JP3858330B2 - Water purification equipment - Google Patents

Water purification equipment Download PDF

Info

Publication number
JP3858330B2
JP3858330B2 JP08361897A JP8361897A JP3858330B2 JP 3858330 B2 JP3858330 B2 JP 3858330B2 JP 08361897 A JP08361897 A JP 08361897A JP 8361897 A JP8361897 A JP 8361897A JP 3858330 B2 JP3858330 B2 JP 3858330B2
Authority
JP
Japan
Prior art keywords
water
bathtub
purification apparatus
closed circuit
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08361897A
Other languages
Japanese (ja)
Other versions
JPH10276923A (en
Inventor
朋秀 松本
祐 河合
岳見 桶田
優子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08361897A priority Critical patent/JP3858330B2/en
Publication of JPH10276923A publication Critical patent/JPH10276923A/en
Application granted granted Critical
Publication of JP3858330B2 publication Critical patent/JP3858330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被浄化水に含まれる懸濁物質を除去浄化する水浄化装置に関するものであり、特に装置内での細菌群の繁殖を効果的に低減できる水浄化装置に関するものである。
【0002】
【従来の技術】
従来のこの種の水浄化装置は、特開平8−5141号公報に記載されているようなものがあった。この水浄化装置は図4に示すように、ガス湯沸かし器1を熱源として浴槽水を一定温度に保持するとともに、微生物の酵素活性作用を利用した温水浄化手段2が設けられている。ガス湯沸かし器1は、ガス栓3、給水栓4、ガスバーナー5、給湯端末6用の給湯熱交換器7及び浴槽水を保温するための保温熱交換器8を有している。また温水浄化手段2の内部には多孔質の微生物繁殖担体9が設けられている。10は浴槽11の温水を循環する循環ポンプであり、往き管12及び戻り管13を有する循環路14内に設けられており、浴槽11には、往き管12及び戻り管13に各々連通する吸い込み口15aと吐出口15b有する浴槽アダプタ15が設けられている。16はガス湯沸かし器1を制御するための制御手段である。
【0003】
この構成において、給湯端末6を開くと制御手段16が動作してガス栓3及び給水栓4が開栓され、給湯熱交換器7で沸き上げられた所定温度の湯が給湯端末6から放出される。また循環ポンプ10により浴槽水が循環され、保温熱交換器8によって所定温度に加熱保温されるとともに、温水浄化手段2を通過することにより、微生物繁殖担体9に繁殖した好気性微生物が浴槽水に含まれる皮脂、垢などの懸濁物質を分解し、浴槽水が浄化される。
【0004】
【発明が解決しようとする課題】
しかしながら上記従来の水浄化装置では、以下に述べるような課題があった。
【0005】
(1)循環ポンプにより被浄化水を循環させることにより温水浄化手段を通過させ、清澄保持するに際して、循環方向は常時一定であるので、長期使用により特に往き管に接続された浴槽アダプタの吸い込み口内に生物膜(バイオフィルム)が形成される。この生物膜は、細菌群に栄養を補給して増殖を助長し、あるいは殺菌剤などの殺菌作用から細菌群を保護する作用があり、いわゆる細菌群の温床となる。また生物膜には原生動物であるアメーバが棲息しやすく、このアメーバはレジオネラ肺炎の病原菌であるレジオネラ属菌の宿主となり、レジオネラ属菌が増殖する。この結果、浄化水が細菌学的に汚染され、安全衛生上好ましくない。
【0006】
(2)微生物の有機物分解速度が遅いので浄化に時間を要する。したがって複数の人が続けて(例えば30分間隔)入浴した場合、濁った状態の浴槽水に入浴する必要がある。
【0007】
(3)微生物の酵素活性を利用した温水浄化手段であるので、好気性微生物を活性状態に維持するために、常に浴槽水を40℃前後に保持する必要がある。このため高温維持することにより温水浄化手段内を殺菌することができない。特に上記レジオネラ属菌は、35から40℃付近で急激に増殖するので対策が望まれている。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、往き管と戻り管からなる循環路と、被浄化水に含まれる懸濁物質を浄化する濾過手段と、水位検知手段と、制御手段を有する浄化ユニットと、前記往き管と連通する吸い込み口と前記戻り管と連通する吐出口を有する浴槽アダプタと、前記浴槽アダプタを介して浴槽に温水を供給する給湯熱源からなり、浄化動作時は浴槽水を前記吸い込み口から吸い込み、前記濾過手段を通過して前記吐出口より浴槽に吐出し、前記浴槽の水位が低下した場合の前記浴槽への注湯時に前記給湯熱源からの高温水が前記往き管を経て前記浴槽アダプタの吸い込み口から注湯可能に構成したものである。
【0009】
上記発明によれば浴槽水が減少して注湯する際に、給湯熱源から高温の湯が、浴槽アダプタの吸い込み口を介して浴槽に注湯される。この結果、浴槽アダプタの吸い込み口内が洗浄されることとなり、細菌群の温床となる生物膜の生成を防止でき、細菌群及びレジオネラ属菌の増殖を抑制することができる。
【0010】
【発明の実施の形態】
本発明の請求項1にかかる水浄化装置は、往き管と戻り管からなる循環路と、被浄化水を循環させる循環手段と、被浄化水に含まれる懸濁物質を浄化する濾過手段と、浴槽の水位を検知する水位検知手段と、制御手段を有する浄化ユニットと、浴槽に設けられ、前記往き管と連通する吸い込み口と前記戻り管と連通する吐出口を有する浴槽アダプタと、前記浴槽アダプタを介して浴槽に温水を供給する給湯熱源からなり、浄化動作時は浴槽水を前記吸い込み口から吸い込み、前記濾過手段を通過して前記吐出口より浴槽に吐出し、前記浴槽の水位が低下した場合の前記浴槽への注湯時に前記給湯熱源からの高温水が前記往き管を経て前記浴槽アダプタの吸い込み口から注湯可能に構成したものである。
【0011】
そして、浴槽への注湯時に給湯熱源から所定温度の湯が通常の循環方向と異なる浴槽アダプタの吸い込み口から浴槽に注湯される。この結果、浴槽アダプタの吸い込み口内が洗浄され、細菌群の温床となる生物膜の生成を防止することができ、細菌群の増殖を抑制できる。
【0012】
また請求項2にかかる水浄化装置は、浴槽アダプタの吸い込み口からの高温水の注湯温度を60℃以上とするものである。
【0013】
そして、浴槽水に含まれる細菌群はシュードモナス属などの中温菌(25℃〜40℃の範囲で繁殖する細菌)が中心であり、特殊な高温菌を除いて60℃以上の温度で殺菌可能であり、吸い込み口を60℃程度の温度で高温洗浄することにより、効果的に殺菌できる。
【0014】
また請求項3にかかる水浄化装置は、濾過手段として被浄化水に含まれる懸濁物質を電気分解物質により凝集させる凝集手段と、凝集によって生成された凝集フロックを濾過する濾材を設けて構成したものである。
【0015】
そして、凝集手段により懸濁物質が大型化して凝集フロックが形成され、下流に設けられた濾材により効果的に濾過される。したがって微生物の酵素活性によることなく物理的に濾過されるので、短時間に浄化が可能となる。したがって複数の人が続けて(例えば30分間隔)入浴した場合でも清澄な状態の浴槽水に入浴することができる。
【0016】
また請求項4にかかる水浄化装置は、往き管と戻り管を連通するバイパス路と、前記バイパス路の一端に設けられた流路切換手段と、被浄化水を加熱する加熱手段を設けて濾過手段を含む閉循環路を形成可能とし、前記閉循環路内を高温殺菌可能に構成したものである。
【0017】
そして、閉循環路を形成して高温殺菌可能とすることにより、細菌群が増殖しやすい濾過手段を含む浄化系を高温殺菌できる。特に上記レジオネラ属菌は、浄化系の滞留部分に繁殖しやすいが、閉循環路に高温水を循環させることにより効果的に殺菌することができる。
【0018】
また請求項5にかかる水浄化装置は、上記閉循環路内の高温殺菌温度を60℃以上としたものである。
【0019】
そして、閉循環路内の高温水温度を60℃以上望ましくは70℃以上とすることにより確実に殺菌することができる。すなわち浴槽水に含まれる細菌群は上記したように中温菌が中心であり、60℃以上でほぼ死滅させることができる。またレジオネラ属菌は70℃では数秒間で死滅させることができる。
【0020】
また請求項6にかかる水浄化装置は、高温殺菌の時間及び回数を制御する高温殺菌制御手段を設けたものである。
【0021】
