JP2000143240A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JP2000143240A
JP2000143240A JP10315604A JP31560498A JP2000143240A JP 2000143240 A JP2000143240 A JP 2000143240A JP 10315604 A JP10315604 A JP 10315604A JP 31560498 A JP31560498 A JP 31560498A JP 2000143240 A JP2000143240 A JP 2000143240A
Authority
JP
Japan
Prior art keywords
phase
superconductor
mixture
annealing
cacu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10315604A
Other languages
Japanese (ja)
Inventor
Takayo Hasegawa
隆代 長谷川
Yuji Aoki
裕治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP10315604A priority Critical patent/JP2000143240A/en
Publication of JP2000143240A publication Critical patent/JP2000143240A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the critical current and magnetic field characteristics of superconductor in a wide temperature region by introducing a large number of effective pinning centers into the superconductor, in the production process for a Bi 2212 system superconductor. SOLUTION: This production process for a Bi 2212 system superconductor, comprises: mixing powdery raw materials together in prescribed ratios to obtain a mixture having such a mix ratios as to meet the formula Bi2-yPbySr2CaCu2Ox; heating the mixture to obtain the heated mixture in a partially molten state; then, gradually cooling the partially molten mixture to crystallize a highly- oriented Bi2-yPbySr2CaCu2Ox phase; annealing the resulting material consisting of the crystallized Bi2-yPbySr2CaCu2Ox phase at a temperature lower than the temperature required for effecting the partially molten state of the above mixture. Thus, the objective oxide superconductor in which a large number of grains having small grain size of a 451 phase (non-superconductor phase) are precipitated and distributed in the Bi2-yPbySr2CaCu2Ox phase, can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Bi2-yPbySr2CaCu2
Ox(以下、Bi2212と略す)系超電導体の製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention, Bi 2-y Pb y Sr 2 CaCu 2
O x The method for producing a (hereinafter, Bi2212 abbreviated) based superconductor.

【0002】[0002]

【従来の技術】従来より、Bi系超電導体線材は、銀シー
ス法及び塗布法に代表される加熱溶融法により作製され
ている。銀シース法は、所定の割合で混合した原料粉末
を銀管又は銀合金管に充填し、縮径加工や圧延加工を施
した後、熱処理を行う。塗布法は、酸化物粉末を含んだ
ペーストを銀又は銀合金基板上にディップコートなどの
方法で連続的に塗布して膜を形成後、熱処理を行う。い
ずれの場合も熱処理は、Bi2212相の部分溶融温度である
890℃付近まで昇温してBi2212相を部分溶融状態とし
た後、Bi2212相の晶出温度である850℃付近まで徐冷
することにより行う。かかる熱処理を施すことによりBi
2212系超電導体は、鱗片状結晶が積層したような極めて
高度に配向した組織を形成する。
2. Description of the Related Art Hitherto, Bi-based superconductor wires have been produced by a heat melting method represented by a silver sheathing method and a coating method. In the silver sheath method, a raw material powder mixed at a predetermined ratio is filled in a silver tube or a silver alloy tube, subjected to a diameter reduction process or a rolling process, and then heat-treated. In the application method, a paste containing an oxide powder is continuously applied to a silver or silver alloy substrate by a method such as dip coating to form a film, and then heat treatment is performed. In any case, the heat treatment is performed by raising the temperature to around 890 ° C., which is the partial melting temperature of the Bi2212 phase, to bring the Bi2212 phase into a partially molten state, and then gradually cooling it to around 850 ° C., which is the crystallization temperature of the Bi2212 phase. Do. By performing such heat treatment, Bi
The 2212-based superconductor forms an extremely highly oriented structure such as a stack of flaky crystals.

