JP2000130842A - Purifier - Google Patents

Purifier

Info

Publication number
JP2000130842A
JP2000130842A JP10300001A JP30000198A JP2000130842A JP 2000130842 A JP2000130842 A JP 2000130842A JP 10300001 A JP10300001 A JP 10300001A JP 30000198 A JP30000198 A JP 30000198A JP 2000130842 A JP2000130842 A JP 2000130842A
Authority
JP
Japan
Prior art keywords
water
circuit
hot water
water supply
bathtub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10300001A
Other languages
Japanese (ja)
Other versions
JP3924958B2 (en
Inventor
Kazuhito Uehara
一仁 上原
Hirofumi Kawashima
裕文 河島
Kazunori Sonedaka
和則 曽根高
Tetsuo Aoki
哲郎 青木
Ryushi Iwamoto
龍志 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30000198A priority Critical patent/JP3924958B2/en
Publication of JP2000130842A publication Critical patent/JP2000130842A/en
Application granted granted Critical
Publication of JP3924958B2 publication Critical patent/JP3924958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control For Baths (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To cleanly purify bathtub water by purging retained gas, always electrolytically decomposing by maintaining a current density constant, forming an aggregate layer having a stable preset aggregate amount on the surface of a filtering material, and aggregating and filtering a stain component of the water. SOLUTION: The method for controlling degassing of the purifier comprises the steps of switching various transfer valves to a degassing circuit, then operating a circulating pump 7, passing bathtub water 20 or opening a water heating valve 5 to pass the water, exhausting gas retained in an upper part of a filtering tank 12, stabilizing electrolytic decomposition of aluminum anode 25 and corrosion resistant metal cathode 27 arranged in the tank 12, and effectively generating the coagulant (aluminum hydroxide) from the anode 26. Thus, the aggregate layer is formed on a surface of a filtering material 13, and the water 20 is always clearly cleaned by the layer and the material 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浴槽水を、よりき
れいに浄化できる浄化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purifier capable of purifying bathtub water more clearly.

【0002】[0002]

【従来の技術】従来の代表技術として、本発明者らが先
に開示した風呂給湯器を図9に示す。
2. Description of the Related Art FIG. 9 shows a bath water heater disclosed by the present inventors as a conventional representative technology.

【0003】図9において、符号101は風呂給湯器の
全体構成を示し、給水をバーナで温水に加熱する給湯熱
交換器103と、給水路に設けられ、給水温度を検知す
る水温センサ102および給水流量を検知する水量セン
サ101と、出湯路に設けられ、温水温度を検知する給
湯センサ104および出湯流量を制御する給湯水量制御
弁105と、浴槽133の浴槽水134を循環しバーナ
で温水に加熱する風呂熱交換器111と、浴槽133か
ら前記風呂熱交換器111へ浴槽水134が流れる戻り
通路113と、浴槽水134の水位を検出する水位セン
サ114と、浴槽水134を循環させる循環ポンプ13
2と、浴槽水134の湯温を検知する風呂センサ109
と、給湯と風呂の通路を切り替える三方弁115および
風呂熱交換器111とバイパス通路131を切り替える
バイパス三方弁122と、給湯の出湯路と戻り通路11
3を接続する通路にそれぞれ設けられた給湯電磁弁12
0および縁切弁121と、前記風呂熱交換器111とバ
イパス通路131の合流点から下流側にそれぞれ設けら
れた上部往き通路123および下部往き通路128と、
前記上部往き通路123に設けられた排水三方弁124
と、この排水三方弁124の下流側にそれぞれ設けられ
た、排水口130およびろ過材125とアルミニウム陽
極126とステンレス陰極を兼用するろ過槽127と、
このろ過槽127と前記下部往き通路128の合流点に
設けられた循環三方弁129と、この循環三方弁129
から浴槽133へ浴槽水134が流れる往き通路112
と、浴槽133の浴槽水134が前記三方弁115へ流
れる戻り通路113を備えた風呂給湯器である。
[0003] In Fig. 9, reference numeral 101 denotes an overall configuration of a bath water heater, a hot water supply heat exchanger 103 for heating water to a hot water by a burner, a water temperature sensor 102 provided in a water supply passage and detecting a water supply temperature, and a water supply. A water flow rate sensor 101 for detecting a flow rate, a hot water supply sensor 104 for detecting a hot water temperature, a hot water supply quantity control valve 105 for controlling a hot water flow rate, and a bathtub water 134 of a bathtub 133 circulated through a hot water path and heated to hot water by a burner. Bath heat exchanger 111, a return passage 113 through which bath water 134 flows from bath 133 to bath heat exchanger 111, a water level sensor 114 for detecting the water level of bath water 134, and a circulation pump 13 for circulating bath water 134.
2 and a bath sensor 109 for detecting the temperature of the bath water 134
A three-way valve 115 for switching between hot water supply and a bath passage, a three-way bypass valve 122 for switching between a bath heat exchanger 111 and a bypass passage 131, a hot water supply passage and a return passage 11
Hot water supply solenoid valves 12 provided in the passages connecting
0 and an edge cutoff valve 121; an upper outgoing passage 123 and a lower outgoing passage 128 provided on the downstream side from the junction of the bath heat exchanger 111 and the bypass passage 131, respectively;
Drainage three-way valve 124 provided in the upper going passage 123
And a drainage port 130 and a filtration tank 127 provided also on the downstream side of the drainage three-way valve 124 and also serving as an aluminum anode 126 and a stainless steel cathode,
A circulating three-way valve 129 provided at the junction of the filtration tank 127 and the lower going passage 128;
Passage 112 through which bathtub water 134 flows from bathtub 133 to bathtub 133
And a bath water heater provided with a return passage 113 through which bath water 134 of the bath 133 flows to the three-way valve 115.

【0004】上記の浴槽水134の浄化メカニズムは、
循環ポンプ132を作動すると浴槽水134が戻り通路
113,三方弁115,循環ポンプ132,浴槽水13
4が設定温度より低い場合は、バイパス三方弁131を
風呂熱交換器111側に切り替え、上部往き通路123
を通り、排水三方弁124をろ過槽127側に切り替
え、ろ過槽127に配設したアルミニウム陽極126
(ステンレス陰極との間に通電させる)からアルミニウ
ムイオンが溶出し、浴槽水134の汚れ成分を凝集する
水酸化アルミニウムが生成し、前記水酸化アルミニウム
が汚れ成分を凝集し、ブロック化するとともに、ろ過材
125の表面部に凝集層が形成され、この凝集層があた
かも微細ろ過材層が形成され、細かな汚れ成分も浄化す
ることが可能となり、浴槽水をよりきれいに浄化し、ろ
過層127の下流側に設けた循環三方弁129を往き通
路112側に切り替え、往き通路112を通り浴槽13
2に戻る。
[0004] The purifying mechanism of the bathtub water 134 is as follows.
When the circulation pump 132 is operated, the bathtub water 134 returns to the return passage 113, the three-way valve 115, the circulation pump 132, and the bathtub water 13.
4 is lower than the set temperature, the bypass three-way valve 131 is switched to the bath heat exchanger 111 and the upper
, The drainage three-way valve 124 is switched to the filtration tank 127 side, and the aluminum anode 126 disposed in the filtration tank 127 is switched.
(Electricity is passed between the stainless steel cathode), aluminum ions are eluted, and aluminum hydroxide is generated to aggregate the dirt components of the bath water 134. The aluminum hydroxide aggregates and blocks the dirt components, and is filtered. An agglomerated layer is formed on the surface of the material 125, and the agglomerated layer forms a fine filter material layer, which makes it possible to purify even small dirt components. The circulation three-way valve 129 provided on the side is switched to the outgoing passage 112 side, and the bathtub 13 is passed through the outgoing passage 112.
Return to 2.

【0005】一方、浴槽水134が設定温度より高い場
合、もしくは風呂熱交換器111で加熱する必要がない
場合は、バイパス三方弁131をバイパス通路131側
に切り替え、上部往き通路123,排水三方弁124,
ろ過槽127で浄化、循環三方弁129,往き通路11
2を通り浴槽132に戻る。
On the other hand, if the bath water 134 is higher than the set temperature or if it is not necessary to heat the bath heat exchanger 111, the bypass three-way valve 131 is switched to the bypass passage 131, and the upper going passage 123, the drainage three-way valve 124,
Purification by filtration tank 127, circulation three-way valve 129, outgoing passage 11
2 and return to the bathtub 132.

