JPH09141285A - Circulation purifying device for contaminated liquid - Google Patents

Circulation purifying device for contaminated liquid

Info

Publication number
JPH09141285A
JPH09141285A JP7326373A JP32637395A JPH09141285A JP H09141285 A JPH09141285 A JP H09141285A JP 7326373 A JP7326373 A JP 7326373A JP 32637395 A JP32637395 A JP 32637395A JP H09141285 A JPH09141285 A JP H09141285A
Authority
JP
Japan
Prior art keywords
liquid
water
heating device
contaminated
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7326373A
Other languages
Japanese (ja)
Inventor
Yuzuru Asahara
譲 浅原
Satoru Maruyama
悟 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP7326373A priority Critical patent/JPH09141285A/en
Publication of JPH09141285A publication Critical patent/JPH09141285A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of preventing the deterioration of decomposition action caused by the deposition of a decomposition product on a base material on which a useful microorganisms are fixed, purifying a contaminated liquid even just after the device is newly installed or the base material is cleaned and heating the contaminated liquid to a desired temp. by a burner combustion type heating means. SOLUTION: In this circulation purifying device for storing the liquid 12 contaminated with time in a liquid storing means 10 and purifying and sterilizing the liquid 12 at the outside of the storing means 10 while being circulated by a pump, a biological purifying means 40 for decomposing and purifying organic materials contained in the liquid 12 with microorganisms, an electrolyzing means 38 for electrolyzing the liquid 12 to accelerate the oxidation decomposition of the organic materials and a liquid heating means 15 provided with a burner combustor 11 and a heat exchanger 13 are provided the circulation passage of the contaminated liquid 12 is formed by connecting successively the biological purifying means 40, the electrolyzing means 38 and the liquid heating means 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は汚染液体の循環浄
化装置に関し、更に詳細には、浴槽中の浴用水や温水プ
ール中の水の如く、使用により経時的に汚染される液体
を循環させつつ浄化・殺菌することができ、加えてガス
や石油等を燃焼させるバーナ式の加熱手段により必要に
応じて該液体を所要温度に昇温させ得る、殊に家庭用や
業務用に好適に使用される循環浄化装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for circulating and purifying contaminated liquid, and more particularly to circulating a liquid which is contaminated over time, such as bath water in a bathtub or water in a warm water pool. It can be purified and sterilized, and in addition, it can be heated to a required temperature by a burner type heating means for burning gas, petroleum, etc., and is particularly preferably used for household and commercial use. It relates to a circulation purification device.

【0002】[0002]

【従来技術】例えば浴槽に貯留した浴用水は、入浴に伴
って垢や毛髪等の有機物その他埃や砂等が不可避的に混
入して経時的に汚染され、濁りや臭いその他ヌメリ等を
生じて入浴時の快適性が損なわれることが一般に知られ
ている。またプールにおいても事情は全く同じであっ
て、使用に伴いプール中の貯留水は経時的に汚染されて
水泳時の快適性を損なうと共に非衛生となる難点を有し
ている。この場合に、浴槽やプールの貯留水を使用の度
毎に新たな水に張り換えれば、前述した問題は生ずるこ
とがなく理想的であるが、水道水の使用コストや温湯に
沸かす際のコスト(例えば温水プールの場合)が嵩むと共
に水交換の手間が掛かり、また何時でも入浴や入泳を楽
しむことができない、等の諸欠点があった。
2. Description of the Related Art For example, bath water stored in a bathtub is unavoidably contaminated with dust, sand, and other organic substances such as dirt and hair during bathing, and is contaminated over time, resulting in turbidity, odor, and other sliminess. It is generally known that comfort during bathing is impaired. In addition, the situation is exactly the same in the pool as well, and with use, the stored water in the pool is contaminated over time, which impairs comfort during swimming and is unsanitary. In this case, if the stored water in the bathtub or pool is replaced with new water each time it is used, the problems described above will not occur, which is ideal, but the cost of using tap water and the cost of boiling it in hot water There are various drawbacks, such as the fact that (for example, in the case of a warm water pool) becomes bulky, it takes time to exchange water, and that it is impossible to enjoy bathing or swimming at any time.