【0003】またバルク体や膜についても所定の成型体
を形成後或いは原料粉末を含んだスラリー又は有機酸塩
のような溶液を基板上に塗布後、同様の熱処理、徐冷を
行う方法が知られている。
[0003] In addition, for a bulk body or a film, there is also known a method of performing a similar heat treatment and gradual cooling after forming a predetermined molded body or applying a solution containing a raw material powder, such as a slurry or an organic acid salt, onto a substrate. Have been.

【0004】しかしながら、このような加熱溶融法によ
り作製されたBi2212系超電導体は、30K以下では高い
臨界電流密度と磁場特性を有するものの、この温度を超
えると磁場特性は、急激に低下してしまう。従って最も
利用の期待される液体窒素温度〜50Kの温度範囲にお
いては磁場が印加される環境下での使用は困難であると
いう問題を生じた。この30K以上の温度における特性
の低下の理由は、 Bi2212相中に有効なピンニング中心
が存在しないためと考えられている。
[0004] However, the Bi2212-based superconductor produced by such a heating and melting method has a high critical current density and a high magnetic field characteristic at 30 K or less, but when the temperature exceeds this temperature, the magnetic field characteristic rapidly decreases. . Therefore, there is a problem that it is difficult to use in an environment where a magnetic field is applied in a temperature range of liquid nitrogen temperature to 50 K which is expected to be most utilized. It is considered that the reason for the deterioration of the characteristics at a temperature of 30 K or more is that there is no effective pinning center in the Bi2212 phase.

【0005】一方、 Bi2212系超電導体を粉末法により
製造する方法も研究されつつある。例えば、「Physica
C 249(1995) 241-246」には、原料粉末を所定比で混合
して、これを750〜820℃で仮焼した後、850℃
で焼成し、この焼成の後、800℃程度で再加熱を行う
方法が記載されている。ここでの焼成(850℃)は、
粉末法における焼成、即ち、原料粉末を部分溶融させる
ことなく、固相反応をさせるにとどめるものである。
On the other hand, a method of producing a Bi2212 superconductor by a powder method is also being studied. For example, "Physica
C 249 (1995) 241-246 ", the raw material powder was mixed at a predetermined ratio, calcined at 750 to 820 ° C, and then 850 ° C.
And a method of reheating at about 800 ° C. after the firing. The firing here (850 ° C.)
The firing in the powder method, that is, the solid-phase reaction is performed without partially melting the raw material powder.

【0006】この粉末法により得られた Bi2212系超電
導体には、ピンニング中心の存在が確認されたが、その
粒径は大きく、またピンニング中心は Bi2212晶の粒子
の粒界に集中して存在しているため、有効なピンニング
中心とはならなかった。
The presence of pinning centers was confirmed in the Bi2212 superconductor obtained by this powder method, but the grain size was large, and the pinning centers were concentrated at the grain boundaries of the Bi2212 crystal grains. As a result, it was not a valid pinning center.

【0007】このように、 Bi2212系超電導体において
は、従来のいずれの製造方法を用いても有効なピンニン
グ中心を導入することはできず、そのため、臨界電流密
度及び磁場特性に限界を生じていた。
As described above, in the Bi2212-based superconductor, an effective pinning center cannot be introduced by any of the conventional manufacturing methods, and therefore, the critical current density and the magnetic field characteristics are limited. .

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、Bi2212系超電導体において、有効なピンニン
グ中心を多数導入し、幅広い温度領域において超電導体
の臨界電流密度及び磁場特性を向上させることを目的と
する。即ち、本発明は、 Bi2212系超電導体組織に小径
のピンニング中心を多数分布させる、つまり微細分散の
状態で存在させることにより、有効なピンニング中心を
導入することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and introduces a number of effective pinning centers in a Bi2212 superconductor to improve the critical current density and magnetic field characteristics of the superconductor in a wide temperature range. The purpose is to let them. That is, an object of the present invention is to introduce an effective pinning center by distributing a large number of small-diameter pinning centers in a Bi2212-based superconductor structure, that is, by allowing them to exist in a finely dispersed state.

