Bi 2.
At least two or more of O 3 , BaO, and ZnO are blended, and the plurality of ceramic members are joined to each other using a joining material having a thermal expansion coefficient of 90 to 97% of the ceramic member to be joined. A ceramic structure characterized by the following.
【請求項2】複数のセラミックス部材同士の接合面に、
該セラミックス部材に対して90〜97%の熱膨張係数
を有する、SiO2 、Al2 3 、B2 3、Bi2
3 、BaO、ZnOのうち少なくとも2種以上で構成さ
れた接合材を焼き付け、その表面を平面度50μm以下
とした後、対向圧着して700〜1000℃で熱処理す
る工程からなるセラミックス構造体の製造方法。
2. The method according to claim 1, further comprising the step of:
SiO 2 , Al 2 O 3 , B 2 O 3 , Bi 2 O having a thermal expansion coefficient of 90 to 97% with respect to the ceramic member
3. A method for manufacturing a ceramic structure comprising a step of baking a bonding material composed of at least two of BaO and ZnO, reducing the surface thereof to a flatness of 50 μm or less, pressure-bonding the same, and heat-treating at 700 to 1000 ° C. Method.
JP31164998A 1998-11-02 1998-11-02 Member for semiconductor manufacturing apparatus and method for manufacturing the same Expired - Fee Related JP3904746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31164998A JP3904746B2 (en) 1998-11-02 1998-11-02 Member for semiconductor manufacturing apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31164998A JP3904746B2 (en) 1998-11-02 1998-11-02 Member for semiconductor manufacturing apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000143361A true JP2000143361A (en) 2000-05-23
JP3904746B2 JP3904746B2 (en) 2007-04-11

Family

ID=18019833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31164998A Expired - Fee Related JP3904746B2 (en) 1998-11-02 1998-11-02 Member for semiconductor manufacturing apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3904746B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338584A1 (en) * 2000-10-27 2003-08-27 Yamatake Corporation Jointing material and joining method
JP2004345306A (en) * 2003-05-26 2004-12-09 Kyocera Corp Ceramic structure
JP2018006381A (en) * 2016-06-27 2018-01-11 新光電気工業株式会社 Base plate structure, method of manufacturing the same, and substrate fixing device
JP2019204923A (en) * 2018-05-25 2019-11-28 ▲らん▼海精研股▲ふん▼有限公司 Method for manufacturing ceramic electrostatic chuck

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338584A1 (en) * 2000-10-27 2003-08-27 Yamatake Corporation Jointing material and joining method
EP1338584A4 (en) * 2000-10-27 2006-12-06 Yamatake Corp Jointing material and joining method
US7198666B2 (en) 2000-10-27 2007-04-03 Yamatake Corporation Jointing material comprising a mixture of boron oxide and aluminum oxide and method of jointing utilizing said jointing material
JP2004345306A (en) * 2003-05-26 2004-12-09 Kyocera Corp Ceramic structure
JP2018006381A (en) * 2016-06-27 2018-01-11 新光電気工業株式会社 Base plate structure, method of manufacturing the same, and substrate fixing device
US10847401B2 (en) 2016-06-27 2020-11-24 Shinko Electric Industries Co., Ltd. Wafer holding apparatus and baseplate structure
JP2019204923A (en) * 2018-05-25 2019-11-28 ▲らん▼海精研股▲ふん▼有限公司 Method for manufacturing ceramic electrostatic chuck
US10899670B2 (en) 2018-05-25 2021-01-26 Blue Ocean Research & Network Limited Manufacturing method of ceramic electrostatic chuck

Also Published As

Publication number Publication date
JP3904746B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
US7943241B2 (en) Composite ceramic body
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
JP4787568B2 (en) Bonding agent, aluminum nitride bonded body, and manufacturing method thereof
JP4032971B2 (en) Ceramic bonded body, substrate holding structure, and substrate processing apparatus
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP2005150506A (en) Semiconductor manufacturing apparatus
JP2019515852A (en) Copper-ceramic composite material
Tummala et al. High-performance glass-ceramic/copper multilayer substrate with thin-film redistribution
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP3904746B2 (en) Member for semiconductor manufacturing apparatus and method for manufacturing the same
JPH09283671A (en) Ceramics-metal composite circuit board
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP6817320B2 (en) Copper-ceramic composite material
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP2003197725A (en) Vacuum chuck
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
JP3469513B2 (en) Exposure apparatus and support member used therein
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JPH06105834B2 (en) Airtight package and manufacturing method thereof
JPH10258479A (en) Manufacture of functionally gradient material
JP2004177331A (en) Mirror for measuring position and mirror member
JP2001261458A (en) Silicon carbide joined body and method for producing the same
JP2004179353A (en) Stage member
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees