JP2000189975A - Method for removing film deposited on electrode and water purification device using the same method - Google Patents

Method for removing film deposited on electrode and water purification device using the same method

Info

Publication number
JP2000189975A
JP2000189975A JP10367093A JP36709398A JP2000189975A JP 2000189975 A JP2000189975 A JP 2000189975A JP 10367093 A JP10367093 A JP 10367093A JP 36709398 A JP36709398 A JP 36709398A JP 2000189975 A JP2000189975 A JP 2000189975A
Authority
JP
Japan
Prior art keywords
water
citric acid
electrode
electrodes
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10367093A
Other languages
Japanese (ja)
Inventor
Tomohide Matsumoto
朋秀 松本
Hajime Miyata
肇 宮田
Yu Kawai
祐 河合
Koji Oka
浩二 岡
Kazunori Sonedaka
和則 曽根高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10367093A priority Critical patent/JP2000189975A/en
Publication of JP2000189975A publication Critical patent/JP2000189975A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Control For Baths (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent scales from being deposited on the surface of each of the electrodes in water purification device for purifying water by electrolyzing aluminum to form a metal hydrate and utilizing coagulation effect of the metal hydrate to form agglomerated flocs of suspended matter. SOLUTION: This device is provided with: at least a pair of electrodes consisting of an anode 31 made of aluminum and a cathode 30; a coagulation control means 54 for controlling current passage through the electrodes 31 and 30; a circulation means 18 for passing water through the space between the electrodes 31 and 30; a heating means 11; and a control means 51; wherein the circulation means 18 is intermittently operated at prescribed time intervals and the electrolysis of aluminum is performed while stopping the current passage through the electrode 31 and 30 when the circulation means 18 is operated, and also, at a prescribed point of time, citric acid is dissolved into water to wash off a deposited film (scale) formed and built up between the electrodes 31 and 30, at a prescribed citric acid concentration, for a prescribed time and at a prescribed temperature. Thus, the deposition of the film (scale) on the electrode is prevented between the electrodes 31 and 30 and the effective utilization rate of aluminum can be enhanced, good purification performance can be obtained and further the electrode service life can be remarkably prolonged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム陽極
を有する電極を用いて電気分解する際の電極表面に生成
されるスケール成分等の皮膜の除去方法および前記アル
ミニウム陽極を電極として電気分解により金属水和物を
生成し、この金属水和物のもつ凝集作用により懸濁物質
の凝集フロックを形成して入浴水などの被浄化水に含ま
れる懸濁物質を除去浄化する水浄化装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a film such as a scale component formed on an electrode surface when performing electrolysis using an electrode having an aluminum anode, and a method for removing metal water by electrolysis using the aluminum anode as an electrode. The present invention relates to a water purification device that generates a sump, forms flocculated flocs of suspended substances by the flocculating action of this metal hydrate, and removes and purifies suspended substances contained in water to be purified such as bathing water. .

【0002】[0002]

【従来の技術】従来の水浄化装置としては、微生物担持
体に微生物を繁殖させ、この微生物の酵素活性作用によ
り有機物を分解し浄化するものがある(例えば特開平5
−293485号公報)。
2. Description of the Related Art As a conventional water purifying apparatus, there is a water purifying apparatus in which microorganisms are propagated on a microorganism carrier, and organic substances are decomposed and purified by the enzymatic activity of the microorganisms (see, for example, Japanese Patent Application Laid-Open No. Hei 5 (1994)).
-293485).

【0003】しかしながら上記微生物方式の水浄化装置
では以下の課題があった。 (1)微生物の酵素活性作用により浄化するので浄化速
度が遅い。このため入浴により浴水が一旦汚濁すると浄
化するのに3時間以上必要となる。したがって入浴者が
続けて(例えば30分間隔)入浴した場合汚濁した状態
の浴水に入浴しなければならず、心理的な抵抗感があ
る。
[0003] However, the microbial water purification apparatus has the following problems. (1) The purification speed is slow because the purification is performed by the enzyme activity of the microorganism. For this reason, once the bath water becomes polluted by bathing, it takes three hours or more to purify the bath water. Therefore, if the bather takes a bath continuously (for example, every 30 minutes), the bather must bathe in the polluted bath water, and there is a psychological resistance.

【0004】(2)濾過槽内の殺菌は、浄化に寄与する
微生物を滅殺することになるので浄化能が得られなくな
る。したがって病原菌などの温床となる濾過槽内を殺菌
することができない。このためレジオネラ属菌などの浴
水細菌汚染の可能性がある。
(2) Sterilization in the filtration tank destroys microorganisms contributing to purification, so that purification ability cannot be obtained. Therefore, it is impossible to sterilize the inside of the filtration tank, which serves as a hotbed for pathogenic bacteria and the like. Therefore, there is a possibility of contamination of bath water bacteria such as Legionella spp.

【0005】(3)入浴剤を使用した場合微生物が死滅
するので、入浴剤を使用することができない。
(3) When a bath agent is used, since microorganisms are killed, the bath agent cannot be used.

【0006】これらの課題を解決するものとして図6お
よび図7に示したように電気分解により金属水和物を生
成し、この金属水和物の凝集作用により懸濁物質を大径
化し物理的に濾過する水浄化装置が提案されている(例
えば特開平8−132051号公報)。
As a solution to these problems, as shown in FIGS. 6 and 7, a metal hydrate is formed by electrolysis, and the diameter of the suspended substance is increased by the coagulation action of the metal hydrate. A water purification apparatus for filtering water has been proposed (for example, JP-A-8-132051).

【0007】同図において1は浴槽、2は循環ポンプ、
3は凝集手段、4は凝集手段の下流側に設けられた濾過
槽、5は循環路である。ここで凝集手段3は図8に示し
たように例えばアルミニウムからなる陽極6とステンレ
スからなる陰極7(ここではケーシングを兼ねている)
から構成されている。
In FIG. 1, 1 is a bathtub, 2 is a circulation pump,
3 is a flocculation means, 4 is a filtration tank provided downstream of the flocculation means, and 5 is a circulation path. Here, the aggregating means 3 is, as shown in FIG. 8, an anode 6 made of, for example, aluminum and a cathode 7 made of stainless steel (here, it also serves as a casing).
It is composed of

【0008】上記構成において陽極6と陰極7に通電す
ると電気分解により陽極6からアルミニウムイオンが溶
出する。このアルミニウムイオンは、水の水酸化物イオ
ンOH−と反応して水酸化アルミニウムAl(OH)3
のコロイドが形成される。ここで皮脂・垢及び細菌群な
どの懸濁物質は、側鎖にカルボキシル基を持っているの
で負に帯電している。一方水酸化アルミニウムは正電荷
のため、水酸化アルミニウムが結着媒体となり、架橋作
用によって微細な懸濁物質を吸着して大径化させ、いわ
ゆる凝集フロックが生成される。この結果、下流に設け
られた濾過槽4で凝集フロックが効果的に濾過され、短
時間での浄化が可能となる。また微生物を用いないので
細菌群の温床となる濾過槽4内を例えば高温殺菌などに
より殺菌可能となるとともに、入浴剤を使用することが
可能となる。
In the above configuration, when electricity is supplied to the anode 6 and the cathode 7, aluminum ions are eluted from the anode 6 by electrolysis. This aluminum ion reacts with hydroxide ion OH- of water to form aluminum hydroxide Al (OH) 3.
Is formed. Here, suspended substances such as sebum / stain and bacteria are negatively charged because they have a carboxyl group in the side chain. On the other hand, since aluminum hydroxide has a positive charge, aluminum hydroxide serves as a binding medium, and a fine suspended substance is adsorbed by the crosslinking action to increase the diameter, so-called aggregated flocs are generated. As a result, the flocculated floc is effectively filtered in the filtration tank 4 provided downstream, and purification can be performed in a short time. In addition, since no microorganisms are used, the inside of the filtration tank 4 serving as a hotbed of bacteria can be sterilized by, for example, high-temperature sterilization, and a bathing agent can be used.

【0009】[0009]

【発明が解決しようとする課題】以上述べたように凝集
濾過方式では微生物方式では得られない特長を有してい
るが、電気分解により金属イオン(アルミニウムイオ
ン)を溶出して金属水和物(水酸化アルミニウム)を生
成する過程で徐々に陽極表面に水酸化アルミニウムが残
存して陽極、陰極間に堆積し、凝集に寄与するアルミニ
ウムの有効利用率が低下するという課題が見出された。
As described above, the coagulation filtration method has a feature that cannot be obtained by the microbial method. However, metal ions (aluminum ions) are eluted by electrolysis to form a metal hydrate ( In the process of producing (aluminum hydroxide), it has been found that aluminum hydroxide gradually remains on the surface of the anode and deposits between the anode and the cathode, thereby reducing the effective utilization rate of aluminum contributing to aggregation.

【0010】すなわち理論的にはファラデーの法則に基
づいて供給した電気量に応じてイオン化傾向の高いアル
ミニウムイオンAl3+が溶解し、水酸化物イオンと反応
して水酸化アルミニウムとなって凝集に寄与するはずで
あるが、実際には陽極表面及び陰極表面で浴水に含まれ
るCa、Mg、Siなどのスケール成分と水酸化アルミ
ニウムが結合して残存し、凝集に寄与すべきアルミニウ
ムが減少していることがわかった。
In other words, theoretically, aluminum ions Al 3+ having a high ionization tendency are dissolved in accordance with the amount of electricity supplied based on Faraday's law, and react with hydroxide ions to form aluminum hydroxide, which contributes to aggregation. Although it should be, scale components such as Ca, Mg, and Si contained in the bath water and aluminum hydroxide are combined and remain on the anode surface and the cathode surface, and the amount of aluminum that should contribute to agglomeration is reduced. I understand.

【0011】この結果必要以上のアルミニウム量が必要
となり、陽極が大型化する。また十分な水酸化アルミニ
ウムが生成されないのでスケール成分の付着にしたがっ
て徐々に凝集による架橋作用が低下し、浄化能力が低下
する。さらに長期使用により陽極、陰極間が堆積物で埋
まり、極間の電気抵抗が上昇し、所定の電解電流が確保
できなくなるという課題があった。
As a result, an excessive amount of aluminum is required, and the size of the anode is increased. In addition, since sufficient aluminum hydroxide is not generated, the cross-linking action due to aggregation gradually decreases as the scale component adheres, and the purification ability decreases. In addition, there has been a problem that the deposit between the anode and the cathode is filled with deposits due to long-term use, the electrical resistance between the electrodes increases, and a predetermined electrolytic current cannot be secured.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するために、アルミニウムから構成される陽極と陰極か
ら構成される少なくとも1対の電極と、前記電極の通電
制御を行う電極制御手段と、前記電極間に水を通水させ
る循環手段と、前記電極に通水する水の加熱手段と、前
記電極制御手段と循環手段および加熱手段を制御する制
御手段を有し、前記電極への通電による電気分解動作時
は前記送水手段を所定の周期で断続動作させ、且つ前記
循環手段の動作時には前記電極への通電を停止させなが
ら電気分解を行うとともに、所定の時期に水中にクエン
酸を溶解させて所定濃度、時間および温度で電極間に生
成された被膜を洗浄するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides at least one pair of electrodes composed of an anode and a cathode composed of aluminum, and electrode control means for controlling energization of the electrodes. Circulating means for flowing water between the electrodes, heating means for water flowing through the electrodes, and control means for controlling the electrode control means, the circulating means and the heating means, and energizing the electrodes During the electrolysis operation, the water supply means is intermittently operated at a predetermined cycle, and at the time of the operation of the circulating means, electrolysis is performed while stopping power supply to the electrodes, and citric acid is dissolved in water at a predetermined time. Then, the film formed between the electrodes at a predetermined concentration, time and temperature is washed.