【0009】[0009]

【課題を解決するための手段】本発明は、Bi2212系超電
導体において、原料粉末を所定の割合で混合してBi2-yP
bySr2CaCu2Oxの配合比率を有する混合物とし、前記混合
物を加熱して、Bi2-yPbySr2CaCu2Ox相を部分溶融状態と
し、次いでこれを徐冷してBi2-yPbySr2CaCu2Ox相を晶出
させ、次いで前記部分溶融状態とするに要した温度より
低い温度でアニールすることを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a Bi2212 superconductor, in which raw powders are mixed at a predetermined ratio to obtain Bi2 -yP.
a mixture having a mixing ratio of b y Sr 2 CaCu 2 O x , and heating the mixture, the Bi 2-y Pb y Sr 2 CaCu 2 O x phase and partially melted state, and then gradually cooled so Bi 2-y Pb y Sr 2 CaCu 2 O x layer was crystallized, then characterized by annealing at a temperature lower than the temperature required for the said partially melted state.

【0010】Biの一部をPbで置換するとともに部分溶融
−徐冷処理後、アニールすることにより、Bi2-yPbySr2C
aCu2Ox相を安定な相に分離するとともに、Bi2-yPbySr2C
aCu2Ox中に、ピンニング中心となる粒径の小さい(Pb B
i)4(Sr Ca)5CuOx相(以下、451相と略す)を析出さ
せることができる。
[0010] partial melting together a part of Bi is substituted by Pb - after annealing treatment, by annealing, Bi 2-y Pb y Sr 2 C
a Separate the Cu 2 O x phase into a stable phase and add Bi 2-y Pby y Sr 2 C
aCu during 2 O x, smaller particle diameters at a pinning center (Pb B
i) 4 (Sr Ca) 5 CuO x phase (hereinafter referred to as 451-phase) can be precipitated.

【0011】以下、本発明の酸化物超電導体の製造方法
を詳述する。
Hereinafter, the method for producing an oxide superconductor of the present invention will be described in detail.

【0012】本発明の製造方法では、まず、原料粉末と
して、超電導材料を構成する金属元素の酸化物、炭酸化
物等の化合物、例えば、Bi2O3、Pb2O3、CaCO3、SrCO3
CuO等を所定の割合で混合する。所定の割合とは、これ
らの原料粉末におけるBi、Pb、Sr、Ca、Cu、Oの各元素
が、Bi2-yPbySr2CaCu2Oxの比率となるような割合であ
る。本発明においては、鉛を添加することにより、ビス
マスの一部を鉛で置換したBi2212系超電導体が得られる
とともに、相平衡で安定な非超電導相である451相を
形成することができる。この451相は、Bi2212相中に
析出することによりピンニング中心となる。置換する鉛
の量は、ビスマスに対して1〜30%、好ましくは、1
0〜20%である。置換量が1%より少ないと、451
相が形成されず、有効なピンニング中心が得られない。
また、30%より多いと Bi2212相の形成が困難になり
超電導体を作製できなくなる。
In the production method of the present invention, first, as a raw material powder, a compound such as an oxide or a carbonate of a metal element constituting a superconducting material, for example, Bi 2 O 3 , Pb 2 O 3 , CaCO 3 , SrCO 3 ,
Mix CuO and the like at a predetermined ratio. The predetermined ratio, Bi in these raw material powders, Pb, Sr, Ca, Cu , the respective elements of O, a ratio such that the ratio of Bi 2-y Pb y Sr 2 CaCu 2 O x. In the present invention, by adding lead, a Bi2212-based superconductor in which a part of bismuth is replaced by lead can be obtained, and a 451 phase which is a phase-balanced and stable non-superconducting phase can be formed. The 451 phase becomes a pinning center by precipitating in the Bi2212 phase. The amount of lead to be replaced is 1 to 30% with respect to bismuth, preferably 1%.
0 to 20%. If the substitution amount is less than 1%, 451
No phase is formed and no effective pinning center is obtained.
On the other hand, if it is more than 30%, it is difficult to form a Bi2212 phase, so that a superconductor cannot be produced.