【0006】当然のことであるが、上記各種の弁の切り
替えは、基本的に浄化信号を受けると、制御部(未図
示)により、各種の弁の切り換え終了後、循環ポンプ1
32を作動させる。また浄化信号と同時もしくは設定時
間に自動的に通電することによるアルミニウム陽極から
のアルミニウムイオンを溶出させ、ろ過材125の表面
部の凝集層で浴槽水を浄化する。
As a matter of course, the switching of the various valves is basically performed by the control unit (not shown) after the switching of the various valves is completed by the control unit (not shown) upon receiving the purification signal.
Activate 32. In addition, the aluminum ions from the aluminum anode are eluted by applying power automatically at the same time as the purification signal or at a set time, and the bath water is purified by the coagulation layer on the surface of the filter material 125.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、通電す
ると、アルミニウム陽極からアルミニウムイオンが溶出
する一方、当然アルミニウム陽極から酸素ガス、ステン
レス陰極から水素ガスが発生し、ろ過槽127の上部に
滞留する。この滞留ガスは、通電条件(通電電流×通電
時間)により、理論発生ガス量が決定され、前記通電条
件,通電電流×通電時間の和が小の場合は、滞留ガスは
少なく理論通電ができるが、凝集層が少なく、浄化性能
が不十分となる。また特に通電電流×通電時間の和が大
の場合は、浄化性能が向上するが、滞留ガスは多くなり
理論通電は可能であるが、アルミニウム陽極とステンレ
ス陰極の上部がガス空間層、たとえば電極が完全に水に
浸からない状態となり、電流密度が大となり、電解電圧
が著しく上昇するため、一般的な直流の定電流回路の上
限電圧を著しく高くする必要があり、前記制御部の定電
流回路を構成する電源トランスが大きくなり、かつ高価
な回路構成にする必要があることから、大変不経済であ
ること、さらにガス空間層が大となると、ろ過槽の上部
からの水流により、ガスがガス気泡となり、前記ガス気
泡がろ過材表面まで達し、ろ過材の表面部に形成された
凝集層を破壊し、浄化性能が著しく低下するという新た
な課題を見出したものである。
However, when electricity is supplied, while aluminum ions are eluted from the aluminum anode, oxygen gas is naturally generated from the aluminum anode and hydrogen gas is generated from the stainless steel cathode, and stays in the upper portion of the filtration tank 127. The amount of the theoretically generated gas of the staying gas is determined by the energizing conditions (the energizing current × the energizing time). When the sum of the energizing conditions and the energizing current × the energizing time is small, the amount of the staying gas is small and the theoretical energizing can be performed. In addition, there is little coagulation layer, and the purification performance becomes insufficient. In particular, when the sum of the energizing current × the energizing time is large, the purification performance is improved, but the accumulated gas increases and theoretical energization is possible, but the upper part of the aluminum anode and the stainless steel cathode is a gas space layer, for example, the electrode is Since it is not completely immersed in water, the current density becomes large, and the electrolytic voltage rises significantly, it is necessary to significantly increase the upper limit voltage of a general DC constant current circuit, and the constant current circuit of the control unit. It is very uneconomical to use a large power transformer and an expensive circuit configuration, and when the gas space layer is large, the gas flows from the upper part of the It has been found that a new problem has been found in that the gas bubbles reach the surface of the filter medium, break down the coagulated layer formed on the surface of the filter medium, and significantly reduce purification performance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1手段は、給水および浴槽水を温水に加
熱する加熱部と、給水回路に設けられ給水温度を検知す
る給水水温検知部および給水流量を検知する流量検知部
と、給湯回路に設けられ温水温度を検知する給湯水温検
知部および給湯流量を制御する給湯水量制御部と、浴槽
水循環回路に給湯する給湯弁部および前記給湯弁部の上
流に給湯水および浴槽水の流れを検知する水流検知部
と、前記浴槽水循環回路に浴槽水を循環する循環ポンプ
と、さらに浴槽水循環回路として循環回路,浄化回路,
排水回路の回路構成を設け、浄化回路の一部に上部にア
ルミニウム陽極と耐食性金属陰極とを対極に設け、下部
にろ過材を配設したろ過槽と、ろ過槽の下流側に浄化回
路と循環回路を切り換える切換弁A、循環ポンプと給湯
弁部との間に浴槽水循環回路を開閉する切換弁B、給湯
弁部とろ過槽との間に浄化回路と循環回路に切り換える
切換弁C、排水回路を開閉する切換弁Dを各々配設した
構成において、前記アルミニウム陽極と耐食性金属陰極
に通電した時に発生する生成ガスをろ過槽より排出する
手段として、切換弁A,切換弁B,切換弁C,切換弁D
をガス抜き回路に切り換えした後、前記ガス抜き回路に
一定時間通水してガス抜き制御手段を設けたものであ
る。
In order to solve the above-mentioned problems, a first means of the present invention is to provide a heating unit for heating feed water and bathtub water to hot water, and a feed water temperature provided in a feed water circuit for detecting the feed water temperature. A detection unit and a flow detection unit that detects a flow rate of the supply water; a hot water supply temperature detection unit that is provided in a hot water supply circuit and detects a hot water temperature; a hot water supply amount control unit that controls a hot water supply flow amount; a hot water supply valve unit that supplies hot water to a bathtub water circulation circuit; A water flow detection unit for detecting the flow of hot water and bath water upstream of the hot water supply valve unit, a circulation pump for circulating bath water in the bath water circulation circuit, and a circulation circuit, a purification circuit as a bath water circulation circuit,
A drainage circuit configuration is provided.A part of the purification circuit is provided with an aluminum anode and a corrosion-resistant metal cathode at the top at the counter electrode, and a filtration tank is provided at the bottom, and a purification circuit is circulated downstream of the filtration tank. A switching valve A for switching a circuit, a switching valve B for opening and closing a bathtub water circulation circuit between a circulation pump and a hot water supply valve section, a switching valve C for switching between a hot water supply valve section and a filtration tank between a purification circuit and a circulation circuit, and a drainage circuit. , A switching valve A, a switching valve B, a switching valve C, and a switching valve D as means for discharging generated gas generated when the aluminum anode and the corrosion-resistant metal cathode are energized are discharged from the filtration tank. Switching valve D
Is switched to a degassing circuit, and then water is passed through the degassing circuit for a certain period of time to provide degassing control means.

【0009】上記した第1手段によれば、切換弁A,切
換弁B,切換弁C,切換弁Dをガス抜き回路に切り換え
した後、前記ガス抜き回路に一定時間通水し、ろ過槽の
上部に通電電解して発生した酸素ガス,水素ガスの滞留
ガスを、ろ過槽の上部口より吸入通水し、前記滞留ガス
を追い出す(ガスパージ)ことにより、ろ過槽の上部ま
で満水状態として、通電電解することができ、常に電流
密度を一定密度で通電電解するとともに、低い電解電圧
を保ちながら、予め設定した凝集量がろ過材の表面部に
安定した凝集層が形成できる。この安定した凝集層の形
成により、浴槽水の汚れ成分を凝集ろ過して、浴槽水を
きれいに浄化することができる。
According to the first means, the switching valve A, the switching valve B, the switching valve C, and the switching valve D are switched to the gas venting circuit, and then water is passed through the gas venting circuit for a certain period of time. The retained gas of oxygen gas and hydrogen gas generated by conducting electrolysis to the upper part is sucked and passed through the upper port of the filtration tank, and the retained gas is expelled (gas purge) to fill the upper part of the filtration tank with water. Electrolysis can be performed, a current density is always supplied at a constant current density, and an aggregation layer having a predetermined aggregation amount and a stable aggregation amount can be formed on the surface of the filter medium while maintaining a low electrolysis voltage. Due to the formation of the stable coagulation layer, the dirt component of the bathtub water can be coagulated and filtered to clean the bathtub water.

【0010】また、前記電解電圧が低電圧になることに
より、一般的に、浴槽水循環回路の一部に通電する場
合、直流電解電圧は30V以下が望ましいことから、定
電流回路に使用する電源トランスを小型化したものが使
用できることから、制御部の設置スペースを小さくで
き、安全性と経済性とを兼ね備えた浄化装置を構成する
ことができる。
[0010] In addition, when the electrolytic voltage becomes low, generally when a part of the bathtub water circulation circuit is energized, the DC electrolytic voltage is preferably 30 V or less. Can be used, the installation space for the control unit can be reduced, and a purification device having both safety and economy can be configured.