【0013】すなわち本発明者らはアルミニウム陽極表
面の堆積物を低減させるために種々研究を重ねた結果、
効果的な方法として電解凝集動作時に被浄化水を循環さ
せることなく、滞留させた状態で電解する(以下滞留電
解とする)ことで陽極表面の水酸化アルミニウムを主成
分とするスケール成分の付着を低減できることを見出し
た。このメカニズムとしては滞留電解することで、陽極
表面では水酸化物イオンOH−が消費されて酸素ガス及
び塩素ガスとなるので水酸化アルミニウムAl(OH)
3への反応が進行せず、陽極表面への水酸化アルミニウ
ムの析出が防止されることによるものである。これに対
して従来の通水状態で電解した場合、陽極表面では同様
に水酸化物イオンOH−が消費されるが、通水により充
分な水酸化物イオンが補給されて水和反応により水酸化
アルミニウムが陽極表面で生成されることとなり、水に
含まれるスケール成分と反応してスケールが堆積するも
のであると考えられる。
That is, the present inventors have conducted various studies in order to reduce deposits on the surface of the aluminum anode, and as a result,
As an effective method, the water to be purified is not circulated during the electrolytic coagulation operation, and the electrolysis is carried out in a stagnated state (hereinafter referred to as stagnant electrolysis), whereby the adhesion of the scale component mainly composed of aluminum hydroxide on the anode surface is prevented. It has been found that it can be reduced. As a mechanism of this, the residence electrolysis causes hydroxide ions OH- to be consumed on the anode surface to become oxygen gas and chlorine gas, so that aluminum hydroxide Al (OH)
This is because the reaction to No. 3 does not proceed and the precipitation of aluminum hydroxide on the anode surface is prevented. On the other hand, when electrolysis is carried out in a conventional water-flowing state, hydroxide ions OH- are similarly consumed on the anode surface. It is thought that aluminum is generated on the anode surface and reacts with scale components contained in water to deposit scale.

【0014】一方、滞留状態で電気分解した場合、陽極
反応として酸素ガス及び水中の塩素イオンと反応して塩
素ガスが生成され、また陰極反応としては水素ガスが生
成される。これらのガスは気泡となって浮上し、電極表
面のスケール成分の剥離に寄与するとも考えられるが、
上方に集積して蓄積されることとなる。特に水素ガスは
起爆性ガスであり、また塩素ガスは腐食性ガスのため多
量の蓄積は信頼性の面で課題となる。またガスの発生に
より電極間の電気的な等価抵抗が徐々に増大し、定電流
制御した場合、電圧が増加することとなり、高い電圧容
量の電源が必要となる。
On the other hand, when electrolysis is carried out in a stagnant state, chlorine gas is produced by reacting with oxygen gas and chlorine ions in water as an anodic reaction, and hydrogen gas is produced as a cathodic reaction. It is thought that these gases float as bubbles and contribute to the separation of scale components on the electrode surface.
It is accumulated and accumulated upward. In particular, hydrogen gas is an explosive gas, and chlorine gas is a corrosive gas. In addition, when gas is generated, the electrical equivalent resistance between the electrodes gradually increases, and when constant current control is performed, the voltage increases, and a power supply with a high voltage capacity is required.

【0015】すなわち陽極表面のスケールを防止しつ
つ、これらの課題に対処するためには所定周期で滞留電
解と通水を断続的に行うことが望ましい。また通水時、
つまり循環手段が動作している状態では電極への通電を
停止させることにより滞留電解によって電極表面に蓄積
された水酸化アルミニウムを流水洗浄することができ、
より効果的に水酸化アルミニウム等の皮膜堆積を低減す
ることが可能となる。
That is, in order to solve these problems while preventing the scale on the anode surface, it is desirable to perform intermittent electrolysis and water supply at a predetermined cycle. Also, when water is passed,
In other words, in the state where the circulating means is operating, by stopping the current supply to the electrodes, the aluminum hydroxide accumulated on the electrode surface by the retained electrolysis can be washed with running water,
It is possible to more effectively reduce the deposition of a film such as aluminum hydroxide.

【0016】さらに上記の電解制御に加えて定期的にク
エン酸による化学洗浄を行うことでより効果的に電極皮
膜を除去できる。すなわちクエン酸により被浄化水の水
素イオン濃度(以下pHとする)が強酸性となり、電極
表面に付着したスケール成分、水酸化アルミなどの被膜
が化学反応により分解されてイオン化し、洗浄除去され
る。
Furthermore, by performing chemical cleaning with citric acid periodically in addition to the above-described electrolytic control, the electrode film can be more effectively removed. In other words, the hydrogen ion concentration (hereinafter referred to as pH) of the water to be purified becomes strongly acidic due to citric acid, and the scale component, aluminum hydroxide, and other films adhered to the electrode surface are decomposed by chemical reaction and ionized, and washed and removed. .

【0017】この結果アルミニウムの有効利用率が向上
するので陽極の容積あるいは重量の低減が図れるととも
に、凝集効率が向上するので良好な浄化性能が得られ
る。また極間の電気抵抗が変化しないので電極寿命を大
幅に伸長することができ、長期にわたって安定した浄化
性能を維持できる。
As a result, the effective utilization of aluminum is improved, so that the volume or weight of the anode can be reduced, and the coagulation efficiency is improved, so that good purification performance can be obtained. Further, since the electric resistance between the electrodes does not change, the life of the electrodes can be greatly extended, and stable purification performance can be maintained for a long period of time.

【0018】[0018]

【発明の実施の形態】本発明の請求項1に係る電極皮膜
の除去方法は、陰極とアルミニウムから構成される陽極
とから構成される少なくとも1対の電極と、前記電極の
通電制御を行う電極制御手段と、前記電極間に水を通水
させる循環手段と、前記電極に通水する水の加熱手段
と、前記電極制御手段と循環手段および加熱手段を制御
する制御手段を有し、前記電極への通電による電気分解
動作時は前記循環手段を所定の周期で断続動作させ、且
つ前記循環手段の動作時には前記電極への通電を停止さ
せながら電気分解を行うとともに、所定の時期に水中に
クエン酸を溶解させて所定濃度、時間および温度で電極
間に生成された被膜を洗浄するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for removing an electrode film according to claim 1 of the present invention comprises the steps of: at least one pair of electrodes comprising a cathode and an anode made of aluminum; Control means, circulating means for passing water between the electrodes, heating means for water flowing through the electrodes, control means for controlling the electrode control means, the circulating means and the heating means, the electrode During the electrolysis operation by energizing the circulating device, the circulating means is intermittently operated at a predetermined cycle, and at the time of operating the circulating device, the electrolysis is performed while the energization to the electrodes is stopped. This is to wash the film formed between the electrodes at a predetermined concentration, time and temperature by dissolving the acid.

【0019】そして、電極への通電による電解動作時に
は制御手段が動作して、所定の周期で循環手段が断続的
に駆動されるとともに、循環手段の動作時に連動して電
極への通電が停止され、滞留電解と通水のみが交互に行
われることとなる。この結果滞留電解によって陽極表面
の金属水物和物の付着が防止され、また通電しない状態
で通水することでアルミニウムの金属水和物、スケール
等の皮膜が電極表面から剥離しやすくなり、加えて所定
の時期に水中にクエン酸を溶解させて所定濃度、時間お
よび温度で洗浄するので電極間に生成され、徐々に堆積
した被膜は強酸性雰囲気にさらされてイオン化し、より
効果的に除去できる。
During the electrolysis operation by energizing the electrodes, the control means operates to intermittently drive the circulating means at a predetermined cycle, and the energization to the electrodes is stopped in conjunction with the operation of the circulating means. Therefore, only the retained electrolysis and the passage of water are performed alternately. As a result, the accumulation of metal hydrate on the anode surface is prevented by the retained electrolysis, and the film of aluminum metal hydrate, scale, etc. is easily peeled off from the electrode surface by passing water without applying electricity, The citric acid is dissolved in water at a predetermined time and washed at a predetermined concentration, time and temperature, so that the film formed between the electrodes and gradually deposited is exposed to a strongly acidic atmosphere to be ionized and removed more effectively. it can.

【0020】この結果、アルミニウムを有効に利用する
ことができ、アルミニウム陽極の容積あるいは重量の低
減が図れる。また極間の電気抵抗が変化しないので電極
寿命を大幅に伸長することができる。
As a result, aluminum can be effectively used, and the volume or weight of the aluminum anode can be reduced. In addition, since the electrical resistance between the electrodes does not change, the life of the electrodes can be greatly extended.

【0021】本発明の請求項2に係る電極皮膜の除去方
法は、クエン酸洗浄時の水のpHが1〜3.5の範囲と
なるようにクエン酸濃度を調製するものである。
In the method for removing an electrode film according to a second aspect of the present invention, the concentration of citric acid is adjusted so that the pH of water during washing with citric acid is in the range of 1 to 3.5.

【0022】そして、電極表面に付着する水酸化アルミ
Al(OH)3はpH1〜3.5の範囲でOHイオンが
消費されてイオン化(Al3+)し、可溶となる。した
がって水の量に対してpHが1〜3.5の範囲となるよ
うにクエン酸を混入することで効果的に電極表面皮膜が
除去できる。
The aluminum hydroxide Al (OH) 3 adhering to the electrode surface is ionized (Al3 +) due to consumption of OH ions in the pH range of 1 to 3.5, and becomes soluble. Therefore, by mixing citric acid so that the pH is in the range of 1 to 3.5 with respect to the amount of water, the electrode surface film can be effectively removed.

【0023】本発明の請求項3に係る電極皮膜の除去方
法は、クエン酸に0.01〜1重量%の腐食抑制剤を混
合させたものである。
According to a third aspect of the present invention, there is provided a method for removing an electrode coating, wherein 0.01 to 1% by weight of a corrosion inhibitor is mixed with citric acid.

【0024】そして腐食抑制剤を適量混合させることに
より、洗浄時にクエン酸と接触する循環経路の構成部材
の強酸による腐食溶解を防止することができる。腐食抑
制剤は構成部材の材質に応じて濃度および種類が異なる
が、0.01〜1重量%混合することで腐食防止効果が
得られる。
By mixing an appropriate amount of the corrosion inhibitor, it is possible to prevent corrosion and dissolution of the components of the circulation path that comes into contact with citric acid during cleaning due to strong acid. The concentration and type of the corrosion inhibitor vary depending on the material of the constituent members, but the effect of preventing corrosion can be obtained by mixing 0.01 to 1% by weight.

【0025】本発明の請求項4に係る水浄化装置は、被
浄化水の循環手段と、循環路に設けられたアルミ陽極と
陰極から構成される電極を有し、前記電極に通電するこ
とで電気分解により金属水和物を生成し、被浄化水に含
まれる懸濁物質を電気的に凝集させる凝集手段と、前記
凝集手段の下流に設けられ、前記凝集手段によって生成
される凝集フロックを物理的に濾過する濾過手段と、被
浄化水を加熱する加熱手段を有し、前記電極への通電に
よる凝集動作時は前記循環手段を所定の周期で断続動作
させ、且つ前記循環手段の動作時には前記電極への通電
を停止させながら電気分解を行う凝集制御手段を有する
とともに、所定の時期に循環水中にクエン酸を溶解させ
て所定濃度、時間および温度で前記電極間に生成された
被膜を洗浄するものである。
A water purification apparatus according to a fourth aspect of the present invention has a means for circulating the water to be purified and an electrode provided in the circulation path and comprising an aluminum anode and a cathode. An aggregating means for generating a metal hydrate by electrolysis and electrically aggregating a suspended substance contained in the water to be purified, and an aggregating floc provided downstream of the aggregating means, wherein the agglomerated floc generated by the aggregating means are physically separated. Filtration means, and a heating means for heating the water to be purified, the intermittent operation of the circulating means at a predetermined cycle during the coagulation operation by energizing the electrodes, and the operation of the circulating means It has coagulation control means for performing electrolysis while stopping power supply to the electrodes, and dissolves citric acid in circulating water at a predetermined time to wash the coating formed between the electrodes at a predetermined concentration, time and temperature. Also It is.