そして、熱殺菌(高温殺菌)における殺菌効率は、細菌種に応じた殺菌温度と時間に左右される。また閉循環路の高温殺菌により浴槽水全体の殺菌を行う場合、高温殺菌の回数が影響する。高温殺菌制御手段を設けることにより、好適な殺菌条件が設定され、より効果的に被浄化水の殺菌ができる。
【0022】
また請求項7にかかる水浄化装置は、閉循環路の高温殺菌回数を浴槽内に貯水された被浄化水の全量が一日の間に高温殺菌されうる回数実施する構成としたものである。
【0023】
そして、一日の間に浴槽水の全量が閉循環路内で高温殺菌される、すなわち閉循環路の水容積を5lとし、浴槽の容積を200lとした場合、40回/日の高温殺菌動作を行うこととなり、浴槽を含む水系全体の細菌群の抑制が可能となる。
【0024】
また請求項8にかかる水浄化装置は、高温殺菌後の閉循環路内の処理水を浴槽内に排出する構成としたものである。
【0025】
そして、加熱手段により高温に加熱した閉循環路内の処理水を浴槽に排出するので、浴槽水の昇温に寄与することとなり、加熱エネルギーのロスを防止できる。
【0026】
また請求項9にかかる水浄化装置は、濾過手段への懸濁物質の堆積による目詰まりを濾過方向に対して逆方向から通水させることにより洗浄する逆洗手段を設け、閉循環路内の高温殺菌処理水により逆流洗浄を行う構成としたものである。
【0027】
そして、閉循環路内の高温の処理水を濾過手段の逆流洗浄に利用するので、濾過手段の洗浄効率が向上し、少ない洗浄水量で洗浄できる。また高温殺菌により死滅した細菌を含む処理水を外部に廃棄するので、被浄化水に含まれる有機物濃度を低減できる。
【0028】
また請求項10にかかる水浄化装置は、閉循環路の高温水による濾過手段の逆流洗浄動作の後に浴槽アダプタの吸い込み口から注湯する構成としたものである。
【0029】
そして、閉循環路の高温循環殺菌と濾過手段の逆流洗浄により閉循環路内を殺菌洗浄を行い、その後未洗浄部分の浴槽アダプタの吸い込み口を洗浄するので浄化系全体の殺菌洗浄が可能となるとともに、これらの一連の洗浄動作を非入浴時間帯に行うことができ、浴槽への高温水の流入に対する安全性が向上する。
【0030】
以下、本発明の実施例について図面を用いて説明する。
【0031】
(実施例1)
図1は本発明の実施例1における水浄化装置の構成図を示す。同図において、17は浴槽18の被浄化水を浄化する浄化ユニットであり、19は浄化ユニット17を介して浴槽18に注湯する給湯熱源である。
【0032】
浄化ユニット17は、往き管20及び戻り管21からなる循環路22と、被浄化水を循環させるための循環手段23と、被浄化水を濾過浄化する濾過手段24、濾過手段24の上下に設けられた3方弁25a、25b及び被浄化水を保温するための加熱手段26、給湯熱源19と浄化ユニット17の間に設けられ、浴槽18への注湯を制御する開閉弁27、被浄化水の温度を検出する温度検知手段28、浴槽18の湯張り水位を検知する水位検知手段29を有している。また30は循環手段23の下流側と3方弁25bを連通する逆洗路31と排出路32を有する逆洗手段であり、33は浄化ユニットの構成要素を電気的に制御する制御手段である。ここで濾過手段24にはステンレスから構成される筐体34の内部にアルミニウムから構成される陽極35を筐体34に対向配置しており、陽極35と陰極(ここでは筐体34を兼用する)及び陽極35と陰極34間に電圧を印可する定電流電源36とから、被浄化水に含まれる懸濁物質を凝集させて大径化させる凝集手段37が構成されている。またその下流には、例えばアルミナなどの無機系材料からなる粒状の濾材38が濾床39を介して充填されており、大径化した凝集フロックを濾過する。
【0033】
浴槽18には往き管20に連通する吸い込み口40及び戻り管21に連通する吐出口41を有する浴槽アダプタ42が設けられており、開閉弁27が開成されることにより給湯熱源19からの高温水が往き管20を経て浴槽アダプタ42の吸い込み口40から浴槽18内に注湯可能に構成されている。
【0034】
次に動作、作用について説明する。浴槽18に注湯する際は制御手段33が動作して開閉弁27が開成され、給湯熱源19で設定された温度の湯が往き管20を経て浴槽アダプタ42の吸い込み口40から注湯される。なおこの時給湯熱源19からの湯は、濾過手段24側へも流入するが、濾材38などにより通過圧力損失が大きいので大部分が往き管20側に流れる。浴槽18の水位は、水位検知手段29により検知されており、所定の水位に到達すると自動的に開閉弁27が閉成され注湯が停止される。
【0035】
次に循環手段23が動作して被浄化水が実線矢印で示したように循環され、入浴により汚濁した被浄化水は濾過手段24を通過する。浄化動作の所定時期に、制御手段33が動作して凝集手段37を動作させる。すなわち定電流電源36によって陽極35と陰極34間に電圧が印可され、電気分解により陽極35からアルミニウムイオンが溶出する。このアルミニウムイオンは、水と反応して水酸化アルミニウムのコロイドが形成される。ここで皮脂・垢及び細菌群などの懸濁物質は、側鎖にカルボキシル基を持っているので負に帯電している。一方水酸化アルミニウムは正電荷のため、水酸化アルミニウムが結着媒体となり、架橋作用によって微細な懸濁物質を吸着して大径化させていわゆる凝集フロックが生成される。この結果、濾材38の深層部に凝集フロックが効果的に濾過され、短時間での浄化が可能となる。実験によれば、濁度2度の被浄化水を電極間に300mA通電しながら濾過した場合、20分経過後0.5度以下が得られた(微生物の酵素活性作用によるものでは同様の実験で2〜3時間必要)。この時の循環流量は15l/minである。なお浴槽水は、加熱手段26によって所定の温度に保たれる。
【0036】
一方、循環濾過により濾材表面には懸濁物質を含む凝集フロックが徐々に堆積し、通過圧力損失が上昇する。この時濾過手段24の上下に設けられた3方弁25a、25bが切り替わり図1の波線矢印で示したように、循環水は逆洗路31を経て濾過手段24内を通常の濾過方向とは逆の方向に流れ、上記濾材38に堆積した懸濁物質を含む凝集フロックが洗浄され、排出路32から外部に廃棄される。
【0037】
入浴中に使用されるかけ湯及び上記逆洗動作により浴槽18の水位が低下すると、水位検知手段29はその水位を検知して自動的に開閉弁27を開成し、60℃以上の高温水が往き管20を経て浴槽アダプタ42の吸い込み口40から注湯され、往き管20及び吸い込み口40の高温洗浄が行われる。ここで、循環手段23により被浄化水を循環させて濾過することにより清澄保持するに際して、循環方向は常時一定であるので、長期使用により特に往き管20に接続された浴槽アダプタ42の吸い込み口40内に生物膜(バイオフィルム)が形成される。この生物膜は、細菌群に栄養を補給して増殖を助長し、あるいは殺菌剤などの殺菌作用から細菌群を保護する作用があり、いわゆる細菌群の温床となる。また生物膜には原生動物であるアメーバが棲息しやすく、このアメーバはレジオネラ肺炎の病原菌であるレジオネラ属菌の宿主となり、レジオネラ属菌が増殖するが、本実施例では注湯時に60℃以上の高温水で上記往き管20及び吸い込み口40の高温洗浄が行われるので、生物膜の生成を防止できる。この結果細菌群及びレジオネラ属菌の宿主となるアメーバの繁殖が防止できる。また浴槽水に含まれる細菌群はシュードモナス属などの中温菌が中心であり、特殊な高温菌を除いて60℃以上の温度で殺菌可能であり、吸い込み口40を60℃以上の温度で高温洗浄することにより、効果的に殺菌できる。
【0038】
(実施例2)
図2は本発明の実施例2における水浄化装置の構成図を示す。本実施例2において43は往き管20と戻り管21を連通するバイパス路であり、バイパス路43の一端に設けられた流路切換手段44の切換操作により、加熱手段26及び濾過手段24を含む閉循環路が形成可能に構成されており、閉循環路を形成した状態で加熱手段26を制御することにより閉循環路内の水温を60℃以上に上昇させ、高温殺菌することができる。また45は閉循環路の高温殺菌の時間及び回数を制御する高温殺菌制御手段であり、本実施例での高温殺菌条件は、温度70℃で3分間保持する動作を1サイクルとし、浴槽18内に貯水された被浄化水の全量が、一日の間に高温殺菌されうる回数実施するように制御される。具体的には、閉循環路の水容積を5lとし、浴槽18の容積を200lとした場合、40回/日の高温殺菌動作を行う。なお制御手段33によって閉循環路の高温殺菌後の処理水は、浴槽18側に排出される構成となっており、また実施例1で説明した濾過手段24の逆流洗浄動作後に開閉弁27が開成されて、浴槽アダプタ42の吸い込み口40から注湯するように構成されている。
【0039】
なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0040】
次に本実施例の動作、作用を説明する。浴槽18への注湯及び凝集手段37による凝集濾過については実施例1と同様の動作、作用であり説明は省略し、以下に高温殺菌動作などについて説明する。
【0041】