【0011】[0011]

【発明の実施の形態】本発明の第1実施形態は、給水お
よび浴槽水を温水に加熱する加熱部と、給水回路に設け
られ給水温度を検知する給水水温検知部および給水流量
を検知する流量検知部と、給湯回路に設けられ温水温度
を検知する給湯水温検知部および給湯流量を制御する給
湯水量制御部と、浴槽水循環回路に給湯する給湯弁部お
よび前記給湯弁部の上流に給湯水および浴槽水の流れを
検知する水流検知部と、前記浴槽水循環回路に浴槽水を
循環する循環ポンプと、さらに浴槽水循環回路として循
環回路,浄化回路,排水回路の回路構成を設け、浄化回
路の一部に上部にアルミニウム陽極と耐食性金属陰極と
を対極に設け、下部にろ過材を配設したろ過槽と、ろ過
槽の下流側に浄化回路と循環回路を切り換える切換弁
A、循環ポンプと給湯弁部との間に浴槽水循環回路を開
閉する切換弁B、給湯弁部とろ過槽との間に浄化回路と
循環回路に切り換える切換弁C、排水回路を開閉する切
換弁Dを各々配設した構成において、前記アルミニウム
陽極と耐食性金属陰極に通電した時に発生する生成ガス
をろ過槽より排出する手段として、切換弁A,切換弁B
を、切換弁C,切換弁Dをガス抜き回路に切り換えした
後、前記ガス抜き回路に一定時間通水してガス抜き制御
手段を有するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention comprises a heating section for heating feed water and bathtub water to hot water, a feed water temperature detecting section provided in a feed water circuit for detecting feed water temperature, and a flow rate for detecting feed water flow rate. A detecting unit, a hot water temperature detecting unit provided in the hot water circuit for detecting hot water temperature and a hot water amount control unit for controlling the hot water flow rate, a hot water valve unit for supplying hot water to the bathtub water circulation circuit, and hot water upstream of the hot water valve unit; A water flow detection unit for detecting the flow of bath water, a circulation pump for circulating bath water in the bath water circulation circuit, and a circuit configuration of a circulation circuit, a purification circuit, and a drain circuit as the bath water circulation circuit, and a part of the purification circuit. The upper part is provided with an aluminum anode and a corrosion-resistant metal cathode at the opposite electrode, the lower part is provided with a filter medium, the switching valve A for switching between the purification circuit and the circulation circuit downstream of the filtration tank, the circulation pump and A switching valve B for opening and closing the bathtub water circulation circuit is provided between the valve unit, a switching valve C for switching between the purification circuit and the circulation circuit between the hot water supply valve unit and the filtration tank, and a switching valve D for opening and closing the drainage circuit. In the structure, a switching valve A and a switching valve B are provided as means for discharging generated gas generated when current is supplied to the aluminum anode and the corrosion-resistant metal cathode from the filtration tank.
After switching the switching valves C and D to the degassing circuit, water is passed through the degassing circuit for a certain period of time to have degassing control means.

【0012】そして、アルミニウム電極と耐食性金属陰
極に通電することより、発生する生成ガス(酸素ガス,
水素ガス)がろ過槽の上部に滞留する滞留ガスを、ろ過
槽の上部に設けた吸入口から通水し、前記滞留ガスをガ
ス抜きすることにより、安定した凝集剤が生成し、ろ過
材の表面部に凝集層として形成され、浴槽水の汚れ成分
をきれいにろ過浄化することができる。
[0012] Then, when a current is supplied to the aluminum electrode and the corrosion-resistant metal cathode, generated gas (oxygen gas,
Hydrogen gas) is passed through a suction port provided in the upper part of the filtration tank through a stagnant gas that stagnates in the upper part of the filtration tank, and degass the stagnant gas, whereby a stable flocculant is generated, and Formed as a cohesive layer on the surface, it is possible to cleanly filter and purify dirt components of bath water.

【0013】本発明の第2実施形態は、通水手段とし
て、循環ポンプによる浴槽水の通水または給湯弁部の開
による給水の通水する通水制御手段を有するものであ
る。
The second embodiment of the present invention has a water flow control means for flowing water of a bathtub by a circulation pump or water supply by opening a hot water supply valve as water flow means.

【0014】そして、循環ポンプによる浴槽水の循環
は、簡便作動でガス抜きができる。一方、給湯弁部と水
量制御部を設定された制御にするのに、やや時間が必要
となるが、予め設定した水量で確実にガス抜きができ
る。
[0014] Circulation of the bathtub water by the circulating pump allows gas to be removed by simple operation. On the other hand, although it takes a little time to perform the set control of the hot water supply valve unit and the water amount control unit, the gas can be surely vented with the water amount set in advance.

【0015】本発明の第3実施形態は、アルミニウム陽
極と耐食性金属陰極の設定通電時間内に複数回通水する
制御手段を有するものである。
The third embodiment of the present invention has a control means for allowing water to flow a plurality of times within the set energizing time of the aluminum anode and the corrosion-resistant metal cathode.

【0016】そして、設定通電時間に発生した滞留ガス
を複数回に別けて、通水排出させることにより、滞留ガ
ス量を電解電圧に影響しない、すなわち安定した電流密
度、低電圧に保つ最少限量に留めることにより、ろ過材
の表面部に凝集層を、より確実に形成できる。
The accumulated gas generated during the set energizing time is separated into a plurality of times and discharged through the water, so that the amount of the accumulated gas does not affect the electrolysis voltage, that is, the amount of the accumulated gas can be kept at a stable current density and the minimum amount for maintaining a low voltage. By fixing, the aggregate layer can be more reliably formed on the surface of the filter medium.

【0017】本発明の第4実施形態は、アルミニウム陽
極と耐食性金属陰極に、通電と非通電の繰り返し制御に
おいて、前記非通電時に通水する制御手段を有したもの
である。
The fourth embodiment of the present invention has a control means for passing water to the aluminum anode and the corrosion-resistant metal cathode during the non-energization in the repetitive control of energization and non-energization.

【0018】そして、まず通電と非通電をくり返すこと
により、、特に非通電時、生成ガスを上部に上昇させ、
電極面から脱離させると、次の通電時、生成ガスがない
ことから、電解電圧を低い状態から開始できること、さ
らに非通電時に通水することにより、滞留ガスをより確
実に排出することができる。
First, by repeating the energization and the non-energization, the generated gas is raised to the upper part especially when the energization is not performed,
When desorbed from the electrode surface, at the next energization, there is no generated gas, so that the electrolysis voltage can be started from a low state, and by passing water when not energized, the stagnant gas can be more reliably discharged. .

【0019】本発明の第5実施形態は、アルミニウム陽
極と耐食性金属陰極に通電する前に、通水する制御手段
を有したものである。
The fifth embodiment of the present invention has a control means for passing water before energizing the aluminum anode and the corrosion-resistant metal cathode.

【0020】そして、通電する前に、通水し滞留ガス
(生成ガス,溶存空気分離ガスおよび空気ガス)をガス
抜きすることにより、常に滞留ガスをなくし、通電、す
なわち電解電圧を低い状態から開始できる。
Before the energization, the accumulated gas (product gas, dissolved air separation gas and air gas) is degassed by passing water to eliminate the stagnant gas. it can.

【0021】本発明の第6実施形態は、給湯弁部の開
時、給水を加熱通水する制御手段を有したものである。
The sixth embodiment of the present invention has a control means for heating and supplying water when the hot water supply valve is opened.

【0022】そして、加熱通水することにより、ろ過槽
内の滞留ガスが加熱通水に加熱され、ガスが体積膨脹し
て浮上しやすくして、ガス抜き時間を短くできる。
Then, by passing the water through heating, the gas retained in the filtration tank is heated by the water passing through the water, and the gas expands in volume and easily floats, so that the gas removing time can be shortened.

【0023】本発明の第7実施形態は、給水を少なくと
も60℃以下に加熱する制御手段を有したものである。
The seventh embodiment of the present invention has a control means for heating the feed water to at least 60 ° C. or less.

【0024】そしてまた、60℃以上に加熱された高温
水を通水すると、ろ過材の表面部に形成された凝集層が
破壊され、浄化性能が低下することから、凝集層が破壊
されない温度とガス抜き時間を考慮し、60℃以下が望
ましい。
Further, when high-temperature water heated to 60 ° C. or more is passed through, the coagulated layer formed on the surface of the filter medium is destroyed and the purification performance is reduced. The temperature is preferably 60 ° C. or less in consideration of the degassing time.