【0003】このような問題に対する1つの解決提案と
して、一般に「24時間風呂」と称される風呂用の循環浄
化装置が知られている。この装置は、殊に家庭内での使
用を企図したもので、砕石、砂利その他粒状セラミック
の如き集合性基材に有用微生物を繁殖させたカートリッ
ジを内蔵し、浴用水を該カートリッジ中に強制的に循環
させ得るようになっている。また循環装置と浴槽との連
通路中に、例えばスポンジを材質とするフィルタが配設
されている。使用の際は、該装置に内蔵した循環ポンプ
を駆動して浴槽中の浴用水を吸引し、前記スポンジフィ
ルタで浴用水に混入している毛髪や糸屑等の大きなゴミ
を捕集・濾過する。次いで予備濾過された浴用水を前記
カートリッジに通過させ、ここで該浴用水中の垢や体脂
等の有機物を微生物で分解して、許容値以下まで清浄化
するようになっている。
As one solution proposal for such a problem, a circulation purification device for a bath generally known as a "24-hour bath" is known. This device is intended especially for domestic use and contains a cartridge in which useful microorganisms are propagated on an aggregate substrate such as crushed stone, gravel or other granular ceramic, and bath water is forced into the cartridge. It can be recycled. A filter made of, for example, sponge is provided in the communication path between the circulation device and the bath. At the time of use, the circulating pump incorporated in the device is driven to suck the bath water in the bathtub, and the sponge filter collects and filters large dust such as hair and thread waste mixed in the bath water. . Then, the pre-filtered bath water is passed through the cartridge, where organic substances such as dirt and body fat in the bath water are decomposed by microorganisms to be cleaned up to an allowable value or less.

【0004】[0004]

【発明が解決しようとする課題】しかし前述した従来技
術に係る浄化装置では、浴用水中の有機物を前記集合性
基材に繁殖させた微生物で分解すると、その分解作用に
より生成される微細な汚染物質が該基材の表面に付着す
る。このため微生物での浴用水の浄化を継続すると、前
記汚染物質が基材表面を膜状に覆ってしまい、微生物に
よる分解作用が大幅に低下してしまう難点が指摘され
る。また微生物の分解能力を超えた量や大きさの有機物
に対しては、これを完全に分解し尽くすまでに相当の時
間を要して基材表面に蓄積し、従って浄化能力の劣化や
流量の低下を招いていた。
However, in the above-described purification apparatus according to the prior art, when the organic matter in the bath water is decomposed by the microorganisms propagated on the aggregating base material, fine contaminants produced by the decomposition action. Adhere to the surface of the substrate. For this reason, it is pointed out that if the purification of the bath water with microorganisms is continued, the contaminants cover the surface of the base material in a film form, and the decomposition action of the microorganisms is significantly reduced. In addition, when the amount or size of organic matter exceeds the ability to decompose microorganisms, it takes a considerable amount of time to completely decompose the organic matter, and accumulates on the substrate surface. It was causing a decline.

【0005】また微生物の担体として機能する砕石や砂
利その他粒状セラミック等の集合性基材は、何れも水に
比べてかなり重いために、該基材を充填したカートリッ
ジの内部に浴用水を導入しても流動することがなく、従
って前記基材の表面に付着・堆積した有機物が浴用水の
流入作用で自然に剥落する働きは殆ど期待できない。こ
のため従来の装置では、カートリッジ中の集合性基材に
逆方向から水を強制流入させたり、水と共に空気を吹込
むエアレーションを該基材に施したりして略定期的に洗
浄する必要があった。また該装置からカートリッジを取
出して、内部の集合性基材を機械的に撹拌したり、ユー
ザーが手で撹拌したりする作業も機種によっては必要と
なっている。このように基材を定期洗浄する際には、浴
用水の連続浄化は中断されて入浴不能となり、また殆ど
の場合に浴槽から浴用水をかなり捨てざるを得ず、水の
節減およびコスト低減の見地からも大きな問題となって
いる。更に、微生物を繁殖させた集合性基材で浴用水を
充分に浄化するためには、該基材が水と接触する面積を
極力確保することが必要であり、従って相当量の基材を
用意することが望ましい。しかし該基材を構成する砕石
や砂利その他粒状セラミック等はかなり重いので、浄化
装置自体の重量も嵩んでしまい、取扱いに不便となる欠
点を有していた。
In addition, since aggregate base materials such as crushed stone, gravel and other granular ceramics, which function as a carrier for microorganisms, are considerably heavier than water, bath water is introduced into the cartridge filled with the base materials. However, it does not flow, and therefore, it is hardly expected that the organic substances adhered / deposited on the surface of the base material will be naturally peeled off by the inflow action of the bath water. For this reason, in the conventional device, it is necessary to wash water substantially forcibly by injecting water into the collective base material in the cartridge from the opposite direction or by aerating the base material with air. It was Further, depending on the model, it is also necessary to take out the cartridge from the apparatus and mechanically agitate the collective base material inside or the user manually agitate. In this way, when the base material is regularly cleaned, continuous purification of bath water is interrupted and bathing becomes impossible, and in most cases, the bath water has to be considerably discarded from the bath, which saves water and reduces costs. From a viewpoint, it is a big problem. Further, in order to sufficiently purify the bath water with the collective base material in which the microorganisms are propagated, it is necessary to secure the area where the base material comes into contact with water as much as possible, and therefore a considerable amount of base material is prepared. It is desirable to do. However, since the crushed stone, gravel, and other granular ceramics, etc. constituting the base material are considerably heavy, there is a drawback that the weight of the purifying device itself becomes heavy, which makes it inconvenient to handle.