循環濾過中の所定の時間に制御手段33により流路切換弁44が動作して図2の実線矢印に示すように、バイパス路43が連通されて循環手段23、濾過手段24、加熱手段26を含む閉循環路が形成される。この状態で高温殺菌制御手段45が動作して加熱手段26に通電され、閉循環路の水温が70℃となるように加熱される。なお加熱手段26は温度検知手段28の検知信号に基づいて制御される。閉循環路の温度が70℃に到達すると3分間保持するように制御され、閉循環路内が70℃で3分間高温殺菌されることとなる。この結果、濾過手段24をはじめ、閉循環路内の滞留部で増殖する細菌群を効果的に殺菌することができる。浴槽水に含まれる細菌群はシュードモナス属などの中温菌が中心であり、特殊な高温菌を除いて70℃の温度で3分間殺菌することにより、ほぼ完全に殺菌できる。またレジオネラ属菌は70℃では数秒で死滅させることができる。さらに高温循環により、閉循環路内に形成される生物膜の洗浄効果もあり、レジオネラ属菌の宿主となるアメーバの繁殖が防止できる。高温殺菌動作後再び流路切換弁44が動作して通常の濾過経路で循環が開始され、70℃の高温水は吐出口41から浴槽18内に吐出する。この時閉循環路以外の往き管20及び戻り管21には浴槽水と同じ低温の水が残留しており、浴槽18に吐出される際に混合されるので実際の吐出温度は60℃以下となる。これにより高温水は、浴槽水の昇温に寄与することとなり、加熱エネルギーのロスを防止できる。
【0042】
なおこれらの高温殺菌動作は、浴槽18内に貯水された被浄化水の全量が、一日の間に高温殺菌されうる回数実施するように高温殺菌制御手段45によって制御される。具体的には、閉循環路の水容積を5lとし、浴槽18の容積を200lとした場合、40回/日の高温殺菌動作が行われる。これにより浴槽水全体の高温殺菌が可能となり、浴槽水中の細菌群を効果的に抑制することができる。
【0043】
また入浴中に使用されるかけ湯及び濾過手段24の逆流洗浄により浴槽18の水位が低下すると、水位検知手段29はその水位を検知して自動的に開閉弁27を開成し、60℃以上の高温水が往き管20を経て浴槽アダプタ42の吸い込み口40から注湯され、往き管20及び吸い込み口40の高温洗浄が行われ、生物膜の生成が防止される。すなわち閉循環路の高温循環殺菌と、浴槽アダプタ42の吸い込み口40の高温洗浄により水浄化系全体の殺菌もしくは洗浄が可能となる。
【0044】
図3に本実施例による入浴水中のレジオネラ属菌の実験結果を示す。実験条件は、一日当たり4人入浴し、凝集電流は300mAで1時間/日通電した。また通常濾過時の循環流量は15l/minである。なお比較のために微生物方式の水浄化装置による実験結果も示した。図3に示すように微生物方式Bでは約1週間後から徐々にレジオネラ属菌数が増加し2週間後では103CFU/100ml以上が検出されたのに対して本実施例Aでは102CFU/100ml以下となっており、レジオネラ属菌抑制効果を有するのがわかる。
【0045】
なお本実施例では、閉循環路の高温水を浴槽18側に吐出するものを説明したが、高温水を濾過手段24の逆流洗浄に利用しても良い。すなわち閉循環路の高温殺菌動作後、濾過手段24の上下に設けた3方弁25a、25bを切換えて図2の波線矢印に示すように、逆洗路31から濾過手段24の下流側に通水し、通常の濾過方向とは逆の方向から高温水を流入させて濾材38に堆積した凝集フロックが洗浄を洗浄するものである。なお洗浄汚水は排出路32から外部に廃棄する。これにより高温の処理水で濾過手段24の逆流洗浄を行うので洗浄効率が向上し、少ない洗浄水量で洗浄でき、節水となる。また高温殺菌により死滅した細菌を含む処理水を外部に廃棄するので、被浄化水に含まれる有機物濃度を低減できる。
【0046】
また閉循環路の高温水による濾過手段24の逆流洗浄動作の後に浴槽アダプタ42の吸い込み口40から注湯する構成としても良い。すなわち閉循環路の高温循環殺菌と濾過手段24の逆流洗浄により閉循環路内の殺菌洗浄を行い、その後未洗浄部分である浴槽アダプタ42を洗浄するので浄化系全体の殺菌洗浄が可能となるとともに、これらの一連の殺菌洗浄動作を非入浴時間帯に行うことができ、浴槽への高温水の流入に対する安全性を向上させることができる。
【0047】
【発明の効果】
以上説明したように本発明の請求項1にかかる水浄化装置は、前記浴槽の水位が低下した場合の浴槽への注湯時に給湯熱源から高温の湯が、通常の循環方向と異なり往き管を経て浴槽アダプタの吸い込み口から浴槽に注湯される。この結果浴槽アダプタの吸い込み口内が洗浄され、細菌群の温床となる生物膜の生成を防止することができるので、細菌群及びレジオネラ属菌の宿主となるアメーバの繁殖が防止できる。
【0048】
また、請求項2に係る水浄化装置は、浴槽アダプタの吸い込み口からの注湯温度を60℃以上としたので、浴槽水に含まれる中心的な細菌群であるシュードモナス属などの中温菌を効果的に殺菌することができるとともに、生物膜の洗浄を効果的に行うことができる。
【0049】
また請求項3にかかる水浄化装置は、濾過手段として被浄化水に含まれる懸濁物質を電気分解物質により凝集させる凝集手段を設けたので、凝集作用により懸濁物質が大型化して凝集フロックが形成され、下流に設けられた濾材により効果的に濾過される。したがって微生物の酵素活性によることなく物理的に濾過されるので、短時間に浄化が可能となる。この結果、複数の人が続けて入浴した場合でも清澄な状態の浴槽水に入浴することができる。
【0050】
また請求項4にかかる水浄化装置は、バイパス路と、このバイパス路の一端に設けられた流路切換手段を設けて濾過手段を含む閉循環路内を高温殺菌可能に構成したので、細菌群が増殖しやすい濾過手段を含む浄化系を高温殺菌できる。特にレジオネラ肺炎の病原菌のレジオネラ属菌は、浄化系の滞留部分に繁殖しやすいが、閉循環路に高温水を循環させることにより効果的に殺菌することができる。
【0051】
また請求項5にかかる水浄化装置は、閉循環路内の高温殺菌温度を60℃以上としたものであるので、浴槽水に含まれる中温菌をはじめレジオネラ属菌を確実に死滅させることができる。
【0052】
また請求項6にかかる水浄化装置は、高温殺菌の時間及び回数を制御する高温殺菌制御手段を設けたので、細菌種に応じた殺菌条件、つまり殺菌温度と時間及び高温殺菌の回数が好適な条件に設定され、より効果的にの殺菌ができる。
【0053】
また請求項7にかかる水浄化装置は、閉循環路の高温殺菌回数を浴槽内に貯水された被浄化水の全量が一日の間に高温殺菌されうる回数実施するものであるので、一日の間に浴槽水の全量が閉循環路内で高温殺菌されることとなり、浴槽を含む水系全体の細菌群の抑制効果がある。
【0054】
また請求項8にかかる水浄化装置は、高温殺菌後の閉循環路内の高温水を浴槽内に排出するので、浴槽水の昇温に寄与することとなり、加熱エネルギーのロスを防止できる。
【0055】
また請求項9にかかる水浄化装置は、濾過手段の懸逆洗手段を設け、閉循環路内の高温殺菌処理水により逆流洗浄を行うので、濾過手段の洗浄効率が向上し、少ない洗浄水量で洗浄でき、節水が図れる。また高温殺菌により死滅した細菌を含む処理水を外部に廃棄するので、被浄化水に含まれる有機物濃度を低減できる。
【0056】
また請求項10にかかる水浄化装置は、閉循環路の高温水による濾過手段の逆流洗浄動作後に浴槽アダプタの吸い込み口を高温洗浄するものであるので、水浄化系全体の殺菌洗浄が可能となるとともに、これらの一連の洗浄動作を非入浴時間帯に行うことができ、浴槽への高温水の流入に対する安全性が向上する。
【図面の簡単な説明】
【図1】 本発明の実施例1における水浄化装置の構成図
【図2】 本発明の実施例2における水浄化装置の構成図
【図3】 同装置の入浴日数とレジオネラ属菌の関係を示す特性図
【図4】 従来の水浄化装置の構成図
【符号の説明】
17 浄化ユニット
18 浴槽
19 給湯熱源
20 往き管
21 戻り管
22 循環路
23 循環手段
24 濾過手段
26 加熱手段
30 逆洗手段
33 制御手段
37 凝集手段
40 吸い込み口
41 吐出口
42 浴槽アダプタ
43 バイパス路
44 流路切換手段
45 高温殺菌制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water purification device that removes and purifies suspended substances contained in water to be purified, and more particularly to a water purification device that can effectively reduce the growth of bacteria within the device.
[0002]
[Prior art]