【0025】[0025]

【実施例】以下、本発明の実施例における浄化装置につ
いて図面を用い説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a purifying apparatus according to an embodiment of the present invention.

【0026】(実施例1)図1は浄化装置の概略構成、
図2は生成ガスのガス抜き制御の概略フローチャート、
図3はガス抜き制御の概略タイムチャート、図4はガス
抜き回路構成を各々示す。
(Embodiment 1) FIG. 1 shows a schematic configuration of a purifying apparatus,
FIG. 2 is a schematic flowchart of the degassing control of the generated gas,
FIG. 3 is a schematic time chart of degassing control, and FIG. 4 shows a degassing circuit configuration.

【0027】図1において、水は水入口より水温センサ
からなる給水水温検知部1、水量センサからなる流量検
知部2を通り、熱交換器と燃焼バーナからなる加熱部1
8で熱を吸収して、給湯水量制御部4、給湯センサから
なる給湯水温検知部3を通り、湯出口(未符号)より放
出される。
In FIG. 1, water passes from a water inlet through a feed water temperature detecting section 1 comprising a water temperature sensor and a flow rate detecting section 2 comprising a water quantity sensor, and passes through a heating section 1 comprising a heat exchanger and a combustion burner.
The heat is absorbed at 8 and passes through a hot water supply amount control unit 4 and a hot water temperature detecting unit 3 including a hot water supply sensor, and is discharged from a hot water outlet (unsigned).

【0028】浴槽水20は、循環ポンプ7により浴槽1
9に取りつけられた風呂接続アダプタ21,戻り通路2
2,ふろセンサからなる浴槽水水温検知部8、水位セン
サからなる水位検知部25,循環ポンプ7,二方弁から
なる切換弁B15,水流スイッチからなる水流検知部
6,加熱部18,三方弁からなる切換弁C16,三方弁
からなる切換弁A14,往き通路23,風呂接続アダプ
タ21の浴槽水循環回路の循環回路を循環する。また浴
槽水20は、循環ポンプ7により浴槽19に取りつけら
れた風呂接続アダプタ21,戻り通路22,ふろセンサ
からなる浴槽水水温検知部8,循環ポンプ7,二方弁か
らなる切換弁B15,水流スイッチからなる水流検知部
6,加熱部18,三方弁からなる切換弁C16,ろ過材
13(アルミナボール:粒子径0.3〜0.5mmを使
用)を配設しているろ過槽12,三方弁からなる切換弁
A14,往き通路23,風呂接続アダプタ21の浴槽水
循環回路の浄化回路を循環する。
The bathtub water 20 is supplied to the bathtub 1 by the circulation pump 7.
Bath connection adapter 21 attached to 9, return passage 2
2, a bathtub water temperature detecting section 8 composed of a bath sensor, a water level detecting section 25 composed of a water level sensor, a circulation pump 7, a switching valve B15 composed of a two-way valve, a water flow detecting section 6 composed of a water flow switch 6, a heating section 18, and a three-way valve. , A switching valve A14 comprising a three-way valve, an outgoing passage 23, and a circulation circuit of a bathtub water circulation circuit of the bath connection adapter 21. The bathtub water 20 includes a bath connection adapter 21 attached to the bathtub 19 by the circulation pump 7, a return passage 22, a bathtub water temperature detection unit 8 including a bath sensor, a circulation pump 7, a switching valve B <b> 15 including a two-way valve, and a water flow. A water flow detection unit 6 comprising a switch, a heating unit 18, a switching valve C16 comprising a three-way valve, a filtration tank 12 provided with a filtering material 13 (alumina ball: using a particle diameter of 0.3 to 0.5 mm), a three-way valve A switching valve A14 comprising a valve, an outgoing passage 23, and a purification circuit of a bathtub water circulation circuit of the bath connection adapter 21 are circulated.

【0029】一方、浴槽19への給湯は、水は注湯弁か
らなる給湯弁部5を開くと、水は水入口より水温センサ
からなる給水水温検知部1、水量センサからなる流量検
知部2を通り、熱交換器と燃焼バーナからなる加熱源1
8で熱を吸収して、給湯水量制御部4、給湯センサから
なる給湯水温検知部3、給湯弁部5を通り、給湯機能制
御(詳細は省略する)、すなわち二方弁からなる切換弁
B15を開制御すると、2回路給湯として、循環ポンプ
7,戻り通路22と加熱部18,切換弁C,循環回路
9,往き通路23を各々通り、浴槽19に取りつけられ
た風呂接続アダプタ21よりお湯はりされる。一方、二
方弁からなる切換弁B15を閉制御すると、1回路給湯
として、加熱部18,切換弁C16,循環回路9,往き
通路23を各々通り、浴槽19に取りつけられた風呂接
続アダプタ21よりお湯はりされる。本発明では、詳述
しないが、特に全自動の場合、符号は省略しているが、
戻り通路22と循環ポンプ7との間に、お湯はり水位
(湯量)を検知する水位センサ25により、浴槽水20
を正確にお湯はり時、自動足し湯する時に用いる。
On the other hand, when the hot water is supplied to the bathtub 19, the water is opened by opening the hot water supply valve section 5 composed of a pouring valve, and the water is supplied from the water inlet to a supplied water temperature detecting section 1 composed of a water temperature sensor and a flow rate detecting section 2 composed of a water quantity sensor. Source 1 consisting of a heat exchanger and a combustion burner
Heat is absorbed at 8, and the water passes through a hot water supply amount control unit 4, a hot water temperature detection unit 3 comprising a hot water supply sensor, and a hot water supply valve unit 5 to control hot water supply functions (details are omitted), that is, a switching valve B15 comprising a two-way valve. , The hot water is supplied from the bath connection adapter 21 attached to the bathtub 19 through the circulation pump 7, the return passage 22 and the heating unit 18, the switching valve C, the circulation circuit 9, and the outgoing passage 23. Is On the other hand, when the switching valve B15 composed of a two-way valve is controlled to be closed, the bath connection adapter 21 attached to the bathtub 19 passes through the heating unit 18, the switching valve C16, the circulation circuit 9, and the outgoing passage 23 as one-circuit hot water supply. Hot water is removed. In the present invention, although not described in detail, particularly in the case of fully automatic, reference numerals are omitted,
Between the return passage 22 and the circulation pump 7, the bathtub water 20 is detected by a water level sensor 25 for detecting a hot water level (amount of hot water).
Used for accurate hot watering and automatic hot water.

【0030】他方、ろ過槽12は、上記した顆粒状のア
ルミナボールからなるろ過材13(図示は省略している
が、ろ過材13を保持するろ床の上部に充填されてい
る)と、前記ろ過材13の上部に一定の空間を設け、円
筒形状からなるアルミニウム陽極26と、アルミニウム
陽極26の外周に耐食性金属陰極として、円筒形状のス
テンレス陰極27を対極に設けた構成からなる。
On the other hand, the filter tank 12 is provided with a filter medium 13 made of the above-mentioned granular alumina balls (illustration is omitted, but is filled in the upper part of a filter bed holding the filter medium 13) and the above-mentioned filter tank. A fixed space is provided in the upper part of the filtering material 13, and a cylindrical aluminum anode 26 is provided on the outer periphery of the aluminum anode 26, and a cylindrical stainless steel cathode 27 is provided on the outer periphery of the aluminum anode 26 as a counter electrode.