【0026】そして、電極への通電による凝集動作には
凝集制御手段が動作して、所定の周期で循環手段が断続
的に駆動されるとともに、前記循環手段の動作時には電
極への通電を停止させながら電気分解を行う。つまり滞
留電解と通水のみが交互に行われることとなる。この結
果滞留電解によって陽極表面の金属水物和物の付着が防
止され、また通電しない状態で通水することで溶解金属
の金属水和物が電極表面から剥離しやすくなるので電極
表面に皮膜が生成されにくくなるとともに、下流の濾過
手段に捕捉されて良好なケーク層(濾過膜)を形成する
とともに電解によって蓄積されたガスが循環路を経て放
出される。加えて、所定の時期に循環水中にクエン酸を
溶解させて所定濃度、時間および温度で電極間に生成さ
れる皮膜を洗浄するので、電極間に生成され徐々に堆積
した被膜は強酸性雰囲気にさらされてイオン化し、より
効果的に皮膜を除去できる。
In the aggregating operation by energizing the electrodes, the aggregating control means is operated, the circulating means is driven intermittently at a predetermined cycle, and when the circulating means is operated, the energizing of the electrodes is stopped. While performing electrolysis. That is, only the retained electrolysis and the passage of water are performed alternately. As a result, the adhesion of metal hydrate on the anode surface is prevented by the retained electrolysis, and the metal hydrate of the dissolved metal is easily peeled off from the electrode surface by passing water without applying electricity, so that a film is formed on the electrode surface. It is difficult to be generated, and a good cake layer (filtration membrane) is formed by being captured by the downstream filtration means, and the gas accumulated by the electrolysis is discharged through the circulation path. In addition, the citric acid is dissolved in the circulating water at a predetermined time to wash the film formed between the electrodes at a predetermined concentration, time, and temperature. The film is exposed and ionized, and the film can be removed more effectively.

【0027】これにより陽極表面の皮膜(スケール)が
防止され、電解金属の有効利用率が向上するので良好な
浄化性能が得られるとともに陽極の小型化が図れる。ま
た陽極、陰極間の電気抵抗が変化しないので長期にわた
って良好な浄化性能を持続できる。
As a result, a film (scale) on the anode surface is prevented, and the effective utilization rate of the electrolytic metal is improved, so that a good purification performance can be obtained and the anode can be miniaturized. Further, since the electric resistance between the anode and the cathode does not change, good purification performance can be maintained for a long period of time.

【0028】本発明の請求項5に係る水浄化装置は、被
浄化水の循環回路内にクエン酸を所定濃度で混入するク
エン酸供給手段を設けたものである。
The water purification apparatus according to claim 5 of the present invention is provided with a citric acid supply means for mixing citric acid at a predetermined concentration in a circulation circuit of the purified water.

【0029】そして、所定の時期にクエン酸供給手段が
自動的に動作して所定の濃度及び温度で電極間の洗浄が
行われるのでクエン酸洗浄の人手による作業が不要とな
る。
Then, at a predetermined time, the citric acid supply means automatically operates and the cleaning between the electrodes is performed at a predetermined concentration and temperature, so that a manual operation of the citric acid cleaning is unnecessary.

【0030】本発明の請求項6に係る水浄化装置は、ク
エン酸洗浄時の水のpHが1〜3.5の範囲となるよう
にクエン酸濃度を調製したものである。
In the water purifying apparatus according to claim 6 of the present invention, the concentration of citric acid is adjusted so that the pH of water at the time of washing with citric acid is in the range of 1 to 3.5.

【0031】そして、電極表面に付着する水酸化アルミ
Al(OH)3はpH1〜3.5の範囲でOHイオンが
消費されてイオン化(Al3+)し、またCa、Mgな
ど水に含まれるスケール成分もイオン化して可溶とな
る。したがって水の量に対してpHがpH1〜3.5の
範囲となるようにクエン酸を混入することで効果的に電
極表面皮膜が除去でき、長期にわたって良好な浄化性能
を持続できる。
Then, aluminum hydroxide (Al (OH) 3) adhering to the electrode surface is ionized (Al3 +) due to consumption of OH ions in a pH range of 1 to 3.5, and a scale component contained in water such as Ca and Mg. Is also ionized and becomes soluble. Therefore, by mixing citric acid so that the pH is in the range of pH 1 to 3.5 with respect to the amount of water, the electrode surface film can be effectively removed, and good purification performance can be maintained for a long time.

【0032】本発明の請求項7に係る水浄化装置は、ク
エン酸に0.01〜1重量%の腐食抑制剤を混合させた
ものである。
The water purifying apparatus according to claim 7 of the present invention is obtained by mixing citric acid with 0.01 to 1% by weight of a corrosion inhibitor.

【0033】そして、クエン酸に腐食抑制剤を混合させ
ることでクエン酸洗浄時にクエン酸と接触する水浄化装
置の構成部材の強酸による腐食溶解を防止することがで
き、機器の信頼性が向上する。
By mixing the corrosion inhibitor with the citric acid, it is possible to prevent the corrosion and dissolution of the components of the water purification device that come into contact with the citric acid during citric acid washing due to the strong acid, thereby improving the reliability of the equipment. .

【0034】本発明の請求項8に係る水浄化装置は、凝
集動作回数を計測する計数手段を設け、その計数手段の
信号が所定回数に達した時期にクエン酸洗浄を実施する
構成としたものである。
The water purifying apparatus according to claim 8 of the present invention is provided with a counting means for measuring the number of times of coagulation operation, and performing citric acid washing when the signal of the counting means reaches a predetermined number. It is.

【0035】そしてアルミ電極への通電による電極皮膜
生成量は、通電時間に比例する。1日当たりの電気分解
時間を所定時間に設定した場合、電極皮膜生成量は電極
への通電による凝集回数に比例することとなる。したが
って、凝集回数が所定回数に達した時点でクエン酸洗浄
を実施することで不必要な洗浄作業を行うことなく、効
果的に被膜洗浄を行うことができる。
The amount of electrode film generated by energizing the aluminum electrode is proportional to the energizing time. When the electrolysis time per day is set to a predetermined time, the amount of electrode film generated is proportional to the number of times of aggregation by energizing the electrode. Therefore, by performing citric acid cleaning when the number of times of aggregation reaches a predetermined number, it is possible to effectively perform film cleaning without performing unnecessary cleaning work.

【0036】本発明の請求項9に係る水浄化装置は、ク
エン酸洗浄時は加熱手段を制御して被浄化水の温度を4
0℃から70℃の範囲で行う構成としたものである。
In the water purifying apparatus according to a ninth aspect of the present invention, the temperature of the water to be purified is controlled by controlling the heating means during the washing with citric acid.
The configuration is such that the process is performed in the range of 0 ° C. to 70 ° C.

【0037】そして、クエン酸洗浄は溶液温度が高いほ
ど高活性となり、被膜除去効果が向上する。しかしなが
ら、高温になりすぎると水浄化装置の循環経路を構成す
る部材の熱劣化が発生し機器信頼性が低下する。したが
って40から70℃の範囲でクエン酸洗浄を行うことで
循環経路の構成部材の劣化を防止しつつアルミ電極の皮
膜除去が効果的に行える。
The higher the solution temperature is, the higher the activity of the citric acid cleaning is, and the more effective the film removing effect is. However, when the temperature is too high, the members constituting the circulation path of the water purification device are thermally deteriorated, and the reliability of the device is reduced. Therefore, by performing the citric acid cleaning in the range of 40 to 70 ° C., it is possible to effectively remove the film of the aluminum electrode while preventing the deterioration of the components of the circulation path.

【0038】本発明の請求項10に係る水浄化装置は、
電極間の電圧もしくは電流を検出する電極信号検出手段
を設けるとともに、この電極信号検出手段の信号に応じ
てクエン酸洗浄時期を報知する報知手段を設けたもので
ある。
[0038] The water purifying apparatus according to claim 10 of the present invention comprises:
An electrode signal detecting means for detecting a voltage or a current between the electrodes is provided, and a notifying means for notifying a citric acid cleaning time according to a signal of the electrode signal detecting means is provided.

【0039】そして、電極に皮膜が堆積すると電極間の
電気抵抗が上昇し、電圧(定電流制御)もしくは電流
(定電圧制御)が低下する。電極信号検知手段を設ける
ことで皮膜形成状態が常時監視できることとなり、また
報知されるので浄化性能に影響を及ぼさない好適な時期
にクエン酸洗浄を実施できる。
When a film is deposited on the electrodes, the electric resistance between the electrodes increases, and the voltage (constant current control) or current (constant voltage control) decreases. By providing the electrode signal detecting means, the state of film formation can be constantly monitored, and a notification is issued, so that the citric acid cleaning can be performed at a suitable time that does not affect the purification performance.

【0040】本発明の請求項11に係る水浄化装置は、
クエン酸洗浄後に循環回路内に残存するクエン酸を循環
回路外に流出させるすすぎ洗浄動作を実行する構成とし
たものである。
The water purifying apparatus according to claim 11 of the present invention comprises:
This is a configuration in which a rinsing operation is performed to cause citric acid remaining in the circulation circuit to flow out of the circulation circuit after the citric acid cleaning.

【0041】そして、クエン酸が循環経路内に残存して
長期放置した場合、循環経路内の構成部材が酸化腐食さ
れる。したがってクエン酸洗浄後にすすぎ洗浄動作を実
行することにより残存するクエン酸溶液が循環経路外に
放出されることとなり、機器信頼性が向上する。また、
クエン酸が循環経路内に残存した状態で次回の浄化、例
えば浴槽水の浄化を行う場合、クエン酸の有機炭素が浴
槽水に混入して総有機炭素量TOCが増加し、細菌群の
栄養源となって増殖を加速し、浄化性能が低下する場合
がある。すすぎ洗浄を実施することでこのような浄化性
能の低下を防止することができる。
When the citric acid remains in the circulation path and is left for a long time, the components in the circulation path are oxidized and corroded. Therefore, by performing the rinsing operation after the citric acid cleaning, the remaining citric acid solution is discharged out of the circulation path, and the reliability of the device is improved. Also,
When the next purification, for example, bath water purification, is performed while citric acid remains in the circulation path, the organic carbon of citric acid is mixed into the bath water to increase the total organic carbon amount TOC, thereby increasing the nutrient source of the bacterial group. As a result, the growth may be accelerated and the purification performance may be reduced. By performing the rinsing, such a decrease in purification performance can be prevented.

【0042】[0042]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0043】(実施例1)図1は本発明の実施例1にお
ける給湯風呂装置のシステム構成図を示す。同図におい
て、8は被浄化水である浴槽9の水を浄化する水浄化装
置であり、10は浴槽水の保温沸き上げを行う加熱手段
11を有する給湯手段である。
(Embodiment 1) FIG. 1 shows a system configuration diagram of a hot water supply bath apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 8 denotes a water purification device for purifying water in a bathtub 9 which is water to be purified, and reference numeral 10 denotes a hot water supply unit having a heating unit 11 for keeping the bathtub water warm and boiling.