A conventional water purification apparatus of this type has been disclosed in JP-A-8-5141. As shown in FIG. 4, this water purification apparatus is provided with hot water purification means 2 that uses a gas water heater 1 as a heat source to maintain bath water at a constant temperature and that utilizes the enzyme activity of microorganisms. The gas water heater 1 has a gas plug 3, a water tap 4, a gas burner 5, a hot water supply heat exchanger 7 for a hot water supply terminal 6, and a heat insulation heat exchanger 8 for keeping the bath water warm. A porous microorganism propagation carrier 9 is provided inside the warm water purification means 2. A circulation pump 10 circulates hot water in the bathtub 11, and is provided in a circulation path 14 having an outward pipe 12 and a return pipe 13, and the bathtub 11 sucks in communication with the forward pipe 12 and the return pipe 13, respectively. A bathtub adapter 15 having a port 15a and a discharge port 15b is provided. Reference numeral 16 denotes a control means for controlling the gas water heater 1.
[0003]
In this configuration, when the hot water supply terminal 6 is opened, the control means 16 operates to open the gas plug 3 and the water tap 4, and hot water boiled up by the hot water heat exchanger 7 is discharged from the hot water supply terminal 6. The Also, the bath water is circulated by the circulation pump 10 and heated and kept at a predetermined temperature by the heat-retaining heat exchanger 8, and the aerobic microorganisms that have propagated on the microorganism propagation carrier 9 are passed through the hot water purification means 2 to the bath water. Decomposes suspended substances such as sebum and dirt, and bath water is purified.
[0004]
[Problems to be solved by the invention]
However, the conventional water purification apparatus has the following problems.
[0005]
(1) When the water to be purified is circulated by the circulation pump and passed through the hot water purification means and kept clarified, the circulation direction is always constant, so that the inside of the suction port of the bathtub adapter connected to the forward pipe is particularly long-term. A biofilm (biofilm) is formed. This biofilm supplements the bacterial group with nutrients to promote growth, or protects the bacterial group from bactericidal action such as a bactericide, and serves as a so-called hotbed of the bacterial group. In addition, the protozoan amoeba tends to inhabit the biofilm, and this amoeba becomes a host of Legionella spp. That is the pathogen of Legionella pneumonia, and Legionella spp. As a result, the purified water is bacteriologically contaminated, which is not preferable for safety and health.
[0006]
(2) Since the organic matter decomposition rate of microorganisms is slow, purification takes time. Therefore, when several people take a bath continuously (for example, every 30 minutes), it is necessary to bathe in the bath water of a cloudy state.
[0007]
(3) Since it is a warm water purification means utilizing the enzyme activity of microorganisms, it is necessary to always maintain the bath water at around 40 ° C. in order to maintain the aerobic microorganisms in an active state. For this reason, the inside of the hot water purifying means cannot be sterilized by maintaining a high temperature. In particular, the Legionella spp. Grow rapidly around 35 to 40 ° C., and therefore countermeasures are desired.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a circulation path composed of a forward pipe and a return pipe, a filtration means for purifying suspended substances contained in the water to be purified, a water level detection means, and a purification unit having a control means. A bathtub adapter having a suction port communicating with the forward pipe and a discharge port communicating with the return pipe, and a hot water supply source for supplying hot water to the bathtub through the bathtub adapter, and sucking the bathtub water during the purification operation Suction from the mouth, passing through the filtering means and discharging from the discharge port to the bathtub, and when pouring water into the bathtub when the water level of the bathtub is lowered , the hot water from the hot water supply heat source passes through the forward pipe from the suction port of the tub adapter is intended configured to pouring Allowed ability.