【0013】このように配合した原料粉末の混合物を熱
処理に先立って所望の形状に成形する。成形方法として
は、目的とする形状に応じて各種の成型方法を用いるこ
とができる。例えば、線材の場合、超電導粉末を銀管に
充填する銀シース法、超電導ペーストを銀或いは銀合金
基板上に塗布する方法が採用できる。またバルク体の場
合、ゴム型に原料粉末を充填、圧縮する加圧成形バルク
法が、膜の場合、ペースト或いは金属塩を銀の単結晶或
いは多結晶の基板上に塗布して成膜する方法や、スパッ
タや蒸着により原料粉末を基板上に成膜する方法などが
ある。
The mixture of the raw material powders thus mixed is formed into a desired shape prior to the heat treatment. As the molding method, various molding methods can be used depending on the desired shape. For example, in the case of a wire, a silver sheath method of filling a superconducting powder into a silver tube and a method of applying a superconducting paste on a silver or silver alloy substrate can be adopted. In the case of a bulk body, a pressure molding bulk method of filling and compressing a raw material powder in a rubber mold, and in the case of a film, a method of applying a paste or a metal salt on a silver single crystal or polycrystal substrate to form a film. And a method of forming a raw material powder on a substrate by sputtering or vapor deposition.

【0014】次に、得られた原料粉末の混合物の成型物
を加熱して、Bi2212相を部分溶融状態とする。この加熱
によって原料粉末の混合物は、液相に固相((Sr,Ca)-Cu
-O相及びBi-Sr-Ca-O相)が混在した状態、即ち部分溶融
状態となる。Bi2212相の部分溶融温度は、860〜90
0℃、銀管や銀板に接触させる方法で成形した場合には
約890℃である。本発明においては、870〜890
℃の温度で5〜15分程度加熱するのが望ましい。尚、
熱処理は電気炉でもゾーンメルティングでも行うことが
できる。
Next, the molded product of the mixture of the obtained raw material powders is heated to bring the Bi2212 phase into a partially molten state. By this heating, the mixture of the raw material powders is turned into a solid phase ((Sr, Ca) -Cu
-O phase and Bi-Sr-Ca-O phase) are mixed, that is, a partially melted state. The partial melting temperature of the Bi2212 phase is 860 to 90
The temperature is about 890 ° C when molded by a method of contacting with a silver tube or a silver plate at 0 ° C. In the present invention, 870 to 890
It is desirable to heat at a temperature of about 5 to 15 minutes. still,
The heat treatment can be performed by an electric furnace or zone melting.

【0015】次いで、これを徐冷して、Bi2212相を晶出
させるとともに、結晶成長させる。Bi2212相の晶出温度
は、850℃程度であるが、最終の到達温度は、結晶成
長の度合いや超電導特性に応じて適宜設定すればよい。
また、徐冷の冷却速度は、0.1〜10℃/分、より好
適には0.1〜5℃/分とする。
Next, this is gradually cooled to crystallize the Bi2212 phase and grow the crystal. The crystallization temperature of the Bi2212 phase is about 850 ° C., but the final temperature may be appropriately set according to the degree of crystal growth and superconductivity.
The cooling rate of the slow cooling is 0.1 to 10 ° C./min, more preferably 0.1 to 5 ° C./min.

【0016】徐冷を終えた化合物は、 Bi2212相のほぼ
単層からなり、Bi-O層のビスマスの一部が鉛で置換され
た状態になっている。このBi2212相は、800℃以下の
温度では準安定相であるが、徐冷後、アニールすること
により安定な相に分離する。
The compound which has been slowly cooled is substantially composed of a single layer of the Bi2212 phase, in which a part of bismuth in the Bi-O layer is replaced by lead. This Bi2212 phase is a metastable phase at a temperature of 800 ° C. or lower, but is separated into a stable phase by annealing after slow cooling.