【0006】また微生物が有機物に対して充分な分解力
を発揮するには、基材表面に微生物が適度に繁殖してい
ることが必要である。しかし前述した粒状セラミックに
代表される集合性基材は、内部に微生物を予め固定させ
ておくのが困難であるので、浄化装置を設置した後に浴
用水を循環させ、該浴用水に生息する微生物が基材表面
で自然に繁殖し定着するのを待たなければならない。更
に集合性基材を定期的に洗浄したときは、該基材に既に
繁殖・定着している微生物を必要以上に除去してしまい
かねない。微生物の繁殖および安定した定着には一般に
数日から数週間を要し、この間は微生物による浴用水の
浄化は殆ど期待できない。このため浄化装置を浴槽に新
設した後や、カートリッジ中の集合性基材を洗浄した後
は、浴用水の浄化作用は機能していないので水の汚れが
進行し、不快な濁りや臭いその他ヌメリ等を生ずる不都
合があった。そこで装置の新設後や基材の洗浄後は、微
生物による浄化が好適に行なわれるまで入浴を控えなけ
ればならず、更に微生物が該基材に安定的に繁殖するま
で浴用水を数回に亘って張り換える手間を要し、水使用
量が増大してコストも嵩む等の難点があった。
Further, in order for the microorganisms to exert a sufficient decomposing power for organic substances, it is necessary that the microorganisms are properly propagated on the surface of the base material. However, since it is difficult to immobilize microorganisms in advance in the collective substrate typified by the above-mentioned granular ceramics, the bath water is circulated after the purification device is installed, and the microorganisms living in the bath water are circulated. It has to wait for the spores to naturally propagate and settle on the substrate surface. Further, when the collective substrate is washed regularly, the microorganisms already propagated and fixed on the substrate may be removed more than necessary. Propagation of microorganisms and stable colonization generally take several days to several weeks, during which purification of bath water by microorganisms can hardly be expected. For this reason, after the cleaning device is newly installed in the bathtub or after cleaning the collective base material in the cartridge, the cleaning function of the bath water does not work, and water stains progress, causing unpleasant turbidity and odor. There was an inconvenience that caused such problems. Therefore, after new equipment is installed or after cleaning the base material, it is necessary to refrain from bathing until the microbes are properly purified, and bath water is used several times until the microbes are stably propagated on the base material. There is a problem in that it takes time and labor to re-install, the amount of water used increases, and the cost increases.

【0007】また前述した「24時間風呂」に関しては、
何時でも入浴をなし得るようにするためには、浴用水の
温度を常に入浴適温の38℃〜40℃内外に維持する必
要があり、従来の循環浄化装置は内蔵の電気ヒータによ
りその温度制御を行なうようになっている。しかし電気
ヒータは一般に熱容量を大きくとることができないか
ら、多数人が連続して入浴して湯温低下を来す場合や、
外気温が低下する季節等には短時間で昇温させることは
困難である。熱容量の大きな電気ヒータは、製造コスト
が高くなると共に電気代も嵩む難点を有している。すな
わち電気ヒータを加熱源とする限りは、急速に浴用水の
温度を上昇させる追焚き機能は、製造コスト面や電気代
等の制約により期待し得ないのが現状である。
Regarding the above-mentioned "24 hour bath",
In order to be able to take a bath at any time, it is necessary to keep the temperature of the bath water constantly at 38 ° C. to 40 ° C., which is a suitable bath temperature, and the conventional circulation purification device controls the temperature by an internal electric heater. I am supposed to do it. However, electric heaters generally do not have a large heat capacity, so when many people take a bath continuously and the water temperature drops,
It is difficult to raise the temperature in a short time during the season when the outside temperature decreases. The electric heater having a large heat capacity has a drawback that the manufacturing cost becomes high and the electricity cost increases. That is, as long as the electric heater is used as the heating source, the reheating function for rapidly raising the temperature of the bath water cannot be expected due to the manufacturing cost, electricity costs, and the like.