[0009]
According to the above invention, when bath water is reduced and poured, hot water from a hot water supply heat source is poured into the bathtub through the suction port of the bathtub adapter. As a result, the inside of the suction port of the bathtub adapter is washed, generation of a biofilm that becomes a hotbed of the bacterial group can be prevented, and growth of the bacterial group and Legionella can be suppressed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A water purification apparatus according to claim 1 of the present invention includes a circulation path composed of a forward pipe and a return pipe, a circulation means for circulating the purified water, a filtration means for purifying suspended substances contained in the purified water, A water level detection means for detecting the water level of the bathtub, a purification unit having a control means, a bathtub adapter provided in the bathtub and having a suction port communicating with the forward pipe and a discharge port communicating with the return pipe, and the bathtub adapter The hot water supply source that supplies hot water to the bathtub through the suction port, and during the purification operation, the bathtub water is sucked from the suction port, passes through the filtering means and is discharged from the discharge port to the bathtub, and the water level of the bathtub is lowered. If in which hot water from the hot water supply heat source during pouring into the bath is configured to pouring available-from the suction port of the bathtub adapter via the forward pipe of.
[0011]
And at the time of pouring into the bathtub, hot water of a predetermined temperature is poured into the bathtub from the suction port of the bathtub adapter different from the normal circulation direction. As a result, the inside of the suction inlet of the bathtub adapter is washed, the generation of a biofilm that becomes a hotbed of the bacterial group can be prevented, and the growth of the bacterial group can be suppressed.
[0012]
Moreover, the water purification apparatus concerning Claim 2 makes the hot water pouring temperature from the suction opening of a bathtub adapter 60 degreeC or more.
[0013]
The bacteria group contained in the bath water is mainly mesophilic bacteria such as Pseudomonas (bacteria that propagate in the range of 25 ° C to 40 ° C) and can be sterilized at a temperature of 60 ° C or higher except for special thermophilic bacteria. Yes, it can be effectively sterilized by washing the suction port at a high temperature of about 60 ° C.
[0014]
The water purifying apparatus according to claim 3 is provided with a coagulating means for coagulating suspended substances contained in the water to be purified with an electrolysis substance as a filtering means, and a filter medium for filtering the aggregated flocs generated by the coagulation. Is.
[0015]
Then, the suspended substance is enlarged by the aggregating means to form an agglomerated floc, which is effectively filtered by the filter medium provided downstream. Therefore, since it is physically filtered without depending on the enzyme activity of the microorganism, purification can be performed in a short time. Therefore, even when a plurality of people take a bath continuously (for example, at intervals of 30 minutes), it is possible to bathe in clear bath water.
[0016]
According to a fourth aspect of the present invention, there is provided a water purification apparatus including a bypass passage communicating the forward pipe and the return pipe, a flow path switching means provided at one end of the bypass passage, and a heating means for heating the water to be purified. A closed circuit including means can be formed, and the inside of the closed circuit can be sterilized at high temperature.
[0017]
Then, by forming a closed circuit and enabling high-temperature sterilization, the purification system including the filtering means in which bacteria can easily grow can be high-temperature sterilized. In particular, the Legionella spp. Can easily propagate in the staying part of the purification system, but can be effectively sterilized by circulating high-temperature water in the closed circuit.
[0018]
The water purifier according to claim 5 is such that the high temperature sterilization temperature in the closed circuit is 60 ° C. or higher.
[0019]
And the high temperature water temperature in a closed circuit can be reliably sterilized by making it 60 degreeC or more, desirably 70 degreeC or more. That is, the bacteria group contained in the bath water is mainly mesophilic bacteria as described above, and can be almost killed at 60 ° C. or higher. Legionella spp. Can be killed in 70 seconds at a few seconds.
[0020]
The water purification apparatus according to claim 6 is provided with a high temperature sterilization control means for controlling the time and number of times of high temperature sterilization.
[0021]
And the sterilization efficiency in heat sterilization (high temperature sterilization) depends on the sterilization temperature and time according to the bacterial species. Moreover, when sterilizing the whole bathtub water by high temperature sterilization of a closed circuit, the frequency | count of high temperature sterilization influences. By providing the high-temperature sterilization control means, suitable sterilization conditions are set, and the water to be purified can be sterilized more effectively.
[0022]
The water purification apparatus according to claim 7 is configured to perform the number of times of high-temperature sterilization of the closed circuit for the number of times that the entire amount of the water to be purified stored in the bathtub can be high-temperature sterilized during one day.
[0023]
And, if the total amount of bathtub water is sterilized at high temperature in the closed circuit during the day, that is, when the water volume of the closed circuit is 5 l and the volume of the bathtub is 200 l, high temperature sterilization operation 40 times / day It becomes possible to suppress bacterial groups in the entire water system including the bathtub.
[0024]
Moreover, the water purification apparatus concerning Claim 8 is set as the structure which discharges the treated water in the closed circuit after high temperature sterilization in a bathtub.
[0025]
And since the treated water in the closed circuit heated to the high temperature by the heating means is discharged to the bathtub, it contributes to the temperature rise of the bathtub water, and the loss of heating energy can be prevented.
[0026]
The water purification apparatus according to claim 9 is provided with backwashing means for washing by clogging clogging due to accumulation of suspended substances on the filtration means from the opposite direction to the filtration direction, The backwashing is performed with high-temperature sterilized water.
[0027]
And since the high temperature treated water in a closed circuit is utilized for the backflow washing | cleaning of a filtration means, the washing | cleaning efficiency of a filtration means improves and it can wash | clean with a small amount of washing water. Moreover, since the treated water containing bacteria killed by high-temperature sterilization is discarded to the outside, the concentration of organic substances contained in the water to be purified can be reduced.
[0028]
Further, the water purifier according to claim 10 is configured to pour hot water from the suction port of the bathtub adapter after the backwashing operation of the filtering means by the hot water in the closed circuit.
[0029]
Then, the inside of the closed circuit is sterilized and cleaned by high-temperature circulation sterilization of the closed circuit and the backflow cleaning of the filtering means, and then the suction port of the unwashed portion of the bathtub adapter is cleaned, so that the entire purification system can be sterilized and cleaned. At the same time, these series of cleaning operations can be performed during the non-bathing time period, and the safety against the inflow of high-temperature water into the bathtub is improved.
[0030]
Embodiments of the present invention will be described below with reference to the drawings.
[0031]
(Example 1)
FIG. 1 shows a configuration diagram of a water purification apparatus in Embodiment 1 of the present invention. In the figure, 17 is a purification unit for purifying the water to be purified in the bathtub 18, and 19 is a hot water supply heat source for pouring water into the bathtub 18 via the purification unit 17.
[0032]
The purification unit 17 is provided above and below the circulation path 22 composed of the forward pipe 20 and the return pipe 21, the circulation means 23 for circulating the water to be purified, the filtering means 24 for filtering and purifying the water to be purified, and the filtering means 24. The three-way valves 25a and 25b and the heating means 26 for keeping the water to be purified, the hot water supply heat source 19 and the purification unit 17 are provided between the open / close valve 27 for controlling the pouring of the hot water into the bathtub 18 and the water to be purified. Temperature detecting means 28 for detecting the temperature of water and water level detecting means 29 for detecting the hot water level of the bathtub 18. Reference numeral 30 denotes backwashing means having a backwashing path 31 and a discharge path 32 communicating with the downstream side of the circulation means 23 and the three-way valve 25b, and 33 denotes control means for electrically controlling the components of the purification unit. . Here, in the filtering means 24, an anode 35 made of aluminum is disposed inside a housing 34 made of stainless steel so as to face the housing 34, and the anode 35 and the cathode (here, the housing 34 is also used). The aggregating means 37 is configured to agglomerate suspended substances contained in the water to be purified to increase the diameter from a constant current power source 36 that applies a voltage between the anode 35 and the cathode 34. Further downstream, a particulate filter medium 38 made of an inorganic material such as alumina is filled through a filter bed 39 to filter the agglomerated floc having a large diameter.