【0044】浴槽9には、水浄化装置8に接続された吐
出口12および吸い込み口13を有する風呂アダプタ1
4が設けられている。
The bathtub 9 has a bath adapter 1 having a discharge port 12 and a suction port 13 connected to the water purification device 8.
4 are provided.

【0045】水浄化装置8は、浴槽9の吸い込み口13
に連通する戻り管15およひ吐出口12に連通する往き
管16からなる循環路17と、浴槽水を循環させるため
の循環手段18と、循環路17に設けられ、循環水にク
エン酸を供給するクエン酸供給手段19と、浴槽水に含
まれる懸濁物質を凝集させて大径化させる凝集手段20
およびその下流に設けられ、例えばアルミナなどの無機
系材料からなる粒状の濾材21を濾床22を介して充填
し、凝集手段20で大径化した凝集フロックを濾過する
濾過手段23、凝集手段20の上流側に設けられ加熱手
段11に連通する三方弁24aおよび濾過手段23の下
流側に設けられた三方弁24b、濾過手段23に堆積し
た懸濁物質を通常濾過時とは逆方向に通水して洗浄する
ためのバイパス路25と排出路26からなる逆洗手段2
7から構成されている。なお、排水路26には逆流洗浄
の際に濾過手段23から流出する濾材21を捕捉するト
ラップ28と、その下流に設けられた二方弁29が設け
られており、その終端は往き管16に接続され、逆洗水
は浴槽9に排出されるように構成されている。
The water purifier 8 is provided with a suction port 13 of the bathtub 9.
A circulation path 17 including a return pipe 15 communicating with the discharge port 12 and a going pipe 16 communicating with the discharge port 12, a circulation means 18 for circulating bath water, and a circulation path 17 provided with citric acid in the circulation water. Citric acid supply means 19 for supplying, and aggregating means 20 for aggregating and increasing the diameter of suspended substances contained in bath water
A filtration means 23 provided downstream of the filtration means 23, which is filled with a particulate filter medium 21 made of, for example, an inorganic material such as alumina through a filter bed 22, and filters the flocculated floc having a large diameter by the flocculating means 20. A three-way valve 24a provided upstream of the filter and communicating with the heating means 11 and a three-way valve 24b provided downstream of the filtration means 23, and the suspended substance deposited on the filtration means 23 is passed in the opposite direction to that during normal filtration. Back washing means 2 comprising a bypass passage 25 and a discharge passage 26 for washing by washing.
7. The drain 26 is provided with a trap 28 for catching the filter medium 21 flowing out of the filtration means 23 at the time of backwashing, and a two-way valve 29 provided downstream thereof. The backwash water is connected and discharged to the bathtub 9.

【0046】凝集手段20は、ステンレスから構成され
る筐体30の内部にアルミニウムから構成されるアルミ
陽極31を筐体30に対向配置するとともに陽極31と
陰極(ここでは筐体30を兼用する)間に電圧を印可す
る電源32及び陰極(筐体)30と陽極31の通電極性
を切換可能なリバース手段33を有している。
The aggregating means 20 has an aluminum anode 31 made of aluminum inside a housing 30 made of stainless steel and opposed to the housing 30, and the anode 31 and the cathode (here, the housing 30 is also used). A power supply 32 for applying a voltage therebetween, and a reverse means 33 capable of switching the polarity of current supplied to the cathode (casing) 30 and the anode 31 are provided.

【0047】34は浴槽9の水位を検出する水位検知手
段、35aおよび35bは逆止弁、36は二方弁であ
る。
Reference numeral 34 denotes a water level detecting means for detecting the water level in the bathtub 9, 35a and 35b are check valves, and 36 is a two-way valve.

【0048】給湯手段10は、水回路37とガス回路3
8を有しており、水回路37には入水温を検出する入水
温検知手段39、流量検出手段40、給湯熱交換器41
a、水量比例弁42、流量調節弁43、給湯出口温度を
検出する出湯温検知手段44が順次設けられており、そ
の端末はシャワーなどの水端末45および注湯弁46、
逆止弁35a、35bを経て水浄化装置8の循環路17
から浴槽9に注湯可能に構成されている。47は入口側
水回路と水比例弁42を連通するバイパス水路である。
The hot water supply means 10 includes a water circuit 37 and a gas circuit 3.
The water circuit 37 includes an incoming water temperature detecting means 39 for detecting an incoming water temperature, a flow rate detecting means 40, and a hot water supply heat exchanger 41.
a, a water quantity proportional valve 42, a flow rate control valve 43, and a tapping temperature detecting means 44 for detecting a hot water outlet temperature are sequentially provided, and the terminals thereof are a water terminal 45 such as a shower and a pouring valve 46;
The circulation path 17 of the water purification device 8 passes through the check valves 35a and 35b.
Is configured to be able to be poured into the bathtub 9. Reference numeral 47 denotes a bypass water passage that connects the inlet side water circuit and the water proportional valve 42.

【0049】ガス回路38には元電磁弁48、ガス比例
弁49および加熱手段11と給湯熱交換器41aを加熱
するバーナー50が設けられている。ここで給湯熱交換
器41aと浴槽水の保温沸き上げを行う加熱手段11の
熱交換器41bは一体に構成されており、いわゆる一缶
二水路方式の熱交換器が構成されている。
The gas circuit 38 is provided with a main solenoid valve 48, a gas proportional valve 49, and a heating means 11 and a burner 50 for heating the hot water supply heat exchanger 41a. Here, the hot water supply heat exchanger 41a and the heat exchanger 41b of the heating means 11 for keeping the water in the bathtub warm and boiling are integrally formed, and a so-called one-can-two-channel heat exchanger is formed.

【0050】図2は水浄化装置の要部構成図を示す。同
図において51は制御手段であり、後述するタイムチャ
ートに基づいて循環手段18を制御する循環制御手段5
2と、電源32およびリバース手段33を介して凝集手
段20を制御する電解制御手段53から構成される凝集
制御手段54、(電極制御手段)三方弁24a、24b
を制御して濾過手段23の逆流洗浄を制御する逆洗制御
手段55を有している。
FIG. 2 is a configuration diagram of a main part of the water purification device. In the figure, reference numeral 51 denotes a control means, which is a circulation control means 5 for controlling the circulation means 18 based on a time chart described later.
, An aggregation control means 54 comprising an electrolysis control means 53 for controlling the aggregation means 20 via a power supply 32 and a reverse means 33, (electrode control means) three-way valves 24a, 24b
And a backwash control means 55 for controlling backflow washing of the filtration means 23 by controlling the backwashing.

【0051】ここで循環制御手段52には図3の動作タ
イムチャートに示したように、凝集動作時間すなわち凝
集制御手段54が動作して陰極(筐体)30と陽極31
間に通電されている状態において、循環手段18を停止
させる時間Taを設定する第1の時限手段56と、循環手
段18を動作させる時間Tbを設定する第2の時限手段5
7が設けられており、循環手段18が動作している時間
Tbに連動して電解制御手段53は陰極30および陽極3
1への通電を停止するように動作する。また凝集動作終
了時には、電解制御手段53により、所定時間Trだけリ
バース手段33を動作させて陰極30と陽極31の極性
を逆転させてリバース動作を行う構成となっている。
Here, as shown in the operation time chart of FIG. 3, the coagulation operation time, that is, the coagulation control means 54 is operated by the circulation control means 52 to operate the cathode (casing) 30 and the anode 31.
In the state where power is supplied during the period, the first time limit means 56 for setting the time Ta for stopping the circulation means 18 and the second time means 5 for setting the time Tb for operating the circulation means 18
7 is provided, and the time during which the circulation means 18 is operating
In conjunction with Tb, the electrolysis control means 53 sets the cathode 30 and the anode 3
It operates so as to stop energizing 1. When the coagulation operation is completed, the reverse operation is performed by operating the reverse unit 33 for a predetermined time Tr by the electrolysis control unit 53 to reverse the polarities of the cathode 30 and the anode 31.

【0052】以上の構成において、次に本実施例の動
作、作用について図1、図2および図3を用いて説明す
る。
Next, the operation and operation of this embodiment having the above configuration will be described with reference to FIGS. 1, 2 and 3. FIG.

【0053】風呂給湯スイッチ(図示せず)の投入によ
り注湯弁46が開成し、水回路36から水が導入され、
同時にガス回路38の元電磁弁48が開成されてバーナ
ー50が点火される。水回路36を通過する水は給湯熱
交換器41aで加熱され、入水温検知手段39、流量検
知手段40および出湯温検知手段44の検知信号に基づ
いて水比例弁42、流量調節弁43およびガス比例弁4
9が制御され、設定された温度の湯が戻り管15および
もしくは往き管16を経て浴槽9に注湯される。浴槽9
の水位は水位検知手段34で所定時間毎に検出されてお
り、設定水位に達すると自動的に注湯弁46が閉成さ
れ、給湯手段10が停止する。なお浴槽水の水位および
温度は入浴時間帯内において適宜検出されており、設定
された水位および温度が維持される。また水端末45が
開成されると同様に給湯手段10が動作し、所望温度が
出湯される。
When the bath hot water switch (not shown) is turned on, the pouring valve 46 is opened, and water is introduced from the water circuit 36.
At the same time, the main solenoid valve 48 of the gas circuit 38 is opened and the burner 50 is ignited. The water passing through the water circuit 36 is heated by the hot water supply heat exchanger 41a, and based on detection signals from the incoming water temperature detecting means 39, the flow rate detecting means 40 and the outgoing water temperature detecting means 44, the water proportional valve 42, the flow rate regulating valve 43 and the gas Proportional valve 4
9 is controlled, and hot water of the set temperature is poured into the bathtub 9 via the return pipe 15 and / or the outgoing pipe 16. Bathtub 9
Is detected at predetermined time intervals by the water level detecting means 34. When the water level reaches the set water level, the pouring valve 46 is automatically closed, and the hot water supply means 10 is stopped. The water level and temperature of the bathtub water are appropriately detected within the bathing time zone, and the set water level and temperature are maintained. Also, when the water terminal 45 is opened, the hot water supply means 10 operates and the desired temperature is discharged.

【0054】次に水浄化装置8の作用、動作について説
明する。湯張り完了後、凝集制御手段54により図3の
タイムチャートに示すように第1の時限手段56によっ
て設定された時間Taの間は凝集手段20の電源32が動
作して陰極30とアルミ陽極31間に電圧が印可され
る。この時間帯では循環手段18は動作せずに滞留電解
が行われ、アルミニウムから構成される陽極31からア
ルミニウムイオンAl3+が溶出される。この時、滞留
電解することで陽極31の表面では水酸化物イオンOH
−が消費されて酸素ガス及び塩素ガスとなり、水酸化ア
ルミニウムAl(OH)3への反応が進行しにくく、ア
ルミ陽極31表面への水酸化アルミニウムの析出付着が
低減される。溶出したアルミニウムイオンは陰極30と
陽極31の間隙において水の水酸化物イオンOH−と反
応して水酸化アルミニウムAl(OH)3のコロイドと
なり浮遊する。
Next, the operation and operation of the water purification device 8 will be described. After the filling, the power supply 32 of the coagulation means 20 operates during the time Ta set by the first time limit means 56 by the coagulation control means 54 as shown in the time chart of FIG. A voltage is applied in between. In this time zone, the circulating means 18 does not operate and the retained electrolysis is performed, so that aluminum ions Al3 + are eluted from the anode 31 made of aluminum. At this time, the hydroxide ions OH
-Is consumed to become oxygen gas and chlorine gas, so that the reaction to aluminum hydroxide Al (OH) 3 does not easily progress, and the deposition of aluminum hydroxide on the surface of the aluminum anode 31 is reduced. The eluted aluminum ions react with hydroxide ions OH- of water in the gap between the cathode 30 and the anode 31 to become aluminum hydroxide Al (OH) 3 colloid and float.