【0017】アニールは、前記部分溶融状態とするに要
した温度よりも低い温度で行う。即ち、超電導体を再度
部分溶融状態としてはならない。具体的には、700か
ら850℃、より好ましくは700から800℃でアニ
ールを行う。このようなアニールを行うことにより45
1層が形成され、しかもこれは、 Bi2212相中に粒径の
微細なものが多数析出する。
The annealing is performed at a temperature lower than the temperature required for the partial melting state. That is, the superconductor must not be in a partially melted state again. Specifically, annealing is performed at 700 to 850 ° C, more preferably 700 to 800 ° C. By performing such annealing, 45
One layer is formed, and a large number of fine particles precipitate in the Bi2212 phase.

【0018】なお、451層の析出量は、置換した鉛の
量とアニールの時間によって変化する。アニール時間の
経過とともに451相の析出量は増大するが、150時
間以上のアニールを行うと Bi2212相の分解を生じて超
電導特性を低下させるので好ましくない。また、30時
間より少ないと451相の形成が困難になる。従ってア
ニール時間は、30時間〜150時間が好ましい。
The amount of precipitation of the 451 layer changes depending on the amount of replaced lead and the annealing time. As the annealing time elapses, the precipitation amount of the 451 phase increases, but annealing for 150 hours or more undesirably decomposes the Bi2212 phase and lowers the superconductivity. If the time is less than 30 hours, formation of the 451 phase becomes difficult. Therefore, the annealing time is preferably 30 hours to 150 hours.

【0019】このようにして得られたBi2212系超電導体
は、20〜50Kの環境下でも優れた磁場特性を示し、
各種用途に使用することができる。例えば、線材に成形
した場合には超電導マグネット及びケーブル導体に、ま
た、加圧バルク体に成形した場合、電流リード、限流器
用素子、磁気シールドに、また超電導膜に成形した場
合、限流器用素子、磁気シールド、アンテナ、フィルタ
ー等に使用することができる。
The Bi2212 superconductor thus obtained exhibits excellent magnetic field characteristics even in an environment of 20 to 50K.
It can be used for various purposes. For example, when formed into a wire, it becomes a superconducting magnet and a cable conductor, when it is formed into a pressurized bulk body, it becomes a current lead, an element for a current limiter, a magnetic shield, and when formed into a superconducting film, it becomes a It can be used for elements, magnetic shields, antennas, filters and the like.

【0020】[0020]

【実施例】以下、本発明の実施例を説明する。 実施例1 原料粉末として、Bi2O3、Pb2O3、SrCO3、CaCO3およびCa
Oをその配合比率を変えて混合し混合物を得た。配合比
率は、Bi2-yPbySr2CaCu2Oxのyの値が表1に示す値とな
るように変化させた。これら混合物を銀管に充填し、縮
径加工及び圧延加工を施した後、電気炉内に入れて最高
温度885℃になるまで昇温し、 Bi2212相を部分溶融
状態とした。次いでこれを冷却速度8℃/分で、830
℃に除冷した。しかる後、これを空気中、800℃で5
0時間アニールした。得られた超電導体の451相分率
及び40K、3テスラにおける臨界電流密度Jcを測定し
た結果を、表1に示す。
Embodiments of the present invention will be described below. Example 1 Bi 2 O 3 , Pb 2 O 3 , SrCO 3 , CaCO 3 and Ca
O was mixed at different mixing ratios to obtain a mixture. Compounding ratio, the value of y Bi 2-y Pb y Sr 2 CaCu 2 O x was varied so that the values shown in Table 1. The mixture was filled in a silver tube, subjected to diameter reduction and rolling, and then placed in an electric furnace and heated to a maximum temperature of 885 ° C., thereby bringing the Bi2212 phase into a partially molten state. This is then cooled at a cooling rate of 8 ° C./min.
It was cooled to ° C. After that, this is put in air at 800 ° C. for 5 minutes.
Annealed for 0 hours. Table 1 shows the measurement results of the 451 phase fraction and the critical current density Jc at 40 K and 3 Tesla of the obtained superconductor.