[0033]
The bathtub 18 is provided with a bathtub adapter 42 having a suction port 40 communicating with the forward pipe 20 and a discharge port 41 communicating with the return pipe 21, and the hot water from the hot water supply heat source 19 is opened by opening the on-off valve 27. However, it is configured so that hot water can be poured into the bathtub 18 from the suction port 40 of the bathtub adapter 42 via the forward pipe 20.
[0034]
Next, the operation and action will be described. When pouring into the bathtub 18, the control means 33 operates to open the on-off valve 27, and hot water having a temperature set by the hot water supply heat source 19 is poured from the suction port 40 of the bathtub adapter 42 through the forward pipe 20. . At this time, the hot water from the hot water supply heat source 19 also flows into the filtering means 24 side, but most of the hot water flows to the forward pipe 20 side due to a large passage pressure loss due to the filter medium 38 and the like. The water level in the bathtub 18 is detected by the water level detection means 29. When the water level reaches a predetermined water level, the on-off valve 27 is automatically closed and pouring is stopped.
[0035]
Next, the circulating means 23 is operated so that the water to be purified is circulated as indicated by solid arrows, and the water to be purified contaminated by bathing passes through the filtering means 24. At a predetermined time of the purification operation, the control unit 33 operates to operate the aggregation unit 37. That is, a voltage is applied between the anode 35 and the cathode 34 by the constant current power source 36, and aluminum ions are eluted from the anode 35 by electrolysis. The aluminum ions react with water to form aluminum hydroxide colloids. Here, suspended substances such as sebum, dirt, and bacteria are negatively charged because they have carboxyl groups in their side chains. On the other hand, since aluminum hydroxide has a positive charge, aluminum hydroxide serves as a binding medium, and fine suspended substances are adsorbed by the crosslinking action to increase the diameter, so-called agglomerated flocs are generated. As a result, the aggregated floc is effectively filtered in the deep layer portion of the filter medium 38, and purification in a short time becomes possible. According to the experiment, when water to be purified having a turbidity of 2 degrees was filtered while passing 300 mA between the electrodes, a value of 0.5 degrees or less was obtained after 20 minutes (the same experiment was performed by the enzyme activity of microorganisms). 2 to 3 hours are required). The circulation flow rate at this time is 15 l / min. The bathtub water is kept at a predetermined temperature by the heating means 26.
[0036]
On the other hand, agglomeration flocs containing suspended substances are gradually deposited on the surface of the filter medium by circulation filtration, and the passage pressure loss increases. At this time, the three-way valves 25a and 25b provided above and below the filtration means 24 are switched, and the circulating water passes through the backwash path 31 and the normal filtration direction in the filtration means 24 as indicated by the wavy arrow in FIG. The agglomerated flocs flowing in the opposite direction and containing the suspended matter deposited on the filter medium 38 are washed and discarded to the outside from the discharge path 32.
[0037]
When the water level of the bathtub 18 decreases due to the hot water used during bathing and the above-described backwashing operation, the water level detecting means 29 detects the water level and automatically opens the on-off valve 27. Hot water is poured from the suction port 40 of the bathtub adapter 42 through the forward pipe 20, and the high temperature cleaning of the forward pipe 20 and the suction port 40 is performed. Here, when the water to be purified is circulated and filtered by the circulation means 23 and clarified and maintained, the circulation direction is always constant, and therefore, the suction port 40 of the bathtub adapter 42 connected to the forward pipe 20 especially for long-term use. A biofilm is formed inside. This biofilm supplements the bacterial group with nutrients to promote growth, or protects the bacterial group from bactericidal action such as a bactericide, and serves as a so-called hotbed of the bacterial group. In addition, the protozoan amoeba tends to inhabit the biofilm, and this amoeba becomes a host of Legionella spp. Which is a pathogen of Legionella pneumonia, and Legionella spp. Grows. Since the forward pipe 20 and the suction port 40 are washed at a high temperature with high-temperature water, generation of a biofilm can be prevented. As a result, it is possible to prevent the growth of amoeba, which is a host for the bacterial group and Legionella spp. In addition, the bacteria group contained in the bath water is mainly mesophilic bacteria such as Pseudomonas, and can be sterilized at a temperature of 60 ° C or higher except for special high temperature bacteria, and the suction port 40 is washed at a temperature of 60 ° C or higher. By doing so, it can be effectively sterilized.
[0038]
(Example 2)
FIG. 2 shows a configuration diagram of a water purification apparatus in Embodiment 2 of the present invention. In the second embodiment, reference numeral 43 denotes a bypass path that communicates the forward pipe 20 and the return pipe 21, and includes the heating means 26 and the filtering means 24 by switching operation of the flow path switching means 44 provided at one end of the bypass path 43. A closed circuit can be formed, and the temperature of the water in the closed circuit can be raised to 60 ° C. or higher by controlling the heating means 26 in a state where the closed circuit is formed, and high temperature sterilization can be performed. Reference numeral 45 denotes high-temperature sterilization control means for controlling the time and number of high-temperature sterilization in the closed circuit, and the high-temperature sterilization conditions in this embodiment are as follows. The total amount of the water to be purified stored in the water is controlled so as to be sterilized at high temperature during one day. Specifically, when the water volume of the closed circuit is 5 l and the volume of the bathtub 18 is 200 l, the high temperature sterilization operation is performed 40 times / day. The treated water after high temperature sterilization of the closed circuit is discharged to the bathtub 18 side by the control means 33, and the on-off valve 27 is opened after the backwashing operation of the filtering means 24 described in the first embodiment. Then, the hot water is poured from the suction port 40 of the bathtub adapter 42.
[0039]
In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0040]
Next, the operation and action of this embodiment will be described. The hot water pouring into the bathtub 18 and the coagulation filtration by the coagulation means 37 are the same operations and functions as those in the first embodiment, and the description thereof will be omitted.
[0041]
The control unit 33 operates the flow path switching valve 44 at a predetermined time during the circulation filtration, and as shown by the solid line arrow in FIG. 2, the bypass passage 43 is communicated so that the circulation unit 23, the filtration unit 24, and the heating unit 26 are connected. A closed circuit containing is formed. In this state, the high-temperature sterilization control means 45 operates to energize the heating means 26, and the water temperature in the closed circuit is heated to 70 ° C. The heating unit 26 is controlled based on a detection signal from the temperature detection unit 28. When the temperature of the closed circuit reaches 70 ° C., the temperature is controlled to be held for 3 minutes, and the inside of the closed circuit is sterilized at 70 ° C. for 3 minutes. As a result, it is possible to effectively sterilize the bacteria group that grows in the staying part in the closed circuit including the filtering means 24. The bacteria group contained in the bath water is mainly mesophilic bacteria such as Pseudomonas, and can be almost completely sterilized by sterilizing at 70 ° C. for 3 minutes except for special thermophilic bacteria. Legionella can be killed in 70 seconds at a few seconds. Furthermore, the high-temperature circulation also has a cleaning effect on the biofilm formed in the closed circuit, and can prevent the growth of amoeba which is a host of Legionella spp. After the high temperature sterilization operation, the flow path switching valve 44 operates again to start circulation through a normal filtration path, and high temperature water at 70 ° C. is discharged into the bathtub 18 from the discharge port 41. At this time, water at the same low temperature as the bath water remains in the forward pipe 20 and the return pipe 21 other than the closed circuit, and is mixed when discharged into the bathtub 18, so that the actual discharge temperature is 60 ° C. or less. Become. Thereby, high temperature water will contribute to the temperature rise of bathtub water, and can prevent the loss of heating energy.