【0055】滞留電解時間Ta経過後に第2の時限手段5
7によって時間Tbの間循環手段18が動作し、これに連
動して電解制御手段53によって凝集手段20への通電
が停止される。この時電極間に浮遊する、およびアルミ
陽極31の表面に付着した水酸化アルミニウムは流水に
よって洗い流されて濾材21の表面層に至り、アルミ陽
極31表面への残存が減少する。
After elapse of the residence time Ta, the second time limiter 5
7, the circulation means 18 is operated for the time Tb, and in conjunction with this, the energization to the aggregation means 20 is stopped by the electrolysis control means 53. At this time, the aluminum hydroxide floating between the electrodes and adhering to the surface of the aluminum anode 31 is washed away by running water to reach the surface layer of the filter medium 21, and the remaining on the surface of the aluminum anode 31 decreases.

【0056】一方、滞留状態で電気分解した場合、陽極
反応として酸素ガス及び水中の塩素イオンと反応して塩
素ガスが生成され、また陰極反応としては水素ガスが生
成される。これらのガスは気泡となって浮上し、陰極3
0およびアルミ陽極31表面のスケール成分の剥離に寄
与するとも考えられるが、上方に集積して蓄積されるこ
ととなる。特に水素ガスは起爆性ガスであり、また塩素
ガスは腐食性ガスのため多量の蓄積は信頼性の面で課題
となる。またガスの発生により電極間の電気的な等価抵
抗が徐々に増大し、定電流制御した場合電圧値が増加す
ることとなり、高い電圧容量の電源32が必要となる。
すなわち所定周期で滞留電解と通水を断続的に行うこと
で電極表面のスケールを防止しつつ、これらの課題に対
処することが可能となる。
On the other hand, when electrolysis is carried out in a stagnant state, chlorine gas is produced by reacting with oxygen gas and chlorine ions in water as an anodic reaction, and hydrogen gas is produced as a cathodic reaction. These gases float as bubbles and the cathode 3
Although it is considered that this contributes to the separation of the scale components from the surface of the aluminum anode 31 and 0, it is accumulated and accumulated upward. In particular, hydrogen gas is an explosive gas, and chlorine gas is a corrosive gas. In addition, the electric equivalent resistance between the electrodes gradually increases due to the generation of gas, and the voltage value increases when constant current control is performed, so that the power supply 32 having a high voltage capacity is required.
That is, by intermittently performing the retained electrolysis and the flow of water at a predetermined cycle, it is possible to prevent these problems while preventing scale on the electrode surface.

【0057】ここで浴槽水に含まれる皮脂・垢及び細菌
群などの懸濁物質は、側鎖にカルボキシル基を持ってい
るので負に帯電している。一方水酸化アルミニウムは正
電荷のため、水酸化アルミニウムが結着媒体となり、架
橋作用によって微細な懸濁物質を吸着して大径化させて
いわゆる凝集フロックが生成される。この結果、濾材2
1の表層部に凝集フロックが堆積して緻密な細孔を有す
るケーク層(凝集膜)が形成され、循環手段18を動作
させることによって図1の実線矢印で示した経路を浴槽
水が循環し、短時間で効果的な水浄化が可能となる。実
験によれば、濁度2度の被浄化水を電極間に300mA
通電しながら濾過した場合、20分経過後0.5度以下
が得られた。微生物の酵素活性作用によるものでは同様
の実験で2〜3時間必要であり、本実施例では使用者が
続けて(例えば30分間隔)入浴した場合でも清澄な浴
槽水に入浴できることとなる。
Here, the suspended substances such as sebum, dirt and bacteria contained in the bath water are negatively charged because they have a carboxyl group in the side chain. On the other hand, since aluminum hydroxide has a positive charge, the aluminum hydroxide serves as a binding medium, and a fine suspended substance is adsorbed by the crosslinking action to increase the diameter thereof, so-called agglomerated flocs are generated. As a result, the filter medium 2
The coagulated floc is deposited on the surface layer of No. 1 to form a cake layer (coagulated film) having fine pores. By operating the circulating means 18, the bath water circulates along the path shown by the solid line arrow in FIG. Thus, effective water purification can be performed in a short time. According to the experiment, the water to be purified having a turbidity of 2 degrees was applied between the electrodes at 300 mA.
When the filtration was performed while applying a current, 0.5 ° or less was obtained after elapse of 20 minutes. In the same experiment, it takes 2 to 3 hours for the enzyme activity of the microorganism. In this embodiment, even if the user takes a continuous bath (for example, every 30 minutes), the user can bathe in clear bath water.

【0058】この凝集動作時間には図3に示したよう
に、凝集制御手段54が動作して循環手段18および凝
集手段20を制御し、上記動作が所定回数繰り返され
る。なおこの動作回数は浄化負荷によって好適な回数
(時間)行われる。
During this coagulation operation time, as shown in FIG. 3, the coagulation control means 54 operates to control the circulation means 18 and the coagulation means 20, and the above operation is repeated a predetermined number of times. Note that this operation is performed a suitable number of times (time) depending on the purification load.

【0059】次に凝集動作の終了時には、電解制御手段
53によってリバース手段33が動作し、陰極30およ
びアルミ陽極31の極性が所定時間Trだけ逆極性通電さ
れる。凝集動作後に極性切換動作を行うことで陽極31
に生成された酸化膜が水素還元されるとともに、陰極3
0のプラスイオンを解離することで陰極30表面に付着
したアルミニウム水和物Al(OH)nの結合力が弱ま
り、電極表面へのアルミニウム水和物の堆積がより効果
的に防止され、より長寿命化が図れる。なお前記リバー
ス動作は凝集動作の初期に実施しても良い。
Next, at the end of the coagulation operation, the reverse means 33 is operated by the electrolysis control means 53, and the polarity of the cathode 30 and the aluminum anode 31 is supplied with reverse polarity for a predetermined time Tr. By performing the polarity switching operation after the aggregation operation, the anode 31
The oxide film formed on the cathode is reduced by hydrogen and the cathode 3
By dissociating the positive ions of 0, the binding force of the aluminum hydrate Al (OH) n attached to the surface of the cathode 30 is weakened, the deposition of aluminum hydrate on the electrode surface is more effectively prevented, and the longer Life can be extended. The reverse operation may be performed at the beginning of the aggregation operation.

【0060】次に濾過手段23の逆流洗浄動作について
説明する。入浴終了後から次の入浴時間帯の凝集動作に
至るまでの所定時期に逆洗制御手段55が動作して三方
弁24a、24bを図1もしくは図2の破線矢印で示し
た方向に流れるように制御する。この後給湯手段10が
動作して注湯弁46を開成し、高温水(約47℃望まし
くは60℃以上)が、戻り管15、三方弁24aを経て
バイパス路25に至り、濾過手段23の下流から通常濾
過方向に対して逆方向から流入し、濾材21の表面に堆
積した凝集フロックを含んだ懸濁物質が逆流洗浄され、
排出路26を経て逆流洗浄時に濾過手段23から流出す
る濾材23を捕捉するトラップ28および2方弁29を
通過して行き管16から浴槽9内に排出される。なおこ
の時浴槽水は水抜きされていてもよいし、湯張り状態で
逆洗動作を行い、その後排水してもよい。逆流洗浄時間
および流量は、懸濁物質の量、濾過手段23の仕様に応
じた好適な条件が設定される。
Next, the backwashing operation of the filtering means 23 will be described. At a predetermined time after the end of bathing until the coagulation operation in the next bathing time period, the backwash control means 55 operates to flow through the three-way valves 24a and 24b in the direction shown by the broken arrows in FIG. 1 or FIG. Control. Thereafter, the hot water supply means 10 is operated to open the injection valve 46, and high-temperature water (about 47 ° C., desirably 60 ° C. or more) reaches the bypass 25 through the return pipe 15 and the three-way valve 24 a. From the downstream, it flows in from the opposite direction to the normal filtration direction, and the suspended matter including the flocculated flocs deposited on the surface of the filter medium 21 is back-flow washed,
It passes through a trap 28 and a two-way valve 29 for catching the filter medium 23 flowing out of the filtering means 23 at the time of backwashing through the discharge path 26 and is discharged from the going pipe 16 into the bathtub 9. At this time, the bathtub water may be drained, or the backwash operation may be performed in a hot water state, and then drained. Suitable conditions for the backwashing time and the flow rate are set according to the amount of the suspended substance and the specifications of the filtration means 23.

【0061】このように凝集動作前に濾過手段23の逆
流洗浄を行うことで、捕捉した懸濁物質を含む凝集フロ
ックが外部に廃棄されて清浄化され、その後に凝集動作
を行うことで新たな凝集フロックのケーク層が形成され
て浄化が行われることとなり、濾過手段23の圧力損失
を所定値以上上昇させることなく長期にわたって安定し
た浄化性能を得ることができる。
As described above, by performing the backwashing of the filtration means 23 before the flocculation operation, the flocculated floc containing the trapped suspended substance is discarded to the outside and cleaned, and then a new flocculation operation is performed by performing the flocculation operation. As a result, the cake layer of the flocculated floc is formed and purification is performed, and stable purification performance can be obtained for a long time without increasing the pressure loss of the filtration means 23 by a predetermined value or more.

【0062】また、水酸化アルミニウムはその架橋作用
により粘性を有しており、逆流洗浄を行うに際して容易
には濾材21表面から解離しがたい性質があるが、前記
架橋作用は温度特性を有しており高温水で洗浄した場
合、急激に架橋作用が弱まる。給湯手段10は任意に高
温水が得られるため、高温水で逆流洗浄することで凝集
フロックの濾材21への結合力が弱められ、好適に逆流
洗浄を行うことができる。したがって長期使用に際して
も濾過手段23の圧力損失の増加がない。またトラップ
28を設けたので逆流洗浄時に濾過手段23から流出し
た濾材21が捕捉されるため、2方弁への噛み込みが防
止されるとともに、浴槽9への流出が防止できる。
Further, aluminum hydroxide has viscosity due to its cross-linking action and has a property that it is difficult to dissociate from the surface of the filter medium 21 when performing backwashing, but the cross-linking action has a temperature characteristic. When washed with high-temperature water, the crosslinking effect is rapidly reduced. Since the hot water supply means 10 can arbitrarily obtain high-temperature water, backflow washing with high-temperature water weakens the bonding force of the flocculent floc to the filter medium 21, so that backflow washing can be suitably performed. Therefore, there is no increase in the pressure loss of the filtration means 23 even during long-term use. In addition, since the trap 28 is provided, the filter medium 21 flowing out of the filtering means 23 at the time of backwashing is captured, so that the two-way valve is prevented from being caught and the outflow to the bathtub 9 can be prevented.

【0063】さらに逆洗水を浴槽9に排出する構成とす
ることで浄化機能付きの給湯風呂装置を高層集合住宅な
ど逆洗水の排水口(図示せず)が設けられていない住宅
に設置する場合でも、排水口の付設工事をすることなく
設置できる。
Further, since the backwash water is discharged into the bathtub 9, a hot water supply bath apparatus with a purifying function is installed in a high-rise apartment house, such as a house without a backwash water outlet (not shown). Even in this case, it can be installed without the construction work of drainage.