【0021】[0021]

【表1】 この結果からもわかるように、ビスマスの一部を鉛で置
換した原料を用い、所定条件でアニールするとにより、
40Kという温度領域においても極めて優れた臨界電流
密度を得ることができた。特に鉛の含有量を0.2とし
た場合に高い臨界電流密度を示した。
[Table 1] As can be seen from this result, by using a raw material in which a part of bismuth was replaced with lead and annealing under predetermined conditions,
An extremely excellent critical current density was obtained even in the temperature range of 40K. In particular, when the lead content was 0.2, a high critical current density was exhibited.

【0022】実施例2 原料粉末として、 Bi2O3、Pb2O3、SrCO3、CaCO3およびC
aOをBi1.8Pb0.2Sr2CaCu2Ox の配合比率を有するように
配合した混合物を用意し、これを銀管に充填し、縮径加
工及び圧延加工を施した後、電気炉内に入れて最高温度
885℃になるまで昇温し、 Bi2212相を部分溶融状態
とした。次いでこれを冷却速度8℃/分で830℃に徐
冷した。しかる後、これを空気中、アニール時間を様々
に変えて800℃でアニールした。得られた超電導体の
アニール時間と451相の相分率との関係を表2に示
す。
Example 2 Bi 2 O 3 , Pb 2 O 3 , SrCO 3 , CaCO 3 and C 2
Prepare a mixture of aO and Bi 1.8 Pb 0.2 Sr 2 CaCu 2 O x so as to have a compounding ratio, fill this into a silver tube, perform diameter reduction processing and rolling processing, and then put it in an electric furnace. Then, the temperature was raised to a maximum temperature of 885 ° C., and the Bi2212 phase was partially melted. Then, it was gradually cooled to 830 ° C. at a cooling rate of 8 ° C./min. Thereafter, it was annealed at 800 ° C. in air with various annealing times. Table 2 shows the relationship between the annealing time of the obtained superconductor and the phase fraction of the 451 phase.

【0023】[0023]

【表2】 この結果から、アニールを行うことにより451相が良
好に生ずることが分かった。特にアニール時間を30時
間以上に設定すると、高い451分率が得られる。
[Table 2] From this result, it was found that 451 phase was favorably generated by annealing. In particular, when the annealing time is set to 30 hours or more, a high 451 fraction can be obtained.

【0024】[0024]

【発明の効果】以上説明したように、本発明の酸化物超
電導体の製造方法によれば、Bi2212相中に粒径の小さい
451相(非超電導相)が多数析分布した酸化物超電導
体を得ることができる。即ち、Bi2212系超電導体におい
て、有効なピンニング中心を多数導入する事ができ、こ
れにより幅広い温度領域において超電導体の臨界電流及
び磁場特性を向上させることができた。
As described above, according to the method for manufacturing an oxide superconductor of the present invention, an oxide superconductor in which a large number of 451 phases (non-superconducting phases) having a small grain size are distributed in Bi2212 phase is obtained. Obtainable. That is, in the Bi2212 superconductor, a number of effective pinning centers could be introduced, and thereby the critical current and magnetic field characteristics of the superconductor could be improved in a wide temperature range.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G047 JA01 JB02 JC10 KC05 LA02 5G321 AA06 BA04 BA05 BA11 CA13 DB29 DB47  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G047 JA01 JB02 JC10 KC05 LA02 5G321 AA06 BA04 BA05 BA11 CA13 DB29 DB47