【0008】[0008]

【発明の目的】この発明は、前述した従来技術に係る汚
染液体の浄化装置に内在している課題を好適に解決する
べく提案されたものであって、有機物を分解する微生物
が定着する基材に分解生成物が堆積して分解作用が低下
するのを防止し、また装置の新設直後や基材の洗浄直後
であっても汚染液体を好適に浄化可能で、しかもバーナ
燃焼式の加熱手段により必要に応じて該液体を所要温度
に昇温させ得る循環浄化装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been proposed in order to suitably solve the problems inherent in the above-described conventional apparatus for purifying contaminated liquids, and is a base material on which microorganisms that decompose organic substances are fixed. It prevents degradation products from degrading due to the accumulation of decomposition products, and can clean the contaminated liquid even immediately after new equipment is installed or immediately after cleaning the base material. It is an object of the present invention to provide a circulation purification device that can raise the temperature of the liquid to a required temperature as needed.

【0009】[0009]

【課題を解決するための手段】前記課題を克服し、所期
の目的を好適に達成するため本発明は、経時的に汚染さ
れる液体を液体貯留手段に貯留し、この汚染液体を該貯
留手段の外部でポンプ循環させつつ浄化および殺菌を行
なうようにした汚染液体の循環浄化装置において、前記
汚染液体に含まれる有機物を微生物により分解して浄化
する微生物浄化手段と、この汚染液体を電気分解して前
記有機物の酸化分解を促進する電解手段と、バーナ燃焼
器および熱交換器を備える液体加熱手段とを備え、これ
ら微生物浄化手段、電解手段および液体加熱手段を接続
して前記汚染液体の循環経路を構成したことを特徴とし
ている。
In order to overcome the above-mentioned problems and preferably achieve the intended purpose, the present invention stores a liquid contaminated with time in a liquid storage means and stores the contaminated liquid. In a circulation purification device for polluted liquids, which is purified and sterilized while being circulated by a pump outside the means, a microbial purification means for decomposing and purifying organic substances contained in the polluted liquid by microorganisms, and electrolysis of this polluted liquid And a liquid heating means including a burner combustor and a heat exchanger, which are connected to the microbial purification means, the electrolysis means and the liquid heating means to circulate the contaminated liquid. The feature is that the route is configured.

【0010】同じく前記課題を克服し、所期の目的を好
適に達成するために本願の別の発明は、貯留槽中の汚染
液体を循環ポンプで汲み上げ、該汚染液体の浄化および
殺菌を行なった後に、再び該貯留槽に戻すようにした汚
染液体の循環浄化装置において、前記汚染液体に含まれ
る有機物の吸着・分解を行なう微生物を存在させた粒状
の合成高分子ゲルを充填した微生物浄化槽と、この汚染
液体を電気分解して前記有機物の酸化分解を促進する電
解槽と、バーナ燃焼器および熱交換器を備える液体加熱
装置とを備え、これら微生物浄化槽、電解槽および液体
加熱装置を接続して前記汚染液体の循環経路を構成した
ことを特徴としている。
In order to overcome the above-mentioned problems and suitably achieve the intended purpose, another invention of the present application is to purify and sterilize the contaminated liquid in a storage tank by pumping up the contaminated liquid. After that, in the circulating purification apparatus for contaminated liquid that is returned to the storage tank again, a microbial purification tank filled with a granular synthetic polymer gel in which microorganisms for adsorbing and decomposing organic substances contained in the contaminated liquid are present, An electrolytic cell that electrolyzes the contaminated liquid to accelerate the oxidative decomposition of the organic matter, and a liquid heating device that includes a burner combustor and a heat exchanger are provided, and the microbial purification tank, the electrolytic cell, and the liquid heating device are connected to each other. The circulation path of the contaminated liquid is configured.