【0064】次にクエン酸洗浄動作について説明する。
長期にわたって凝集電解動作を継続すると、陰極30お
よびアルミ陽極31に水酸化アルミニウムを主成分とす
る電極皮膜が生成される。所定の時期にスイッチ(図示
せず)操作することにより、自動的に制御手段51が起
動されてクエン酸供給手段19が動作し、循環路17に
所定の濃度(pH1〜3.5)となるようにクエン酸が
混入され、また給湯手段10の加熱手段11が動作して
循環水温が40〜70℃(好ましくは70℃)に沸き上
げられる。その後、循環手段18が動作して浴槽9を経
て循環路17を循環し、濾過手段23内の陰極30およ
びアルミ陽極31と接触し、電極表面に付着する水酸化
アルミAl(OH)3を主成分とする電極皮膜がイオン
化(Al3+)し、またCa、Mgなど水に含まれるス
ケール成分もイオン化して溶解する。したがって効果的
に電極表面皮膜が除去でき、長期にわたって良好な浄化
性能を持続できる。
Next, the citric acid cleaning operation will be described.
When the coagulation electrolysis operation is continued for a long time, an electrode film containing aluminum hydroxide as a main component is formed on the cathode 30 and the aluminum anode 31. By operating a switch (not shown) at a predetermined time, the control means 51 is automatically started, the citric acid supply means 19 is operated, and a predetermined concentration (pH 1 to 3.5) is obtained in the circulation path 17. The citric acid is thus mixed, and the heating means 11 of the hot water supply means 10 operates to raise the circulating water temperature to 40 to 70 ° C (preferably 70 ° C). Thereafter, the circulating means 18 is operated to circulate through the circulating path 17 through the bath 9 and contact the cathode 30 and the aluminum anode 31 in the filtering means 23 to mainly remove the aluminum hydroxide Al (OH) 3 adhering to the electrode surface. The electrode film as a component is ionized (Al3 +), and the scale components contained in water such as Ca and Mg are also ionized and dissolved. Therefore, the electrode surface film can be effectively removed, and good purification performance can be maintained for a long period of time.

【0065】図4は定電流電源によって電極に300m
A通電し、電解時間90分/日とした時の経過相当年数
と電解電圧の関係を示す特性図である。図中特性Aは従
来の連続通水電解によるもの。特性Bは、断続滞留電解
を行った場合であり、Cは本発明による断続滞留電解と
クエン酸洗浄を組み合わせたものである。なお特性Cに
おけるクエン酸洗浄条件は、クエン酸濃度0.3wt%
(pH2.6)、温度は47℃で2時間洗浄をおこな
い、1年相当周期で実施した。電源容量の関係から24
Vを寿命とすると、クエン酸洗浄を併用した特性Cは、
従来Aと比較して約20倍の寿命を有することがわか
る。
FIG. 4 shows a case where the electrode is 300 m long by a constant current power supply.
FIG. 9 is a characteristic diagram showing a relationship between an elapsed equivalent number of years and an electrolysis voltage when A is energized and the electrolysis time is set to 90 minutes / day. The characteristic A in the figure is based on the conventional continuous flow electrolysis. Characteristic B is a case where intermittent residence electrolysis was performed, and C is a combination of intermittent residence electrolysis according to the present invention and citric acid washing. The cleaning conditions for citric acid in the characteristic C are as follows: citric acid concentration: 0.3 wt%
(PH 2.6), washing was performed at a temperature of 47 ° C. for 2 hours, and the washing was performed at a cycle corresponding to one year. 24 due to power capacity
Assuming that V is the life, the characteristic C using the citric acid cleaning together is
It can be seen that the life is about 20 times that of the conventional A.

【0066】またクエン酸には、0.01〜1重量%の
腐食抑制剤(インヒビター)が混合されており、クエン
酸洗浄時にクエン酸と接触する水浄化装置の構成部材の
強酸による腐食溶解を防止することができ、機器の信頼
性が向上する。
In addition, 0.01 to 1% by weight of a corrosion inhibitor (inhibitor) is mixed with citric acid to prevent corrosion and dissolution of the components of the water purification device which comes into contact with citric acid during washing with citric acid due to strong acid. Can be prevented, and the reliability of the device is improved.

【0067】なお、クエン酸洗浄はクエン酸供給手段1
9を設けることなく、人手により浴槽9に所定量を投入
して実施してもよい。
The citric acid washing is performed by citric acid supply means 1
Without providing 9, a predetermined amount may be put into the bathtub 9 by hand to carry out.

【0068】(実施例2)図4は本発明の実施例2にお
ける浄化機能付き給湯風呂装置の要部構成図である。
(Embodiment 2) FIG. 4 is a main part configuration diagram of a hot water supply bath apparatus having a purifying function in Embodiment 2 of the present invention.

【0069】ここで58は、凝集制御手段54の動作回
数を検出する計数手段であり、凝集回数すなわち電極へ
の通電時間が所定時間に達すると報知手段59により報
知するとともに、クエン酸供給手段19を動作させて実
施例1と同様にクエン酸洗浄動作が行われる。また60
は電極間の電圧もしくは電流を検出する電極信号検出手
段であり、陰極30と陽極31間に皮膜が生成されて、
電圧もしくは電流がクエン酸洗浄を実施すべき値に達し
た時に報知手段59により報知するとともに、クエン酸
供給手段19を動作させて実施例1と同様にクエン酸洗
浄動作を行う。さらに61はすすぎ洗浄制御手段であ
り、クエン酸洗浄が実行されたことを検出し、クエン酸
洗浄動作後に給湯手段10を動作させて濾過手段23を
含む循環経路に新鮮水を供給してすすぎ洗浄が行われ
る。
Reference numeral 58 denotes a counting means for detecting the number of operations of the coagulation control means 54. When the number of times of coagulation, that is, the energizing time to the electrode reaches a predetermined time, the notifying means 59 notifies the counting means. To perform the citric acid cleaning operation in the same manner as in the first embodiment. Also 60
Is an electrode signal detecting means for detecting the voltage or current between the electrodes, and a film is formed between the cathode 30 and the anode 31;
When the voltage or the current reaches a value at which the citric acid cleaning is to be performed, the notifying unit 59 is notified, and the citric acid supplying unit 19 is operated to perform the citric acid cleaning operation as in the first embodiment. Further, reference numeral 61 denotes a rinsing cleaning control unit, which detects that the citric acid cleaning has been executed, operates the hot water supply unit 10 after the citric acid cleaning operation, and supplies fresh water to the circulation path including the filtration unit 23 to perform rinsing cleaning. Is performed.

【0070】その他は図1および図2に示した実施例と
同様であり、同一番号を付して詳細な説明を省略する。
The other parts are the same as those of the embodiment shown in FIGS. 1 and 2, and the same reference numerals are given and the detailed explanation is omitted.

【0071】以上の構成において、次に本実施例の作用
動作について説明する。浄化のために1日当たり所定時
間陰極30と陽極31に通電して凝集動作が行われる
が、所定日数(回数)凝集動作が継続(例えば1年間)
されると電極皮膜が形成されて前記したように浄化性能
が低下するため、クエン酸洗浄の必要が生じる。計数手
段58は凝集回数を検出し、洗浄が必要な所定回数に達
した時点で報知手段59に表示し、クエン酸供給手段1
9を動作させることにより実施例1で説明したクエン酸
洗浄動作が実行され、電極皮膜の除去が行われる。これ
により凝集回数が所定回数に達した時点でクエン酸洗浄
を実施することで入浴が行われない日など凝集動作が行
われない場合は計数しないため、不必要な洗浄作業を行
うことなく、効果的に被膜洗浄を行うことができる。
Next, the operation of this embodiment will be described. For the purification, the cathode 30 and the anode 31 are energized for a predetermined time per day to perform the aggregation operation, but the aggregation operation is continued for a predetermined number of days (number of times) (for example, one year).
As a result, an electrode film is formed and the purification performance is reduced as described above, so that it is necessary to wash with citric acid. The counting means 58 detects the number of times of agglutination, and when the number of times required for washing reaches the predetermined number, displays it on the notifying means 59, and displays
By operating No. 9, the citric acid cleaning operation described in the first embodiment is executed, and the electrode film is removed. By performing citric acid washing when the number of times of agglomeration reaches a predetermined number, if aggregating operation is not performed such as a day when bathing is not performed, counting is not performed, so that unnecessary cleaning work is not performed, and the effect is eliminated. The coating can be washed effectively.

【0072】また電極信号検出手段60は陰極30と陽
極31に通電される電圧もしくは電流を検出し、電極皮
膜が生成されて極間の電気抵抗が所定値(例えば電圧2
4V)を越えた時点で報知手段59に表示し、クエン酸
供給手段19を動作させることにより実施例1で説明し
たクエン酸洗浄動作が実行され、電極皮膜の除去が行わ
れる。
The electrode signal detecting means 60 detects a voltage or a current applied to the cathode 30 and the anode 31 to form an electrode film, and the electric resistance between the electrodes is set to a predetermined value (for example, voltage 2).
When the voltage exceeds 4 V), the display is displayed on the notification means 59 and the citric acid supply means 19 is operated to execute the citric acid cleaning operation described in the first embodiment, thereby removing the electrode film.

【0073】これにより電極皮膜生成状態が常時監視で
きることとなり、また報知されるので浄化性能に影響を
及ぼさない好適な時期にクエン酸洗浄を実施できる。ま
た上記の計数手段58と併用することにより導電率ある
いは硬度、pHなど水質の違いおよび入浴負荷などによ
る電極皮膜生成のバラツキに対応でき、長期にわたって
良好な浄化性能を維持できる。
As a result, the state of electrode film formation can be constantly monitored, and a notification is given, so that the citric acid cleaning can be performed at a suitable time that does not affect the purification performance. When used in combination with the above-mentioned counting means 58, it is possible to cope with variations in the formation of electrode films due to differences in water quality such as electrical conductivity or hardness and pH, and bathing load, etc., and it is possible to maintain good purification performance for a long period of time.

【0074】またすすぎ洗浄制御手段61はクエン酸洗
浄が実行されたことを検出し、クエン酸洗浄動作後に給
湯手段10を動作させて濾過手段23を含む循環路17
に新鮮水を供給してすすぎ洗浄を実行し、循環回路内に
残存するクエン酸を循環回路外に流出させる。したがっ
て循環回路に残存するクエン酸溶液が循環経路外に放出
されることとなり、機器信頼性が向上する。また、クエ
ン酸が循環経路内に残存した状態で次回の浄化、例えば
浴槽水の浄化を行う場合、クエン酸の有機炭素が浴槽水
に混入して総有機炭素量TOCが増加し、細菌群の栄養
源となって増殖を加速し、浄化性能が低下する場合があ
るが、すすぎ洗浄を実施することでこのような浄化性能
の低下を防止することができる。
Further, the rinsing washing control means 61 detects that the citric acid washing has been executed, and operates the hot water supply means 10 after the citric acid washing operation, thereby causing the circulation path 17 including the filtering means 23 to operate.
Is supplied with fresh water to perform rinsing, and the citric acid remaining in the circulation circuit is allowed to flow out of the circulation circuit. Therefore, the citric acid solution remaining in the circulation circuit is discharged out of the circulation path, and the reliability of the device is improved. Further, when the next purification, for example, bathtub water purification is performed in a state where the citric acid remains in the circulation path, the organic carbon of the citric acid is mixed in the bathtub water, the total organic carbon amount TOC increases, and the bacteria group is removed. There is a case where the growth becomes accelerated as a nutrient source and the purification performance is reduced. However, such a reduction in the purification performance can be prevented by performing the rinsing.