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原料粉末を所定の割合で混合してBi2-yPby
Sr2CaCu2Oxの配合比率を有する混合物とし、 前記混合物を加熱して部分溶融状態とし、 次いでこれを徐冷して、Bi2-yPbySr2CaCu2Ox相を晶出さ
せ、 さらに前記部分溶融状態とするに要した温度より低い温
度でアニールすることを特徴とする酸化物超電導体の製
造方法。
1. Bi -y Pb y is prepared by mixing raw material powders at a predetermined ratio.
A mixture having a mixing ratio of Sr 2 CaCu 2 O x, and partially melted state by heating the mixture, and then gradually cooled this crystallized the Bi 2-y Pb y Sr 2 CaCu 2 O x phase A method for producing an oxide superconductor, further comprising annealing at a temperature lower than a temperature required for the partial melting state.
【請求項2】原料粉末を所定の割合で混合してBi2-yPby
Sr2CaCu2Oxの配合比率を有する混合物とし、 前記混合物を860〜900℃で加熱して部分溶融状態
とし、 次いでこれを徐冷して、Bi2-yPbySr2CaCu2Ox相を晶出さ
せ、 さらに700〜850℃でアニールすることを特徴とす
る酸化物超電導体の製造方法。
2. A mixed raw material powder at a predetermined ratio Bi 2-y Pb y
A mixture having a mixing ratio of Sr 2 CaCu 2 O x, and partially melted state by heating the mixture at eight hundred sixty to nine hundred ° C., and then gradually cooled so, Bi 2-y Pb y Sr 2 CaCu 2 O x A method for producing an oxide superconductor, which comprises crystallizing a phase and further annealing at 700 to 850 ° C.
【請求項3】前記アニールを30時間以上行うことを特
徴とする請求項1又は2記載の酸化物超電導体の製造方
法。
3. The method according to claim 1, wherein the annealing is performed for 30 hours or more.
【請求項4】Bi2-yPbySr2CaCu2OxにおけるPbの含有量y
が0.02〜0.6の範囲であることを特徴とする請求
項1ないし3のいずれか1項記載の酸化物超電導体の製
造方法。
4. The content y of Pb in Bi 2-y Pby y Sr 2 CaCu 2 O x
Is in the range of 0.02 to 0.6, the method for producing an oxide superconductor according to any one of claims 1 to 3, wherein
JP10315604A 1998-11-06 1998-11-06 Production of oxide superconductor Pending JP2000143240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10315604A JP2000143240A (en) 1998-11-06 1998-11-06 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10315604A JP2000143240A (en) 1998-11-06 1998-11-06 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JP2000143240A true JP2000143240A (en) 2000-05-23

Family

ID=18067364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10315604A Pending JP2000143240A (en) 1998-11-06 1998-11-06 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JP2000143240A (en)

Similar Documents

Publication Publication Date Title
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JP2000143240A (en) Production of oxide superconductor
EP0371453A2 (en) Bismuth system oxide superconductors and preparation thereof
JP3330962B2 (en) Manufacturing method of oxide superconductor
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JP4011130B2 (en) Manufacturing method of oxide superconducting wire
JPH02252697A (en) Production of superconducting ceramic thin film
JPH0255298A (en) Method for growing oxide superconductor single crystal
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JPH0238359A (en) Production of superconductor
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH06211519A (en) Superconductor and its production
JPH05135634A (en) Manufacture of oxide superconductive wire
JPH03112810A (en) Production of oxide superconducting film
JPH0448518A (en) Manufacture of bismuth-based superconductor
JPH02141425A (en) Bismuth-based oxide superconducting material and production thereof
JPH08208229A (en) Bismuth superconductor element
JPH01160821A (en) Ceramic superconductor and production thereof
JPH01157453A (en) Production of oxide superconductor
JPH07172835A (en) Production of oxide superconductor
JPH06256021A (en) Production of oxide superconductor
JPH0412023A (en) Oxide superconductor
JPH01146214A (en) Manufacture of superconductor wire material
JPH03295811A (en) Bi-containing oxide superconducting thin film