【0031】図4において、まず浴槽水20を利用して
通水するガス抜き制御は、手動でリモコン24の浄化S
Wを「ON」すると、まず各種切換弁A,B,C,Dを
浄化回路に切り換え、循環ポンプ7が作動し、浴槽水2
0が浄化回路を循環するとともに、凝集通電が開始され
る。そして凝集通電が一定時間経過すると、循環ポンプ
が停止し、各種切換弁A,B,C,Dをガス抜き回路に
切り換える。すなわち、浴槽水20の戻り回路22の一
部に設けている切換弁B15を「開」に切り換え、浴槽
水20が循環する循環水回路に切り換える。またろ過槽
12の下部に設けた切換弁A14を前記ろ過槽12から
の通水を無くするように、「閉」回路に切り換える。ま
た、浄化回路10側と循環回路9側に切り換える切換弁
C16を浄化回路10側に切り換える。そしてまた、ろ
過槽12から排水回路11側に切り換える切換弁D17
を排水回路11側に切り換える。ここで重要なことは、
前記ろ過槽12の下部に設けた切換弁A14を、必ず
「閉」回路に切り換え、ガス抜き通水することがポイン
トである。
In FIG. 4, first, degassing control for passing water using the bathtub water 20 is performed by manually purifying S
When W is turned "ON", first, the various switching valves A, B, C, and D are switched to the purification circuit, the circulation pump 7 is operated, and the bathtub water 2 is turned on.
0 circulates in the purification circuit, and coagulation energization is started. Then, when a certain period of time has passed for the coagulation energization, the circulation pump is stopped, and the various switching valves A, B, C, and D are switched to the degassing circuit. That is, the switching valve B15 provided in a part of the return circuit 22 of the bathtub water 20 is switched to “open”, and the switch is switched to the circulating water circuit in which the bathtub water 20 circulates. Further, the switching valve A14 provided at the lower portion of the filtration tank 12 is switched to a "closed" circuit so as to eliminate the flow of water from the filtration tank 12. Further, the switching valve C16 that switches between the purification circuit 10 side and the circulation circuit 9 side is switched to the purification circuit 10 side. Further, a switching valve D17 for switching from the filtration tank 12 to the drain circuit 11 side.
To the drain circuit 11 side. The important thing here is that
The point is that the switching valve A14 provided at the lower part of the filtration tank 12 is always switched to the "closed" circuit, and the water is vented.

【0032】上述した各種切換弁をガス抜き回路に切り
換えた後、循環ポンプ7を一定時間作動させる。もし、
ろ過槽12の下部に設けた切換弁A14が「開」で通水
すると、ろ過槽12の上部に設けた浄化回路10から通
水された水がろ過槽12を通り、前記ろ過槽12の上部
に滞留している滞留ガス28は、下流側に流れようとす
るだけで、ガスは流速に打ち勝ってすぐに浮上してしま
う。前記現象を繰り返すだけで、ガス抜きすることがで
きない。一方、本発明のろ過槽12の下部に設けた切換
弁A14を「閉」で通水すると、ろ過槽12の上部に設
けた浄化回路10から通水の一部が流入し、ろ過槽12
の下部への流れがないため、ろ過槽12内が満水になる
方向となり、当然ろ過槽12の上部の滞留ガス28が吸
入水により、押し出され、排水回路11側に流出され
る。本発明者らは、なぜ滞留ガス28が排出されるか現
象を突き止めた。すなわち、浄化回路10から排水回路
11側に通水すると、通水流により、ろ過槽12の上部
の吸入口部29が負圧状態となり、ろ過槽12上部の滞
留ガス28が通水流に混入され排出される。この現象
は、あたかも通水流が空気を吸い込むの現象であるエジ
ェクタと同作用となるもので、滞留ガス28が排出され
ると、吸入口部29から通水の一部が流入し、ろ過槽1
2内が満水になる方向と作用するものである。図中、黒
三角は、「閉」回路を意味する。
After switching the various switching valves to the gas venting circuit, the circulation pump 7 is operated for a certain period of time. if,
When the switching valve A14 provided at the lower part of the filtration tank 12 flows in the "open" state, the water passed from the purification circuit 10 provided at the upper part of the filtration tank 12 passes through the filtration tank 12, and the upper part of the filtration tank 12 The stagnated gas 28 that has stayed in the air just tries to flow downstream, and the gas overcomes the flow velocity and immediately floats. Degassing cannot be performed only by repeating the above phenomenon. On the other hand, when the switching valve A14 provided at the lower part of the filtration tank 12 according to the present invention is passed in a “closed” state, a part of the water flows from the purification circuit 10 provided at the upper part of the filtration tank 12, and
Since there is no flow to the lower part of the filter tank 12, the inside of the filter tank 12 is in a direction of being filled with water. Naturally, the retained gas 28 in the upper part of the filter tank 12 is pushed out by the suction water and flows out to the drain circuit 11 side. The present inventors have identified a phenomenon why the staying gas 28 is discharged. That is, when water is passed from the purification circuit 10 to the drain circuit 11 side, the water flow causes the suction port 29 at the upper part of the filtration tank 12 to be in a negative pressure state, and the stagnant gas 28 at the upper part of the filtration tank 12 is mixed into the water flow and discharged. Is done. This phenomenon has the same effect as that of an ejector, which is a phenomenon in which a flowing water sucks air. When the stagnant gas 28 is discharged, a part of the flowing water flows in from a suction port 29 and the filtration tank 1
It works with the direction in which the inside of 2 becomes full. In the figure, a black triangle means a “closed” circuit.

【0033】そして、ガス抜き回路で循環ポンプ7を再
び作動し、一定時間ガス抜き通水を行い、設定時間経過
すると、循環ポンプ7を停止し、再び各種切換弁A,
B,C,Dを浄化回路に切り換え、浄化運転する。図示
はしていないが、給湯弁部5使用して通水する場合は、
切換弁B15を「閉」回路、上述した切換弁A14,C
16,D17はガス抜き回路とし、前記給湯弁部5を
「開」とし、一定時間通水することにより、ろ過槽12
の上部に滞留している滞留ガス29を同作用で排出する
ことができる。
Then, the circulating pump 7 is operated again in the degassing circuit, water is vented for a certain period of time, and after a lapse of a set time, the circulating pump 7 is stopped and the various switching valves A,
B, C, and D are switched to the purification circuit, and the purification operation is performed. Although not shown, when water is supplied using the hot water supply valve section 5,
The switching valve B15 is closed, and the switching valves A14 and C described above are used.
Reference numerals 16 and D17 denote degassing circuits. The hot water supply valve section 5 is opened and water is supplied for a certain period of time so that the filtration tank 12
The stay gas 29 staying in the upper part of the gas can be discharged by the same action.

【0034】前記に記述した通水を時間制御する一定時
間とは、ガス抜き時間を意味し、電解通電条件による生
成ガス量と通水量により決定させる。一例で説明する
と、ろ過槽12の大きさが内径φ100mm,高さ25
0mm,ろ過材13の顆粒径0.3〜0.5mmでろ過
材層60mm,アルミニウム陽極26形状として、外径
φ75mm,長さ100mm,内径φ40の穴形状,ス
テンレス陰極27形状として、内径φ90,長さ100
mmで、板厚0.6mmで、前記ろ過槽12の上部面と
アルミニウム陽極26,ステンレス陰極27を同一面と
し、前記ろ過槽12の上部面と電極の上面との空間距離
15mmの場合、(1)通電電流:350mA,(2)
通電時間:30分で発生する生成ガス量は、約120c
3 (詳細な計算は省略する……クーロンの法則),
(3)通水量:6l/分において、(4)ガス抜き時
間:35秒以上が必要で、好ましくは40秒が最適条件
であった。
The above-mentioned constant time for controlling the flow of water refers to the degassing time, which is determined by the amount of generated gas and the amount of flow of water under the electrolysis energizing conditions. For example, the size of the filtration tank 12 is 100 mm in inner diameter and 25 mm in height.
0 mm, granule diameter of filter medium 13 is 0.3 to 0.5 mm, filter layer 60 mm, aluminum anode 26 shape, hole diameter of outer diameter φ75 mm, length 100 mm, inner diameter φ40, stainless steel cathode 27 shape, inner diameter φ90, Length 100
mm, the plate thickness is 0.6 mm, the upper surface of the filtration tank 12 and the aluminum anode 26 and the stainless steel cathode 27 are on the same plane, and the spatial distance between the upper surface of the filtration tank 12 and the upper surface of the electrode is 15 mm. 1) Energizing current: 350 mA, (2)
Energization time: The amount of gas generated in 30 minutes is about 120 c
m 3 (Detailed calculation is omitted ... Coulomb's law),
(3) At a flow rate of 6 l / min, (4) degassing time: 35 seconds or more was required, and preferably 40 seconds was the optimal condition.