[0042]
These high-temperature sterilization operations are controlled by the high-temperature sterilization control means 45 so that the entire amount of water to be purified stored in the bathtub 18 can be high-temperature sterilized during one day. Specifically, when the water volume of the closed circuit is 5 l and the volume of the bathtub 18 is 200 l, high temperature sterilization operation is performed 40 times / day. Thereby, the high temperature sterilization of the whole bathtub water is attained, and the bacteria group in bathtub water can be suppressed effectively.
[0043]
Further, when the water level in the bathtub 18 is lowered by the backwashing of the hot water used during bathing and the filtering means 24, the water level detecting means 29 detects the water level and automatically opens the on-off valve 27, so Hot water is poured from the suction port 40 of the bathtub adapter 42 through the forward pipe 20, and the high temperature cleaning of the forward pipe 20 and the suction port 40 is performed to prevent the generation of biofilm. That is, the entire water purification system can be sterilized or cleaned by high-temperature circulation sterilization of the closed circuit and high-temperature cleaning of the suction port 40 of the bathtub adapter 42.
[0044]
FIG. 3 shows the experimental results of Legionella in the bathing water according to this example. The experimental conditions were that four people took a bath per day and the agglomeration current was 300 mA and the current was applied for 1 hour / day. Further, the circulation flow rate during normal filtration is 15 l / min. For comparison, an experimental result using a microbial water purification apparatus is also shown. As shown in FIG. 3, the number of Legionella bacteria gradually increased after about 1 week in the microorganism system B, and 103 CFU / 100 ml or more was detected after 2 weeks, whereas in this example A, it was 102 CFU / 100 ml or less. It turns out that it has the Legionella genus microbe suppression effect.
[0045]
In addition, although the present Example demonstrated what discharges the high temperature water of a closed circuit to the bathtub 18 side, you may utilize high temperature water for the backwashing of the filtration means 24. FIG. That is, after the high-temperature sterilization operation of the closed circuit, the three-way valves 25a and 25b provided on the upper and lower sides of the filter means 24 are switched to pass from the backwash path 31 to the downstream side of the filter means 24 as shown by the wavy arrow in FIG. The agglomerated flock accumulated on the filter medium 38 is washed by flowing water and flowing high-temperature water in a direction opposite to the normal filtration direction. The washed sewage is discarded from the discharge channel 32 to the outside. As a result, the filtration means 24 is back-washed with high-temperature treated water, so that the washing efficiency is improved, and the washing can be performed with a small amount of washing water, thus saving water. Moreover, since the treated water containing bacteria killed by high-temperature sterilization is discarded to the outside, the concentration of organic substances contained in the water to be purified can be reduced.
[0046]
Moreover, it is good also as a structure which pours hot water from the suction inlet 40 of the bathtub adapter 42 after the backwashing operation | movement of the filtration means 24 by the high temperature water of a closed circuit. That is, the high temperature circulation sterilization of the closed circuit and the backflow cleaning of the filtering means 24 perform the sterilization and cleaning in the closed circuit, and then the unwashed portion of the bathtub adapter 42 is cleaned, so that the entire purification system can be sterilized and cleaned. These series of sterilization and washing operations can be performed during a non-bathing time period, and safety against inflow of high-temperature water into the bathtub can be improved.
[0047]
【The invention's effect】
The above-described water purifying apparatus according to claim 1 of the present invention as is Note from the hot water supply heat source during hot high-temperature water into the bathtub when the water level of the bath is lowered, forward pipe which Unlike normal circulation direction After that, it is poured into the bathtub from the suction port of the bathtub adapter. As a result, the inside of the suction port of the bathtub adapter is washed, and the generation of a biofilm that serves as a hotbed for the bacterial group can be prevented, so that the propagation of amoeba serving as a host for the bacterial group and Legionella spp. Can be prevented.
[0048]
Moreover, since the temperature of the pouring from the suction port of the bathtub adapter is set to 60 ° C. or higher, the water purification apparatus according to claim 2 is effective for mesophilic bacteria such as Pseudomonas, which is a central group of bacteria contained in the bath water. Can be sterilized and the biofilm can be effectively washed.
[0049]
The water purification apparatus according to claim 3 is provided with an aggregating means for aggregating the suspended substance contained in the water to be purified with the electrolyzed substance as a filtering means. It is formed and is effectively filtered by a filter medium provided downstream. Therefore, since it is physically filtered without depending on the enzyme activity of the microorganism, purification can be performed in a short time. As a result, even when a plurality of people bathe in succession, it is possible to bathe in clear bathtub water.
[0050]
Moreover, the water purification apparatus according to claim 4 is provided with a bypass path and a flow path switching means provided at one end of the bypass path so that the inside of the closed circuit including the filtering means can be sterilized at high temperature. It is possible to sterilize a purification system including a filtering means that easily propagates. In particular, Legionella spp., Which is a pathogen of Legionella pneumonia, easily propagates in the staying part of the purification system, but can be effectively sterilized by circulating high-temperature water in a closed circuit.
[0051]
Moreover, since the high temperature sterilization temperature in a closed circuit is 60 degreeC or more, the water purification apparatus concerning Claim 5 can kill the Legionella genus bacteria including the mesophilic bacteria contained in bath water reliably. .
[0052]
Moreover, since the water purification apparatus according to claim 6 is provided with the high temperature sterilization control means for controlling the time and number of times of high temperature sterilization, the sterilization conditions according to the bacterial species, that is, the sterilization temperature and time, and the number of times of high temperature sterilization are suitable. The condition is set, and more effective sterilization can be performed.
[0053]
Further, the water purification apparatus according to claim 7 performs the number of times of high temperature sterilization of the closed circuit for the number of times that the entire amount of the water to be purified stored in the bathtub can be high temperature sterilized during the day. During this period, the entire amount of the bath water is sterilized at a high temperature in the closed circuit, and there is an effect of suppressing the bacterial group of the entire water system including the bath.
[0054]
Moreover, since the water purification apparatus concerning Claim 8 discharges | emits the high temperature water in the closed circuit after high temperature sterilization in a bathtub, it will contribute to the temperature rise of bathtub water and can prevent the loss of heating energy.
[0055]
Further, the water purifying apparatus according to claim 9 is provided with the suspension backwashing means of the filtration means and performs the backwashing with the high-temperature sterilized water in the closed circuit, so that the washing efficiency of the filtration means is improved and the amount of washing water is small. Can be washed and saves water. Moreover, since the treated water containing bacteria killed by high-temperature sterilization is discarded to the outside, the concentration of organic substances contained in the water to be purified can be reduced.