【0011】[0011]

【発明の実施の形態】次に、本発明に係る汚染液体の循
環浄化装置につき、好適な実施例を挙げて、添付図面を
参照しながら以下説明する。なお実施例として、都市ガ
スやプロパンガスをバーナで燃焼させて湯沸かし用の加
熱源とする家庭用浴槽に設ける循環浄化装置につき説明
するが、これ以外に温水プール等にも好適に使用し得る
ことは勿論である。また加熱源は前記ガスバーナに限ら
れず、例えば石油をバーナで燃焼させる型式のものであ
ってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a circulating liquid purification apparatus for a contaminated liquid according to the present invention will be described below with reference to the accompanying drawings with reference to preferred embodiments. As an example, a circulation purification device provided in a domestic bathtub as a heating source for boiling water by burning city gas or propane gas with a burner will be described, but in addition to this, it can be suitably used for a hot water pool or the like. Of course. Further, the heating source is not limited to the gas burner, and may be, for example, a type of burning petroleum with the burner.

【0012】(循環浄化装置の全体構造について)図1
は、本発明の一実施例に係る循環浄化装置の概略構成を
示し、この装置は浴槽10に貯留されて経時的に汚染さ
れる浴用水12を、該浴槽10の外部でポンプ循環させ
つつ浄化および殺菌を行なうものである。すなわち実施
例に係る循環浄化装置は、図5に示す如く、浴槽10に
着脱自在に配設される給排水ユニット14と、該ユニッ
ト14に吸水ホース16および排水ホース18を介して
接続する装置本体20とから基本的に構成されている。
この装置本体20は、例えば浴槽10の縁部に設置さ
れ、漏電ブレーカ22およびケーブル24を介して電源
供給がなされると共に、アースケーブル26で確実にア
ースされて漏電や感電に対する万全の保護が図られてい
る。給排水ユニット14は、図6に関して後述する如
く、一例として吸盤28により浴槽10の内壁面に着脱
自在に取付けられ、浴用水12の一般的な貯留レベルよ
り下方に位置している。
(Regarding Overall Structure of Circulation Purification Device) FIG.
1 shows a schematic configuration of a circulation purification apparatus according to an embodiment of the present invention, which purifies bath water 12 stored in a bath 10 and contaminated with time while pumping circulation of the bath water 12 outside the bath 10. And sterilization. That is, as shown in FIG. 5, the circulation purification device according to the embodiment has a water supply / drainage unit 14 detachably arranged in the bathtub 10, and a device body 20 connected to the unit 14 via a water absorption hose 16 and a drain hose 18. It is basically composed of and.
This device body 20 is installed, for example, at the edge of the bathtub 10 and is supplied with power via an earth leakage breaker 22 and a cable 24, and is surely grounded by an earth cable 26 to ensure complete protection against earth leakage and electric shock. Has been. As will be described later with reference to FIG. 6, the water supply / drainage unit 14 is detachably attached to the inner wall surface of the bathtub 10 by a suction cup 28, for example, and is located below a general storage level of the bath water 12.

【0013】図5および図6に示す給排水ユニット14
は、例えば長方形の箱状ケーシング30からなり、該ケ
ーシング30の前面に上下の関係で浴用水を吸い出す吸
水口32および浄化後の浴用水を浴槽10に戻す吐出口
34が開設されている。また箱状ケース30の裏面には
前記吸盤28が配設され、給排水ユニット14を浴槽1
0の内壁面に取付け得るようになっている。前記吸水口
32は吸水ホース16を介して装置本体20に連通接続
すると共に、その開口部に例えばスポンジを材質とする
フィルタ36が着脱可能に設けられ、浴用水に混入して
いる大きめのゴミや毛髪その他の異物を捕集除去し得る
ようになっている。また前記吐出口34は、排水ホース
18を介して装置本体20に連通接続している。なお吸
水口32と吐出口34は、給排水ユニット14を浴槽1
0の内壁面に取付けた際に浴用水にそっくり浸漬され
る。そして後述する循環浄化装置を稼働させた際に浴槽
10中の浴用水は、循環ポンプの作用下に吸水口32お
よび吸水ホース16を介して装置本体20に流入し、こ
こで浄化および殺菌された後に、排水ホース18および
吐出口34を介して前記浴槽10へ戻るサイクルを反復
する。
The water supply / drainage unit 14 shown in FIGS. 5 and 6.
Is composed of, for example, a rectangular box-shaped casing 30, and a water suction port 32 for sucking bath water in a vertical relationship and a discharge port 34 for returning the purified bath water to the bath 10 are provided on the front surface of the casing 30. Further, the suction cup 28 is arranged on the back surface of the box-shaped case 30, and the water supply / drainage unit 14 is attached to the bathtub 1.
It can be attached to the inner wall surface of 0. The water suction port 32 is connected to the apparatus main body 20 through a water suction hose 16 and a filter 36 made of, for example, a sponge material is detachably provided at the opening of the water suction port 32 to remove large dusts mixed in the bath water. It is designed to collect and remove hair and other foreign matter. Further, the discharge port 34 is communicatively connected to the apparatus body 20 via the drain hose 18. The water inlet 32 and the outlet 34 connect the water supply / drainage unit 14 to the bathtub 1.
When it is attached to the inner wall surface of No. 0, it is completely immersed in bath water. Then, when the circulation purification device described later is operated, the bath water in the bathtub 10 flows into the device body 20 through the water suction port 32 and the water suction hose 16 under the action of the circulation pump, and is purified and sterilized here. After that, the cycle of returning to the bathtub 10 via the drain hose 18 and the discharge port 34 is repeated.