【0035】(実施例2)実施例1では詳述しなかった
が、浴槽水20の汚れ度が濁度2.0度の場合、前記濁
度2.0度を1.0度(本発明者らが目視評価できれい
と感じる濁度)にするための電解通電条件は、(1)通
電電流:350mA,(2)通電時間:60分,(a)
浴槽水20の循環流量条件:6l/分で浄化することが
できるが、前記条件での発生する生成ガス量は、約24
0cm3 の場合、約30分で電極の上面に滞留ガス29
が達し、そのまま通電すると、電極の上部が水に浸せき
しないままとなり、当然電解電圧が上昇、言い換えれば
電流密度が大となり、通電用定電流回路に大きく影響し
てしまう。一例であるが、通電用定電流回路の最大電圧
は、入浴する水回路に使用する場合、30V以下が望ま
しいことから、前記滞留ガスが多量に発生し、電解電圧
が、30V以上になると、定電流回路では、設定した通
電電流が低下する。通電電流が低下することは、必要な
凝集剤の生成と、ろ過材13の表面部に形成する凝集層
が少なくなり、浄化機能が低下してしまうことから、電
極の上部に滞留ガスが達しない前に、前記滞留ガスをガ
ス抜き回路にし、ガス抜き通水する必須条件となる。
(Example 2) Although not described in detail in Example 1, when the turbidity of the bathtub water 20 is 2.0 degrees, the turbidity 2.0 degrees is changed to 1.0 degrees (the present invention). The electrolysis energizing conditions for making the turbidity that they feel clean by visual evaluation) are (1) energizing current: 350 mA, (2) energizing time: 60 minutes, (a)
The circulating flow condition of the bathtub water 20 can be purified at a rate of 6 l / min.
In the case of 0 cm 3 , the stagnant gas 29
When the current is passed, the upper part of the electrode is not immersed in water, so that the electrolytic voltage naturally increases, in other words, the current density increases, which greatly affects the current-carrying constant current circuit. As an example, the maximum voltage of the constant current circuit for energization is preferably 30 V or less when used in a bathing water circuit. Therefore, when a large amount of the stagnant gas is generated and the electrolysis voltage becomes 30 V or more, the maximum voltage becomes constant. In the current circuit, the set conduction current decreases. The decrease in the conduction current decreases the generation of the necessary coagulant and the amount of the coagulation layer formed on the surface of the filter medium 13 and the purification function is reduced, so that the accumulated gas does not reach the upper part of the electrode. Before that, it becomes an essential condition to make the staying gas into a degassing circuit and to vent and flow water.

【0036】よって設定通電時間内に複数回ガス抜き通
水制御が必要で、前記ガス抜き通水制御として、ガス抜
き回数は、通電電解条件により異なるが、滞留ガスの理
論生成量が10〜100cm3 に1回程度ガス抜き通水
することが望ましい。上述したろ過槽構成では、本発明
者らの実験検証により、(1)通電電流:350mAの
場合、10分〜20に1回ガス抜き通水することによ
り、確実に滞留ガスを排出させると、電解電圧が上昇す
ることなく、安定した低電圧で通電ができ、浴槽水の浄
化性能を安定して保持することができる。
Therefore, it is necessary to perform degassing and water flow control a plurality of times within the set energizing time. In the degassing and water flow control, the number of times of degassing varies depending on the electrolysis conditions, but the theoretical amount of retained gas is 10 to 100 cm. It is desirable to degas and pass water about 3 times. In the above-described filtration tank configuration, according to the experimental verification of the present inventors, (1) when the energizing current is 350 mA, the degassing water is surely discharged by degassing and passing water once every 10 to 20 minutes. Electricity can be supplied at a stable low voltage without increasing the electrolysis voltage, and the bathtub water purification performance can be stably maintained.

【0037】(実施例3)通電電解制御とガス抜き制御
の制御方法を、図5(a)のフローチャート、(b)の
タイムチャートに示す。
(Embodiment 3) A control method of the electrolysis control and the degassing control is shown in a flowchart of FIG. 5A and a time chart of FIG.

【0038】図中、通電電解制御として、通電と非通電
を繰り返し制御するとともに、前記非通電に、ガス抜き
制御として、各種切換弁をガス抜き回路に切り換え後、
循環ポンプを作動し通水するか、または給湯弁部を開と
して給水するものである。
In the drawing, the energization and de-energization are repeatedly controlled as energization electrolysis control, and after the various switching valves are switched to the degassing circuit as the de-energization and gas release control,
Water is supplied by operating a circulation pump or by opening a hot water supply valve.

【0039】非通電にガス抜き通水することにより、前
記非通電時、生成ガスは電極表面から脱離し、ろ過槽の
上部に上昇滞留させることにより、通水により確実に滞
留ガスを排出できる。また非通電時、生成ガスは電極表
面から脱離することにより、ガス分圧(ガス濃度)によ
る、局部的な電圧を無くし、安定した電圧、すなわちよ
り安定した定電流で通電をすることができる。
By degassing and passing the water without electricity, the generated gas is desorbed from the surface of the electrode when the electricity is not electricity, and is retained in the upper part of the filtration tank. In addition, when the power is not supplied, the generated gas is desorbed from the electrode surface, so that a local voltage due to the gas partial pressure (gas concentration) can be eliminated, and current can be supplied at a stable voltage, that is, a more stable constant current. .

【0040】(実施例4)通電電解制御とガス抜き制御
の制御方法を図6のタイムチャートに示す。
(Embodiment 4) FIG. 6 is a time chart showing a control method of the electrolysis control and the degassing control.

【0041】図中、通電電解制御する前に、必ずガス抜
き制御をすることにより、浴槽水循環回路に、各種条件
で混入滞留される空気、例えば入浴剤から発生するガス
や吸着空気等が循環ポンプを作動(浄化や沸き上げ)す
るとろ過槽12の上部に滞留空気が滞留しやすく、この
滞留空気が多くなると、実施例1で詳述したように、通
電で悪影響することから、通電電解制御する前に、ガス
抜き制御することにより、安定し、かつ浄化に必要なろ
過材の表面部に凝集層を形成することができる。
In the drawing, before the electrolysis control, the degassing control is always performed, so that the air mixed and retained under various conditions in the bathtub water circulation circuit, for example, the gas generated from the bathing agent and the adsorbed air are circulated by the circulation pump. When the is operated (purification or boiling), the retained air tends to stay in the upper part of the filtration tank 12, and when the amount of the retained air increases, as described in detail in the first embodiment, the energization has a bad influence. Before the degassing control, it is possible to form a coherent layer on the surface of the filter medium which is stable and necessary for purification.

【0042】通電電解制御する前のガス抜き制御とし
て、複数回繰り返し制御、すなわち通水とガス抜きを繰
り返し制御することにより、より確実にガス抜き作用効
果が大となることから、本発明の範囲である。
As the gas venting control before the electrolysis control, a plurality of repetitive controls, that is, a repetitive control of water passage and gas venting, can more reliably increase the gas venting effect. It is.

【0043】(実施例5)ガス抜き制御時の通水を加熱
制御するフローチャートを図7に示す。
(Embodiment 5) FIG. 7 shows a flowchart for controlling the heating of the water flow during the degassing control.

【0044】ガス抜き制御時、図1の浄化装置の加熱部
18(熱源がガスの場合、バーナ燃焼し熱交換器で加熱
や熱源が電気の場合、直接加熱等)で通水を加熱するこ
とにより、温水により、粘性が低く(小さく)なり、ろ
過槽12に吸入されやすくなること、さらに前記温水に
より、滞留ガスが加熱され体積膨脹して浮上しやすくな
り、ガス抜き時間が短縮することができる。さらにま
た、ろ過槽12の湯温が上昇し、電解電圧を低下させる
方向となり、安定して凝集剤を生成に寄与する良化する
方向に働くものである。
At the time of degassing control, water is heated by the heating unit 18 (burner burner when the heat source is gas and heating by a heat exchanger or direct heating when the heat source is electricity) of the purification device in FIG. By this, the viscosity becomes low (small) due to the hot water, so that it becomes easy to be sucked into the filtration tank 12, and further, the staying gas is heated by the hot water to expand the volume and easily float, thereby shortening the degassing time. it can. Furthermore, the temperature of the hot water in the filtration tank 12 rises and the electrolytic voltage decreases, which works stably to improve the coagulant generation.

【0045】(実施例6)通水加熱制御時のガス抜き時
間と、浄化性能(濁度)比較を図8に示す。
(Example 6) FIG. 8 shows a comparison between the degassing time and the purification performance (turbidity) during the water flow heating control.