【0075】なお本実施例では、計数手段58および電
極信号検出手段60の信号によりクエン酸供給手段19
を自動的に動作させてクエン酸洗浄を実施する構成を説
明したが、クエン酸供給手段19を設けることなく、報
知された後に人手により浴槽9にクエン酸を所定量を投
入して洗浄してもよい。
In the present embodiment, the signals from the counting means 58 and the electrode signal detecting means 60 are used to supply the citric acid supplying means 19.
Was automatically operated to perform citric acid cleaning. However, without providing the citric acid supply means 19, after being notified, a predetermined amount of citric acid was manually poured into the bathtub 9 for cleaning. Is also good.

【0076】[0076]

【発明の効果】以上説明したように本発明の請求項1に
係る電極皮膜の除去方法によれば、滞留電解と通水のみ
が交互に行われる。この結果滞留電解によって陽極表面
の金属水物和物の付着が防止され、また通電しない状態
で通水することでアルミニウムの金属水和物、スケール
等の皮膜が電極表面から剥離しやすくなり、加えて所定
の時期に水中にクエン酸を溶解させて所定濃度、時間お
よび温度で洗浄するので電極間に生成された被膜は強酸
性雰囲気にさらされてイオン化し効果的に除去できる。
この結果、アルミニウムを有効に利用することができ、
アルミニウム陽極の容積あるいは重量の低減が図れる。
また極間の電気抵抗が変化しないので電極寿命を大幅に
伸長することができる。
As described above, according to the method for removing an electrode film according to the first aspect of the present invention, only the retained electrolysis and the passage of water are alternately performed. As a result, the accumulation of metal hydrate on the anode surface is prevented by the retained electrolysis, and the film of aluminum metal hydrate, scale, etc. is easily peeled off from the electrode surface by passing water without applying electricity, Since citric acid is dissolved in water at a predetermined time and washed at a predetermined concentration, time and temperature, the film formed between the electrodes is exposed to a strongly acidic atmosphere to be ionized and effectively removed.
As a result, aluminum can be used effectively,
The volume or weight of the aluminum anode can be reduced.
In addition, since the electrical resistance between the electrodes does not change, the life of the electrodes can be greatly extended.

【0077】本発明の請求項2に係る電極皮膜の除去方
法によれば、クエン酸洗浄時の水のpHが1〜3.5の
範囲となるようにクエン酸濃度を調製するので、電極表
面に付着する水酸化アルミAl(OH)3などの皮膜を
効果的にイオン化し、電極皮膜が除去できる。
According to the method for removing an electrode film according to the second aspect of the present invention, the concentration of citric acid is adjusted so that the pH of water at the time of washing with citric acid is in the range of 1 to 3.5. A film such as aluminum hydroxide (Al (OH) 3) adhering to the surface can be effectively ionized to remove the electrode film.

【0078】本発明の請求項3に係る電極皮膜の除去方
法によれば、クエン酸に0.01〜1重量%の腐食抑制
剤を混合させたので、洗浄時にクエン酸と接触する循環
経路の構成部材の強酸による腐食溶解を効果的に防止す
ることができる。
According to the method for removing an electrode film according to the third aspect of the present invention, since 0.01 to 1% by weight of a corrosion inhibitor is mixed with citric acid, a circulation path for contacting citric acid at the time of washing is used. Corrosion and dissolution of the constituent members due to strong acid can be effectively prevented.

【0079】本発明の請求項4に係る水浄化装置によれ
ば、電極への通電による凝集動作には凝集制御手段が動
作して、所定の周期で循環手段が断続的に駆動されると
ともに、循環手段の動作時には滞留電解と通水のみが交
互に行われることとなり、滞留電解によって陽極表面の
金属水物和物の付着が防止され、また通電しない状態で
通水することで溶解金属の金属水和物が電極表面から剥
離しやすくなるので電極表面に皮膜が生成されにくくな
るとともに、下流の濾過手段に捕捉されて良好なケーク
層(濾過膜)を形成するとともに電解によって蓄積され
たガスが循環路を経て放出される。加えて、所定の時期
に循環水中にクエン酸を溶解させて所定濃度、時間およ
び温度で電極間に生成される皮膜を洗浄するので、電極
間に生成され徐々に堆積した被膜は強酸性雰囲気にさら
されてイオン化し、より効果的に皮膜を除去できる。こ
れにより電極皮膜(スケール)が防止され、アルミニウ
ムの有効利用率が向上するので良好な浄化性能が得られ
るとともに陽極の小型化が図れる。また陽極、陰極間の
電気抵抗が変化しないので長期にわたって良好な浄化性
能を持続できる。
According to the water purifying apparatus of the fourth aspect of the present invention, the coagulation control means operates for the coagulation operation by energizing the electrodes, and the circulation means is intermittently driven at a predetermined cycle. During the operation of the circulating means, only the retained electrolysis and the water flow are alternately performed, and the retained electrolysis prevents the adhesion of the metal hydrate on the anode surface. Since the hydrate is easily peeled off from the electrode surface, it is difficult to form a film on the electrode surface, and a good cake layer (filtration membrane) is captured by downstream filtration means, and gas accumulated by electrolysis is removed. Released via the circuit. In addition, the citric acid is dissolved in the circulating water at a predetermined time to wash the film formed between the electrodes at a predetermined concentration, time, and temperature. The film is exposed and ionized, and the film can be removed more effectively. As a result, the electrode film (scale) is prevented, and the effective utilization rate of aluminum is improved, so that good purification performance is obtained and the size of the anode can be reduced. Further, since the electric resistance between the anode and the cathode does not change, good purification performance can be maintained for a long period of time.

【0080】本発明の請求項5に係る水浄化装置によれ
ば、クエン酸を所定濃度で混入するクエン酸供給手段を
設けたので、所定の時期にクエン酸供給手段が自動的に
動作して所定の濃度及び温度で電極間の洗浄が行われ、
クエン酸洗浄の人手による作業が不要となる。
According to the water purifying apparatus according to the fifth aspect of the present invention, since the citric acid supply means for mixing the citric acid at a predetermined concentration is provided, the citric acid supply means automatically operates at a predetermined time. Cleaning between the electrodes is performed at a predetermined concentration and temperature,
The manual work of washing with citric acid is not required.

【0081】本発明の請求項6に係る水浄化装置によれ
ば、クエン酸洗浄時の水のpHが1〜3.5の範囲とな
るようにクエン酸濃度を調製したので、電極表面の水酸
化アルミAl(OH)3を主体とする皮膜を効果的にイ
オン化して除去でき、長期にわたって良好な浄化性能を
持続できる。
According to the water purifying apparatus of the sixth aspect of the present invention, the concentration of citric acid is adjusted so that the pH of water at the time of washing with citric acid is in the range of 1 to 3.5. The coating mainly composed of aluminum oxide Al (OH) 3 can be effectively ionized and removed, and good purification performance can be maintained for a long time.

【0082】本発明の請求項7に係る水浄化装置によれ
ば、クエン酸に0.01〜1重量%の腐食抑制剤を混合
させたので、クエン酸洗浄時にクエン酸と接触する水浄
化装置の構成部材の強酸による腐食劣化を防止すること
ができ、機器の信頼性が向上する。本発明の請求項8に
係る水浄化装置によれば、凝集動作回数を計測する計数
手段を設け、凝集回数が所定回数に達した時点でクエン
酸洗浄を実施するので、入浴が行われない日など凝集動
作が行われない場合は計数しないため、不必要な洗浄作
業を行うことなく、効果的に被膜洗浄を行うことができ
る。
According to the water purifying apparatus according to the seventh aspect of the present invention, since 0.01 to 1% by weight of the corrosion inhibitor is mixed with citric acid, the water purifying apparatus comes into contact with citric acid at the time of washing with citric acid. Can be prevented from being corroded and deteriorated by the strong acid, and the reliability of the device is improved. According to the water purification apparatus according to claim 8 of the present invention, the counting means for measuring the number of times of coagulation is provided, and the citric acid washing is performed when the number of times of coagulation reaches the predetermined number. If the coagulation operation is not performed, the counting is not performed, so that the coating film can be effectively cleaned without performing unnecessary cleaning work.

【0083】本発明の請求項9に係る水浄化装置によれ
ば、クエン酸洗浄時に加熱手段を制御して被浄化水の温
度を40℃から70℃の範囲で行うものであるので、ク
エン酸が高活性となり、被膜除去効果が向上する。ま
た、70℃を越える温度での洗浄による熱ストレスによ
る機器信頼性の低下を防止できる。
According to the water purifying apparatus of the ninth aspect of the present invention, the temperature of the water to be purified is controlled in the range of 40 ° C. to 70 ° C. by controlling the heating means at the time of citric acid washing. Becomes highly active, and the film removing effect is improved. Further, it is possible to prevent a decrease in device reliability due to thermal stress caused by cleaning at a temperature exceeding 70 ° C.

【0084】本発明の請求項10に係る水浄化装置によ
れば、電極信号検出手段を設けるとともに、この電極信
号検出手段の信号に応じてクエン酸洗浄時期を報知する
報知手段を設けたので、電極皮膜生成状態が常時監視で
きることとなり、また報知されるので浄化性能に影響を
及ぼさない好適な時期にクエン酸洗浄を実施できる。ま
た前記計数手段と併用することにより導電率あるいは硬
度、pHなど水質の違いおよび入浴負荷などによる電極
皮膜生成のバラツキに対応でき、長期にわたって良好な
浄化性能を維持できる。
According to the water purifying apparatus according to the tenth aspect of the present invention, since the electrode signal detecting means is provided, and the notifying means for notifying the citric acid cleaning timing in accordance with the signal of the electrode signal detecting means is provided. The state of electrode film formation can be constantly monitored, and a notification is given, so that citric acid cleaning can be performed at a suitable time that does not affect the purification performance. When used in combination with the counting means, it is possible to cope with variations in the formation of electrode films due to differences in water quality such as conductivity or hardness, pH, and bathing load, and to maintain good purification performance over a long period of time.

【0085】本発明の請求項11に係る水浄化装置によ
れば、クエン酸洗浄後に循環回路内に残存するクエン酸
を循環回路外に流出させるすすぎ洗浄動作を実行するの
で、クエン酸の循環経路内への残存による構成部材の酸
化腐食が防止できるので機器信頼性が向上する。また、
次回の浴槽水の浄化に際して、クエン酸残存による総有
機炭素量TOCの増加を防止し、細菌群の増殖による浄
化性能の低下を防止できる。
According to the water purifying apparatus of the eleventh aspect of the present invention, since the rinsing operation for causing the citric acid remaining in the circulation circuit to flow out of the circulation circuit after the citric acid cleaning is performed, the citric acid circulation path Oxidation and corrosion of the constituent members due to remaining in the inside can be prevented, so that device reliability is improved. Also,
In the next purification of bath water, it is possible to prevent an increase in the total organic carbon amount TOC due to the remaining citric acid and prevent a decrease in purification performance due to the proliferation of bacteria.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示す給湯風呂装置のシステ
ム構成図
FIG. 1 is a system configuration diagram of a hot water supply bath apparatus showing one embodiment of the present invention.

【図2】同水浄化装置の要部構成図FIG. 2 is a configuration diagram of a main part of the water purification device.

【図3】同電解電流と循環手段のタイムチャートFIG. 3 is a time chart of the electrolysis current and circulation means.

【図4】同経過年数と電解電圧の関係を示す寿命特性図FIG. 4 is a life characteristic diagram showing the relationship between the elapsed years and the electrolytic voltage.

【図5】本発明の第2実施例を示す水浄化装置の要部構
成図
FIG. 5 is a main part configuration diagram of a water purification device showing a second embodiment of the present invention.

【図6】本発明の従来例を示す水浄化装置の構成図FIG. 6 is a configuration diagram of a water purification device showing a conventional example of the present invention.