【0014】循環浄化装置における装置本体20は、図
1に示す如く、経時的に汚染する浴用水12に含まれる
有機物を微生物により吸着・分解して浄化する微生物浄
化槽40と、該浴用水12を電気分解して、これに含ま
れる垢等の有機物の酸化分解を促進する電解槽38と、
ガス燃焼器(以下「バーナ」という)11および熱交換管1
3を有する水加熱装置15とを備え、これら各槽は浴用
水12が循環される管路を介して連通接続されると共
に、その連通管路の一部は水加熱装置15の熱交換管1
3に接続するようになっている。
As shown in FIG. 1, the apparatus main body 20 of the circulation purifying apparatus has a microbial septic tank 40 for adsorbing and decomposing organic substances contained in the bath water 12 contaminated with time by microorganisms to purify it, and the bath water 12. An electrolytic bath 38 that electrolyzes and promotes oxidative decomposition of organic matter such as dirt contained therein;
Gas combustor (hereinafter referred to as "burner") 11 and heat exchange tube 1
3, and each of these tanks are connected to each other through a pipe through which the bath water 12 is circulated, and a part of the communication pipe is connected to the heat exchange pipe 1 of the water heater 15.
It is designed to connect to 3.

【0015】図1において給排水ユニット14に設けた
吸水ホース16は、浴用水の循環ポンプ44を介して微
生物浄化槽40の入口側に接続し、該微生物浄化槽40
の出口側は、管路46を介して電解槽38の入口側に接
続している。また電解槽38の出口側は、管路48を介
して水加熱装置15における熱交換管13の入口側に接
続している。更に水加熱装置15における熱交換管13
の出口側は、管路54を介して前記排水ホース18に接
続している。なお浴用水が浴槽10に帰還する前記管路
54には、該浴用水の流量を検出する流量センサ56が
介挿され、また電解槽38の出口側と水加熱装置15の
入口側を接続する前記管路48には、浴用水の温度を検
出する温度センサ58が介挿されている。更に、電解槽
38の内部には、槽内の水位を監視する水位センサ60
が配設されている。この水位センサ60の配設位置は、
電解槽38に限られるものでなく、微生物浄化槽40の
内部であってもよい。これらのセンサは、図8の制御ブ
ロックに示す制御回路62に接続し、装置本体20の各
種制御に必要な情報を該回路62へ入力するようになっ
ている。
In FIG. 1, the water absorption hose 16 provided in the water supply / drainage unit 14 is connected to the inlet side of the microbial purification tank 40 via a bath water circulation pump 44, and the microorganism purification tank 40 is connected.
The outlet side of is connected to the inlet side of the electrolytic cell 38 via a pipe line 46. Further, the outlet side of the electrolytic cell 38 is connected to the inlet side of the heat exchange pipe 13 in the water heating device 15 via a pipe line 48. Further, the heat exchange tube 13 in the water heating device 15
The outlet side of is connected to the drain hose 18 via a pipe line 54. A flow rate sensor 56 for detecting the flow rate of the bath water is inserted in the pipe 54 through which the bath water returns to the bath 10, and the outlet side of the electrolytic cell 38 is connected to the inlet side of the water heating device 15. A temperature sensor 58 for detecting the temperature of bath water is inserted in the conduit 48. Further, inside the electrolytic bath 38, a water level sensor 60 for monitoring the water level in the bath.
Are arranged. The position of the water level sensor 60 is
It is not limited to the electrolysis tank 38, and may be inside the microbial purification tank 40. These sensors are connected to the control circuit 62 shown in the control block of FIG. 8, and the information necessary for various controls of the apparatus main body 20 is input to the circuit 62.