[0056]
The water purification apparatus according to claim 10 is for washing the suction port of the bathtub adapter at a high temperature after the backwashing operation of the filtering means by the high temperature water in the closed circuit, so that the entire water purification system can be sterilized and washed. At the same time, these series of cleaning operations can be performed during the non-bathing time period, and the safety against the inflow of high-temperature water into the bathtub is improved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a water purification apparatus in Embodiment 1 of the present invention. FIG. 2 is a block diagram of a water purification apparatus in Embodiment 2 of the present invention. FIG. 3 shows the relationship between the number of bathing days of the apparatus and Legionella spp. Characteristic diagram shown [Fig. 4] Configuration diagram of conventional water purification device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 17 Purification unit 18 Bathtub 19 Hot water supply source 20 Outgoing pipe 21 Return pipe 22 Circulation path 23 Circulation means 24 Filtration means 26 Heating means 30 Backwashing means 33 Control means 37 Aggregation means 40 Suction port 41 Discharge port 42 Bathtub adapter 43 Bypass path 44 Flow Route switching means 45 High temperature sterilization control means

Claims (10)

往き管と戻り管からなる循環路と、被浄化水を循環させる循環手段と、被浄化水に含まれる懸濁物質を浄化する濾過手段と、浴槽の水位を検知する水位検知手段と、これらを制御する制御手段を有する浄化ユニットと、浴槽に設けられ、前記往き管と連通する吸い込み口と前記戻り管と連通する吐出口を有する浴槽アダプタと、前記浴槽アダプタを介して浴槽に温水を供給する給湯熱源からなり、浄化動作時は浴槽水を前記吸い込み口から吸い込み、前記濾過手段を通過して前記吐出口より浴槽に吐出し、前記浴槽の水位が低下した場合の前記浴槽への注湯時に前記給湯熱源からの高温水が前記往き管を経て前記浴槽アダプタの吸い込み口から注湯可能に構成した水浄化装置。A circulation path composed of a forward pipe and a return pipe, a circulating means for circulating the purified water, a filtering means for purifying suspended substances contained in the purified water, a water level detecting means for detecting the water level of the bathtub, A purification unit having control means for controlling, a bathtub adapter provided in the bathtub and having a suction port communicating with the forward pipe and a discharge port communicating with the return pipe, and hot water is supplied to the bathtub via the bathtub adapter It consists of a hot water supply heat source, and at the time of purification operation, the bath water is sucked from the suction port, passed through the filtering means and discharged from the discharge port to the bathtub, and when pouring water into the bathtub when the water level of the bathtub is lowered A water purifier configured to allow hot water from the hot water supply heat source to be poured from the suction port of the bathtub adapter via the forward pipe . 浴槽アダプタの吸い込み口からの高温水の注湯温度を60℃以上とした請求項1記載の水浄化装置。  The water purification apparatus according to claim 1, wherein the hot water pouring temperature from the suction port of the bathtub adapter is 60 ° C. or higher. 濾過手段は、被浄化水に含まれる懸濁物質を電気分解物質により凝集させる凝集手段と、凝集によって生成された凝集フロックを濾過する濾材を有する請求項1または2記載の水浄化装置。  The water purification apparatus according to claim 1 or 2, wherein the filtration means includes aggregating means for aggregating suspended substances contained in the water to be purified with an electrolysis substance, and a filter medium for filtering the aggregated flocs generated by the aggregation. 往き管と戻り管を連通するバイパス路と、前記バイパス路の一端に設けられた流路切換手段と、被浄化水を加熱する加熱手段を設けて濾過手段を含む閉循環路を形成可能とし、前記閉循環路内を高温殺菌可能に構成した請求項1ないし3のいずれか1項記載の水浄化装置。  A bypass path communicating with the forward pipe and the return pipe, a flow path switching means provided at one end of the bypass path, and a heating means for heating the water to be purified to provide a closed circulation path including a filtering means, The water purification apparatus according to any one of claims 1 to 3, wherein the inside of the closed circuit is configured to be capable of high-temperature sterilization. 閉循環路内の高温殺菌温度を60℃以上とした請求項4項記載の水浄化装置。  The water purification apparatus according to claim 4, wherein the high temperature sterilization temperature in the closed circuit is 60 ° C or higher. 高温殺菌の時間及び回数を制御する高温殺菌制御手段を設けた請求項4または5記載の水浄化装置。  The water purification apparatus according to claim 4 or 5, further comprising a high temperature sterilization control means for controlling the time and number of times of high temperature sterilization. 高温殺菌回数は、浴槽内に貯水された被浄化水の全量が、一日の間に高温殺菌されうる回数実施する構成とした請求項4ないし6のいずれか1項記載の水浄化装置。  The water purification apparatus according to any one of claims 4 to 6, wherein the number of times of high-temperature sterilization is configured such that the entire amount of water to be purified stored in the bathtub can be sterilized at high temperature during a day. 高温殺菌後の閉循環路内の処理水を浴槽内に排出する構成とした請求項4ないし7のいずれか1項記載の水浄化装置。  The water purification apparatus according to any one of claims 4 to 7, wherein the treated water in the closed circuit after the high temperature sterilization is discharged into the bathtub. 濾過手段への懸濁物質の堆積による目詰まりを濾過方向に対して逆方向から通水させることにより洗浄する逆洗手段を設け、閉循環路内の高温殺菌処理水により逆流洗浄を行う構成とした請求項4ないし7のいずれか1項記載の水浄化装置。  A configuration in which backwashing means for washing by clogging due to accumulation of suspended substances on the filtration means by passing water from the opposite direction to the filtration direction is provided, and backwashing is performed with high-temperature sterilized water in the closed circuit. The water purification apparatus according to any one of claims 4 to 7. 逆流洗浄動作の後に浴槽アダプタの吸い込み口から注湯する構成とした請求項9記載の水浄化装置。  The water purifier according to claim 9, wherein hot water is poured from the suction port of the bathtub adapter after the backwashing operation.
JP08361897A 1997-04-02 1997-04-02 Water purification equipment Expired - Lifetime JP3858330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08361897A JP3858330B2 (en) 1997-04-02 1997-04-02 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08361897A JP3858330B2 (en) 1997-04-02 1997-04-02 Water purification equipment

Publications (2)

Publication Number Publication Date
JPH10276923A JPH10276923A (en) 1998-10-20
JP3858330B2 true JP3858330B2 (en) 2006-12-13

Family

ID=13807487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08361897A Expired - Lifetime JP3858330B2 (en) 1997-04-02 1997-04-02 Water purification equipment

Country Status (1)

Country Link
JP (1) JP3858330B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998273B2 (en) * 2017-09-25 2022-01-18 リンナイ株式会社 Bathtub cleaning device

Also Published As

Publication number Publication date
JPH10276923A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
CN204454801U (en) A kind of tap water low temperature Intelligent purifying process piping system
CN212246592U (en) Well water purification treatment equipment
JP3858330B2 (en) Water purification equipment
KR101957827B1 (en) Apparatus and Method for Wastewater from Milking Parlor
JP3721711B2 (en) Water purification equipment
CN104591450B (en) A kind of running water low temperature Intelligent antibacterial pipe-line system
JP3769906B2 (en) Water purification equipment
JP3791158B2 (en) Water purification equipment
JPH09141285A (en) Circulation purifying device for contaminated liquid
JP3156598B2 (en) Water purification device
JPH09239368A (en) Circulating purifier for contaminated liquid
JP3336861B2 (en) Hot water purification system
JP2000189975A (en) Method for removing film deposited on electrode and water purification device using the same method
CN214060259U (en) Low-energy-consumption sewage treatment system
JP3769900B2 (en) Bath water purification device
JPH10314516A (en) Bath water cleaning system
JP3119148B2 (en) Water purification device
JP2000254658A (en) Water purifying device and hot water feeding bathtub device provided with the device
JPH09141282A (en) Circulation purifying apparatus for contaminated liquid
CN218665628U (en) Water purification unit's filter element group spare and water purification unit
JP3050096B2 (en) Water purification device
JPH11169876A (en) Bath water cleaning device
JP2001104724A (en) Hot-water supply bath apparatus with cleaning function
JPH10314795A (en) Water purifying device
JP3812023B2 (en) Circulating water bath

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6