【0046】図中、通水温度を(1)23℃,(2)3
5℃,(3)55℃,(4)60℃,(5)70℃に変
化させたもので、通水温度が高くなると、ガス抜き時間
は短くなる。これは実施例5で詳述したように、粘性が
低く(小さく)なり、ろ過槽12に吸入されやすく、滞
留ガスが加熱され体積膨脹して浮上することによる。一
方、通水温度が高く、特に高温になると、ろ過材13の
表面部に形成された凝集層が破壊、すなわち凝集剤の結
合力が低下し、凝集層の機能(凝集層の開孔目が大きく
なり、浴槽水20中の細かな汚れ成分、例えば一般細菌
等の物理ろ過性能が著しく悪化する)が変化して、浄化
性能が低下することから、ガス抜き時間と凝集機能を考
慮すると、望ましい通水温度は、35〜60℃、より好
ましい通水温度は、35〜55℃の範囲である。
In the figure, the flowing water temperature is (1) 23 ° C., (2) 3
The temperature was changed to 5 ° C., (3) 55 ° C., (4) 60 ° C., and (5) 70 ° C. The degassing time was shortened as the water passing temperature was increased. This is because, as described in detail in the fifth embodiment, the viscosity becomes low (small), the suction gas is easily sucked into the filtration tank 12, and the retained gas is heated to expand the volume and float. On the other hand, when the water passage temperature is high, especially when the temperature is high, the coagulation layer formed on the surface of the filter medium 13 is broken, that is, the bonding force of the coagulant is reduced, and the function of the coagulation layer (the pores of the coagulation layer are It becomes large, and fine dirt components in the bathtub water 20, for example, the physical filtration performance of general bacteria and the like are remarkably deteriorated), and the purification performance is lowered. Therefore, it is desirable in consideration of the degassing time and the coagulation function. The water passage temperature is in the range of 35 to 60C, and the more preferable water passage temperature is in the range of 35 to 55C.

【0047】[0047]

【発明の効果】以上の説明から明らかのように、本発明
の浄化装置によれば次の効果が得られる。
As is apparent from the above description, the purifying apparatus of the present invention has the following effects.

【0048】ガス抜き回路側に各種切換弁を切り換え
後、一定時間通水することにより、ろ過槽の上部に滞留
している滞留ガスを排出させ、通電時の電解電圧の安定
と、凝集剤を一定量、確実に生成させ、浴槽水の汚れ成
分をろ過材層で浄化し、きれいにすることができる。
After switching various switching valves to the gas venting circuit side, by passing water for a certain period of time, the gas remaining in the upper part of the filtration tank is discharged to stabilize the electrolysis voltage at the time of energization and to remove the flocculant. A certain amount can be surely generated, and the dirt component of the bathtub water can be purified by the filter medium layer and cleaned.

【0049】また、通水手段として、循環ポンプによる
浴槽水または給湯弁部を開とし給水を通水することによ
り、確実に滞留ガスを排出することができる。
Further, as a water-passing means, the stagnant gas can be surely discharged by opening the bathtub water or hot-water supply valve by the circulation pump and passing the water.

【0050】また、設定通電時間内に、複数回ガス抜き
通水することにより、電解電圧を上昇させなくし、より
電解電圧を安定し、凝集剤を一定量、確実に生成するこ
とができる。
Further, by performing degassing and passing water a plurality of times within the set energization time, it is possible to prevent the electrolysis voltage from increasing, to stabilize the electrolysis voltage, and to surely generate a certain amount of coagulant.

【0051】また、通電と非通電を繰り返すとともに、
前記非通電時に、通水することにより、より確実にガス
抜きをすることができる。
In addition, while energization and non-energization are repeated,
By supplying water at the time of non-energization, gas can be more reliably removed.

【0052】また、通電する前に、ガス抜き通水をする
ことにより、循環水回路に混入した空気を排出し、より
電解電圧を安定し、凝集剤を一定量、確実に生成するこ
とができる。
In addition, by ventilating and passing water before energization, the air mixed in the circulating water circuit is discharged, so that the electrolysis voltage can be further stabilized, and a certain amount of coagulant can be reliably produced. .

【0053】また、加熱通水することにより、ガス抜き
時間を短くすることができる。そしてまた、加熱通水温
度を60℃以下にすることにより、ろ過材の表面部に形
成された凝集層を破壊することなくなり、安定した浄化
性能を保つことができる。実施例のろ過材は、アルミナ
ボールろ過材であるが、ガラスビーズろ過材,浜砂ろ過
材などの顆粒状のろ過材には、すべて適用できる。他
方、実施例では詳述していないが、カートリッジフィル
タ,すなわち繊維性フィルタ,糸巻きフィルタ,ガラス
繊維フィルタやステンレス繊維フィルタ,多孔質セラミ
ックフィルタ等にも、本発明の浄化装置のガス抜き制御
方法が有効である。
The degassing time can be shortened by passing water through heating. Further, by setting the heating water flow temperature to 60 ° C. or lower, the aggregated layer formed on the surface of the filter material is not broken, and stable purification performance can be maintained. Although the filter material of the embodiment is an alumina ball filter material, it can be applied to all granular filter materials such as glass bead filter materials and beach sand filter materials. On the other hand, although not described in detail in the embodiment, the gas release control method of the purifying apparatus of the present invention is applied to a cartridge filter, that is, a fibrous filter, a wound filter, a glass fiber filter, a stainless steel fiber filter, a porous ceramic filter, and the like. It is valid.

【0054】また、実施例では、リモコンによる手動操
作で説明したが、自動制御手段、たとえば浄化装置によ
り、自動的に浴槽に給湯する場合は、浴槽水が風呂接続
アダプタ以上に給湯または水位センサや水位スイッチ等
の予め設定した水位量により、浴槽に水位が有りと判
定、より確実な方法として、ユーザが設定した水位と設
定した湯温を判定すると、通電制御とガス抜き制御する
自動制御方法も本発明の範囲である。
In the embodiment, the manual operation using the remote controller has been described. However, in the case where the bathtub is automatically supplied with hot water by the automatic control means, for example, the purifying device, the bathtub water is supplied to the bath connection adapter more than the hot water supply or water level sensor or the like. Based on a water level set in advance such as a water level switch, it is determined that there is a water level in the bathtub, and as a more reliable method, when a water level set by a user and a set hot water temperature are determined, an automatic control method of energizing control and degassing control is also available. It is within the scope of the present invention.

【0055】さらにまた、本発明では、耐食性金属陰極
としてステンレス陰極で説明したが、耐食性金属とは、
通常の浴槽水で、サビ等により浴槽水が明らかに汚れる
成分(浴槽水が変色等)が溶出するもの以外で、例えば
アルミニウム,銅,ニッケル,チタン,白金,金,銀等
の純板および鉄合金,アルミニウム合金,銅合金等が使
用できるが、経済性とサビ等の考慮すると、オーステナ
イト系ステンレス,アルミニウムが好ましい陰極材料で
ある。
Further, in the present invention, the stainless steel cathode has been described as the corrosion-resistant metal cathode.
Other than the normal bath water, other than those that elute components that clearly stain the bath water (such as discoloration of the bath water) due to rust, etc., for example, pure plates of aluminum, copper, nickel, titanium, platinum, gold, silver, etc. and iron Alloys, aluminum alloys, copper alloys and the like can be used, but austenitic stainless steel and aluminum are preferred cathode materials in view of economy and rust.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の浄化装置の構成図FIG. 1 is a configuration diagram of a purification device of the present invention.

【図2】本発明の実施例1の浄化装置におけるガス抜き
制御のフローチャート
FIG. 2 is a flowchart of degassing control in the purification device according to the first embodiment of the present invention.

【図3】同制御のタイムチャートFIG. 3 is a time chart of the control.

【図4】同制御のガス抜き回路の構成図FIG. 4 is a configuration diagram of a degassing circuit of the same control.

【図5】(a)本発明の実施例3の浄化装置におけるガ
ス抜き制御のフローチャート (b)同制御のタイムチャート
FIG. 5A is a flowchart of degassing control in a purification device according to a third embodiment of the present invention. FIG. 5B is a time chart of the control.

【図6】本発明の実施例4の浄化装置におけるガス抜き
制御のタイムチャート
FIG. 6 is a time chart of degassing control in a purification device according to a fourth embodiment of the present invention.

【図7】本発明の実施例5の浄化装置におけるガス抜き
制御のフローチャート
FIG. 7 is a flowchart of degassing control in a purification device according to a fifth embodiment of the present invention.

【図8】本発明の実施例6の浄化装置におけるガス抜き
制御のガス抜き時間と浄化性能比較図
FIG. 8 is a degassing time and purifying performance comparison chart of degassing control in a purifying apparatus according to Embodiment 6 of the present invention.

【図9】従来の風呂給湯器の構成図FIG. 9 is a configuration diagram of a conventional bath water heater.