【図7】同凝集手段の断面図FIG. 7 is a sectional view of the aggregating means.

【符号の説明】[Explanation of symbols]

8 水浄化装置 11 加熱手段 17 循環路 18 循環手段 19 クエン酸供給手段 20 凝集手段 23 濾過手段 30 陰極(筐体) 31 アルミ陽極 51 制御手段 52 循環制御手段 53 電解制御手段 54 凝集制御手段(電極制御手段) 58 計数手段 59 報知手段 60 電極信号検出手段 61 すすぎ洗浄制御手段 Reference Signs List 8 water purification device 11 heating means 17 circulation path 18 circulation means 19 citric acid supply means 20 aggregation means 23 filtration means 30 cathode (casing) 31 aluminum anode 51 control means 52 circulation control means 53 electrolysis control means 54 aggregation control means (electrode Control means) 58 counting means 59 notification means 60 electrode signal detection means 61 rinsing cleaning control means

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23F 1/00 C23G 3/00 Z C23G 1/02 F24H 1/00 602L 3/00 B01D 35/02 J // F24H 1/00 602 (72)発明者 河合 祐 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 曽根高 和則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C23F 1/00 C23G 3/00 Z C23G 1/02 F24H 1/00 602L 3/00 B01D 35/02 J // F24H 1 / 00 602 (72) Inventor Yu Kawai 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Kazunori Sone 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】陰極とアルミニウムから構成される陽極と
から構成される少なくとも1対の電極と、前記電極の通
電制御を行う電極制御手段と、前記電極間に水を通水さ
せる循環手段と、前記電極に通水する水の加熱手段と、
前記電極制御手段と循環手段および加熱手段を制御する
制御手段を有し、前記電極への通電による電気分解動作
時は前記循環手段を所定の周期で断続動作させ、且つ前
記循環手段の動作時には前記電極への通電を停止させな
がら電気分解を行うとともに、所定の時期に水中にクエ
ン酸を溶解させて所定濃度、時間および温度で電極間に
生成された被膜を洗浄する電極皮膜の除去方法。
At least one pair of electrodes comprising a cathode and an anode made of aluminum, an electrode control means for controlling the energization of the electrodes, a circulation means for passing water between the electrodes, Heating means for passing water through the electrode,
The electrode control means and a control means for controlling the circulation means and the heating means, the intermittent operation of the circulation means at a predetermined cycle during the electrolysis operation by energizing the electrode, and the operation of the circulation means A method of removing an electrode film, in which electrolysis is performed while power supply to the electrodes is stopped, and citric acid is dissolved in water at a predetermined time to wash a film formed between the electrodes at a predetermined concentration, time, and temperature.
【請求項2】クエン酸洗浄時の水の水素イオン濃度(p
H)が1〜3.5の範囲となるようにクエン酸濃度を調
製する請求項1記載の電極皮膜の除去方法。
2. The hydrogen ion concentration (p) of water during washing with citric acid.
2. The method according to claim 1, wherein the concentration of citric acid is adjusted so that H) is in the range of 1 to 3.5.
【請求項3】クエン酸に0.01〜1重量%の腐食抑制
剤を混合させた請求項1ないし2のいずれか1項に記載
の電極皮膜の除去方法。
3. The method for removing an electrode film according to claim 1, wherein 0.01 to 1% by weight of a corrosion inhibitor is mixed with citric acid.
【請求項4】被浄化水の循環手段と、循環路に設けられ
たアルミ陽極と陰極から構成される電極を有し、前記電
極に通電することで電気分解により金属水和物を生成
し、被浄化水に含まれる懸濁物質を電気的に凝集させる
凝集手段と、前記凝集手段の下流に設けられ、前記凝集
手段によって生成される凝集フロックを物理的に濾過す
る濾過手段と、被浄化水を加熱する加熱手段を有し、前
記電極への通電による凝集動作時は前記循環手段を所定
の周期で断続動作させ、且つ前記循環手段の動作時には
前記電極への通電を停止させながら電気分解を行う凝集
制御手段を有するとともに、所定の時期に循環水中にク
エン酸を溶解させて所定濃度、時間および温度で前記電
極間に生成された被膜を洗浄する水浄化装置。
4. An apparatus comprising: a means for circulating water to be purified; an electrode comprising an aluminum anode and a cathode provided in a circulation path; An aggregating means for electrically aggregating suspended substances contained in the water to be purified; a filtering means provided downstream of the aggregating means for physically filtering the floc generated by the aggregating means; Has a heating means for heating the electrode, performs the intermittent operation of the circulating means at a predetermined cycle during the aggregation operation by energizing the electrode, and stops the energization to the electrode during the operation of the circulating means to perform the electrolysis. A water purification device having a coagulation control means for dissolving citric acid in circulating water at a predetermined time and washing a film formed between the electrodes at a predetermined concentration, time and temperature.
【請求項5】被浄化水の循環回路内にクエン酸を所定濃
度で混入するクエン酸供給手段を設けた請求項4記載の
水浄化装置。
5. The water purifying apparatus according to claim 4, further comprising citric acid supply means for mixing citric acid at a predetermined concentration in the circulation circuit of the purified water.
【請求項6】クエン酸洗浄時の水の水素イオン濃度(p
H)が1〜3.5の範囲となるようにクエン酸濃度を調
製する請求項4ないし5のいずれか1項に記載の水浄化
装置。
6. The hydrogen ion concentration (p) of water during washing with citric acid.
The water purification device according to any one of claims 4 to 5, wherein the citric acid concentration is adjusted so that H) is in the range of 1 to 3.5.
【請求項7】クエン酸に0.01〜1重量%の腐食抑制
剤を混合させた請求項4ないし6のいずれか1項に記載
の水浄化装置。
7. The water purification apparatus according to claim 4, wherein 0.01 to 1% by weight of a corrosion inhibitor is mixed with citric acid.
【請求項8】凝集動作回数を計測する計数手段を設け、
前記計数手段の信号が所定回数に達した時期にクエン酸
洗浄を実施する構成とした請求項4ないし7のいずれか
1項に記載の水浄化装置。
8. A counting means for counting the number of times of coagulation operation is provided,
The water purifying apparatus according to any one of claims 4 to 7, wherein the citric acid cleaning is performed when the signal of the counting means reaches a predetermined number of times.
【請求項9】クエン酸洗浄時は加熱手段を制御して被浄
化水の温度を40℃から70℃の範囲で行う請求項4な
いし8のいずれか1項に記載の水浄化装置。
9. The water purifying apparatus according to claim 4, wherein the temperature of the water to be purified is controlled in the range of 40 ° C. to 70 ° C. by controlling the heating means during the citric acid washing.
【請求項10】電極間の電圧もしくは電流を検出する電
極信号検出手段を設けるとともに、前記電極信号検出手
段の信号に応じてクエン酸洗浄時期を報知する報知手段
を設けた請求項4ないし9のいずれか1項に記載の水浄
化装置。
10. An apparatus according to claim 4, further comprising an electrode signal detecting means for detecting a voltage or a current between the electrodes, and an informing means for informing a citric acid washing time in accordance with a signal from said electrode signal detecting means. The water purification device according to claim 1.
【請求項11】クエン酸洗浄後に循環回路内に残存する
クエン酸を循環回路外に流出させるすすぎ洗浄動作を実
行する構成とした請求項4ないし10のいずれか1項に
記載の水浄化装置。
11. The water purifying apparatus according to claim 4, wherein after the citric acid cleaning, a rinsing operation is performed to cause citric acid remaining in the circulation circuit to flow out of the circulation circuit.
JP10367093A 1998-12-24 1998-12-24 Method for removing film deposited on electrode and water purification device using the same method Withdrawn JP2000189975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10367093A JP2000189975A (en) 1998-12-24 1998-12-24 Method for removing film deposited on electrode and water purification device using the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10367093A JP2000189975A (en) 1998-12-24 1998-12-24 Method for removing film deposited on electrode and water purification device using the same method

Publications (1)

Publication Number Publication Date
JP2000189975A true JP2000189975A (en) 2000-07-11

Family

ID=18488442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10367093A Withdrawn JP2000189975A (en) 1998-12-24 1998-12-24 Method for removing film deposited on electrode and water purification device using the same method

Country Status (1)

Country Link
JP (1) JP2000189975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025390A (en) * 2000-09-28 2002-04-04 이환신 Electrolytic purification system
US7850769B2 (en) * 2006-07-20 2010-12-14 Sanyo Electric Co., Ltd. Air filtering apparatus having foreign material removing mechanism
WO2014079577A1 (en) * 2012-11-21 2014-05-30 Aanensen Ove T Apparatus and method for water treatment mainly by substitution using a dynamic electric field
JP5700736B1 (en) * 2014-08-28 2015-04-15 株式会社日立パワーソリューションズ Water treatment apparatus and control method for water treatment apparatus
CN108675515A (en) * 2018-07-25 2018-10-19 大连波美科技有限公司 Except silicon electrochemical reaction appts
JP2021134375A (en) * 2020-02-25 2021-09-13 株式会社荏原製作所 Cleaning method and cleaning apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025390A (en) * 2000-09-28 2002-04-04 이환신 Electrolytic purification system
US7850769B2 (en) * 2006-07-20 2010-12-14 Sanyo Electric Co., Ltd. Air filtering apparatus having foreign material removing mechanism
WO2014079577A1 (en) * 2012-11-21 2014-05-30 Aanensen Ove T Apparatus and method for water treatment mainly by substitution using a dynamic electric field
CN104981433A (en) * 2012-11-21 2015-10-14 奥弗·T·阿嫩森 Apparatus and method for water treatment mainly by substitution using dynamic electric field
JP5700736B1 (en) * 2014-08-28 2015-04-15 株式会社日立パワーソリューションズ Water treatment apparatus and control method for water treatment apparatus
CN108675515A (en) * 2018-07-25 2018-10-19 大连波美科技有限公司 Except silicon electrochemical reaction appts
JP2021134375A (en) * 2020-02-25 2021-09-13 株式会社荏原製作所 Cleaning method and cleaning apparatus
JP7455608B2 (en) 2020-02-25 2024-03-26 株式会社荏原製作所 Cleaning method and cleaning equipment

Similar Documents

Publication Publication Date Title
TW309507B (en)
JP2000176455A (en) Treatment device and method for phosphate ion- containing water
JP2000189975A (en) Method for removing film deposited on electrode and water purification device using the same method
JP3870547B2 (en) Water purification equipment
JP4023007B2 (en) Water purification apparatus and hot water bath apparatus using the water purification apparatus
JP3769906B2 (en) Water purification equipment
JP2000301154A (en) Water cleaning apparatus
JP3791158B2 (en) Water purification equipment
JP2001334266A (en) Water purifier
JP2000254658A (en) Water purifying device and hot water feeding bathtub device provided with the device
JP2001170645A (en) Water cleaner
JP3050096B2 (en) Water purification device
JP2003260467A (en) Water treatment device and water supply apparatus for drinking water
JP2000317477A (en) Sewage treating device
JP3500790B2 (en) Water purification device
JPH11253959A (en) Treatment of phosphoric ion-containing waste water
JP2001334268A (en) Water purifier
JPH11108440A (en) Bath water purifying device
JP2001340862A (en) Hot-water supply bath apparatus with cleaning function
JP3906527B2 (en) Water purification equipment
JPH11267682A (en) Device of treating waste water containing phosphate ions
JP3858330B2 (en) Water purification equipment
JP3721711B2 (en) Water purification equipment
JPH1034159A (en) Hot water purifying apparatus
JP3769900B2 (en) Bath water purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613