【符号の説明】[Explanation of symbols]

1 給水水温検知部 2 流量検知部 3 給湯水温検知部 4 給湯水量制御部 5 給湯弁部 6 水流検知部 7,132 循環ポンプ 8 浴槽水水温検知部 9 循環回路 10 浄化回路 11 排水回路 12,127 ろ過槽 13,125 ろ過材 14 切換弁A 15 切換弁B 16 切換弁C 17 切換弁D 18 加熱部 19,133 浴槽 20,134 浴槽水 21 風呂接続アダプタ 22 戻り通路 23 往き通路 24 リモコン 25 水位検出部 26,126 アルミニウム陽極 27 ステンレス陰極 28 滞留ガス 29 吸入口部 DESCRIPTION OF SYMBOLS 1 Water supply temperature detection part 2 Flow rate detection part 3 Hot water temperature detection part 4 Hot water supply amount control part 5 Hot water supply valve part 6 Water flow detection part 7,132 Circulation pump 8 Bath water temperature detection part 9 Circulation circuit 10 Purification circuit 11 Drainage circuit 12,127 Filtration tank 13,125 Filtration material 14 Switching valve A 15 Switching valve B 16 Switching valve C 17 Switching valve D 18 Heating unit 19,133 Bathtub 20,134 Bathtub water 21 Bath connection adapter 22 Return passage 23 Outgoing passage 24 Remote control 25 Water level detection Parts 26, 126 Aluminum anode 27 Stainless steel cathode 28 Retentive gas 29 Suction port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽根高 和則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 青木 哲郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岩本 龍志 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L024 CC02 DD02 DD13 DD17 DD22 DD27 DD32 GG38 HH39 HH44 4D064 AA11 BF31 BF40  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Kazunori Sone 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Tatsushi Iwamoto 1006 Kadoma, Kazuma, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 給水および浴槽水を温水に加熱する加熱
部と、給水回路に設けられ給水温度を検知する給水水温
検知部および給水流量を検知する流量検知部と、給湯回
路に設けられ温水温度を検知する給湯水温検知部および
給湯流量を制御する給湯水量制御部と、浴槽水循環回路
に給湯する給湯弁部および前記給湯弁部の上流に給湯水
および浴槽水の流れを検知する水流検知部と、前記浴槽
水循環回路に浴槽水を循環する循環ポンプと、浴槽水循
環回路として循環回路,浄化回路,排水回路の回路構成
を設け、浄化回路の一部に上部にアルミニウム陽極と耐
食性金属陰極とを対極に設け、下部にろ過材を配設した
ろ過槽と、ろ過槽の下流側に浄化回路と循環回路を切り
換える切換弁A、循環ポンプと給湯弁部との間に浴槽水
循環回路を開閉する切換弁B、給湯弁部とろ過槽との間
に浄化回路と循環回路に切り換える切換弁C、排水回路
を開閉する切換弁Dを各々配設した構成において、前記
アルミニウム陽極と耐食性金属陰極に通電した時に発生
する生成ガスをろ過槽より排出する手段として、切換弁
A,切換弁Bを、切換弁C及び切換弁Dをガス抜き回路
に切り換えした後、前記ガス抜き回路に一定時間通水し
てガス抜き制御してなる浄化装置。
1. A heating unit for heating water supply and bathtub water to hot water, a water supply water temperature detection unit provided in a water supply circuit for detecting water supply temperature and a flow rate detection unit for detecting water supply flow rate, and a hot water temperature provided in a water supply circuit. A hot water supply temperature control unit for controlling the hot water supply flow rate, a hot water supply valve unit for supplying hot water to the bathtub water circulation circuit, and a water flow detection unit for detecting the flow of hot water and bathtub water upstream of the hot water supply valve unit. A circulation pump for circulating bath water in the bath water circulation circuit, and a circuit configuration of a circulation circuit, a purification circuit, and a drain circuit as the bath water circulation circuit, and an aluminum anode and a corrosion-resistant metal cathode are provided on the upper part of the purification circuit. And a switching tank A for switching between a purification circuit and a circulation circuit downstream of the filtration tank, and a bathtub water circulation circuit between a circulation pump and a hot water supply valve unit. In a configuration in which a switching valve B, a switching valve C for switching between a purifying circuit and a circulation circuit between a hot water supply valve section and a filtration tank, and a switching valve D for opening and closing a drain circuit are respectively provided, the aluminum anode and the corrosion-resistant metal cathode are energized. As a means for discharging generated gas generated from the filter tank from the filtration tank, the switching valves A and B are switched to the degassing circuits of the switching valves C and D, and then water is passed through the degassing circuit for a certain period of time. Purifier with controlled degassing.
【請求項2】 通水手段として、循環ポンプによる浴槽
水の通水また給湯弁部の開による給水の通水としてなる
請求項1記載の浄化装置。
2. The purifying apparatus according to claim 1, wherein the water-passing means is constituted by passing bathtub water by a circulation pump or by passing a hot water by opening a hot water supply valve.
【請求項3】 アルミニウム陽極と耐食性金属陰極の設
定通電時間内に複数回通水してなる請求項1記載の浄化
装置。
3. The purification apparatus according to claim 1, wherein water is passed through the aluminum anode and the corrosion-resistant metal cathode a plurality of times within a set energizing time.
【請求項4】 アルミニウム陽極と耐食性金属陰極に通
電と非通電を繰り返す制御において、前記非通電時に通
水してなる請求項1記載の浄化装置。
4. The purifying apparatus according to claim 1, wherein water is passed when the current is not supplied in the control in which current supply and non-current supply are repeated between the aluminum anode and the corrosion-resistant metal cathode.
【請求項5】 アルミニウム陽極と耐食性金属陰極に通
電する制御前に、通水してなる請求項1記載の浄化装
置。
5. The purifying apparatus according to claim 1, wherein water is passed before control of supplying current to the aluminum anode and the corrosion-resistant metal cathode.
【請求項6】 給湯弁部の開時、給水を加熱通水してな
る請求項2記載の浄化装置。
6. The purifying apparatus according to claim 2, wherein when the hot water supply valve is opened, the supplied water is heated and passed.
【請求項7】 給水を少なくとも60℃以下に加熱制御
してなる請求項6記載の浄化装置。
7. The purification apparatus according to claim 6, wherein the heating of the supplied water is controlled to at least 60 ° C. or less.
JP30000198A 1998-10-21 1998-10-21 Purification device Expired - Lifetime JP3924958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30000198A JP3924958B2 (en) 1998-10-21 1998-10-21 Purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30000198A JP3924958B2 (en) 1998-10-21 1998-10-21 Purification device

Publications (2)

Publication Number Publication Date
JP2000130842A true JP2000130842A (en) 2000-05-12
JP3924958B2 JP3924958B2 (en) 2007-06-06

Family

ID=17879544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30000198A Expired - Lifetime JP3924958B2 (en) 1998-10-21 1998-10-21 Purification device

Country Status (1)

Country Link
JP (1) JP3924958B2 (en)

Also Published As

Publication number Publication date
JP3924958B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3412267B2 (en) Water electrolysis treatment method and apparatus
KR101947994B1 (en) Water treatment apparatus
JP2004520161A (en) Water treatment system under the sink
KR20020097209A (en) Under the counter water treatment system
JP5357836B2 (en) Purified water production equipment and its use
KR20120132347A (en) Method and apparatus for controlling total dissolved solids, and water treatment apparatus having the same
JP2013117069A (en) Scale inhibiting device, water heater and water consumptive apparatus
TW201033133A (en) Electrolytic water purifier
JP2000130842A (en) Purifier
JP3924957B2 (en) Purification device control method
JP3530452B2 (en) Water treatment equipment
KR200413957Y1 (en) Ion water purifier with acid water outflow control device
JP3791158B2 (en) Water purification equipment
JP2001208427A (en) Hot water supply bath device provided with purifying function
JP2000189975A (en) Method for removing film deposited on electrode and water purification device using the same method
JP2001208428A (en) Hot water supply bath device provided with purifying function
JP3232982B2 (en) Water purification device
JP2001104724A (en) Hot-water supply bath apparatus with cleaning function
JP2006175360A (en) Method and device for controlling ph of solution
JP2001340862A (en) Hot-water supply bath apparatus with cleaning function
JP3671639B2 (en) Circulating and purifying device for bath water
JPH05138170A (en) Water discharge structure of continuous electrolytic ionized water generator
JP3835177B2 (en) Electrolyzed water generator
JPH11128945A (en) Water purification apparatus
JPH091150A (en) Potable water supplying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350