【0016】(水加熱装置について)前記水加熱装置15
は、例えば図2に示すように、これを1基だけ設けた場
合は、浴槽10と該水加熱装置15との間に浴用水が循
環する閉ループの管路系を形成し、専ら浴用水の追焚き
にのみ供されることになる。しかし図1に示すように、
浴用水を追焚きする第1加熱装置17と、水道水を
加熱して給湯系に供給する第2加熱装置19とで、前記
水加熱装置15を構成することが一般に推奨される。す
なわち第1加熱装置17は、浴用水の追焚きに主として
使用されるもので、前記バーナ11の点火時における熱
交換管13の耐久性を考慮して、熱交換管13の入口側
管路48と出口側管路54との間にバイパス管21が連
通接続されると共に、該バイパス管21に電磁弁により
駆動される第1閉開弁23が介挿されている。また第2
加熱装置19は、同じくバーナ25および熱交換管27
を有し、この熱交換管27の入口側は外部の水道供給系
29に接続している。更に該熱交換管27の出口側は2
つに分岐し、一方は図示しない厨房やシャワー等の給湯
系31に管路接続すると共に、他方は第1加熱装置17
における熱交換管13の入口側に管路33を介して接続
している。この管路33には、チェック弁35および電
磁弁で駆動される第2閉開弁37が直列に介挿されてい
る。なお符号41は、第1加熱装置17および第2加熱
装置19に夫々配設されるブロワを示す。
(About water heating device) The water heating device 15
For example, as shown in FIG. 2, when only one is provided, a closed loop pipe system for circulating bath water is formed between the bath 10 and the water heating device 15, and the bath water is exclusively used. It will be used only for reheating. However, as shown in FIG.
It is generally recommended that the water heating device 15 be composed of a first heating device 17 that reheats bath water and a second heating device 19 that heats tap water to supply it to the hot water supply system. That is, the first heating device 17 is mainly used for reheating the bath water, and in consideration of the durability of the heat exchange pipe 13 when the burner 11 is ignited, the inlet side conduit 48 of the heat exchange pipe 13 is taken into consideration. The bypass pipe 21 is communicatively connected between the outlet pipe 54 and the outlet side pipe line 54, and the first close / open valve 23 driven by an electromagnetic valve is inserted in the bypass pipe 21. Also the second
The heating device 19 also includes a burner 25 and a heat exchange tube 27.
The inlet side of the heat exchange pipe 27 is connected to an external water supply system 29. Further, the outlet side of the heat exchange tube 27 is 2
One is connected to a hot water supply system 31 such as a kitchen or a shower not shown, and the other is connected to the first heating device 17
Is connected to the inlet side of the heat exchange pipe 13 in the above through a pipe line 33. A check valve 35 and a second open / close valve 37 driven by a solenoid valve are inserted in series in the conduit 33. Reference numeral 41 represents a blower provided in each of the first heating device 17 and the second heating device 19.

【0017】そして第2閉開弁37を閉成した状態で、
第1加熱装置17のバーナ11を点火すれば、後述する
如くポンプ44により循環させられる浴用水が熱交換管
13で昇温され、所謂追焚きのなされた水が前記浴槽1
0に戻される。また第2加熱装置19のバーナ25を点
火すれば、水道供給系29から供給された水道水は、熱
交換管27で昇温されて給湯系31へ湯が供給される。
更に第2閉開弁37を開放し、第1加熱装置17および
第2加熱装置19の両バーナ11,25を点火すれば、
水道供給系29からの水道水が第2加熱装置19で昇温
された後に、更に第1加熱装置17で昇温されるので、
浴槽10には追焚きされた浴用水と新たに補充された浴
用水とが同時に供給される。
With the second closing valve 37 closed,
When the burner 11 of the first heating device 17 is ignited, the bath water circulated by the pump 44 is heated by the heat exchange tube 13 as will be described later, so-called reheated water is added to the bath 1
Returned to 0. When the burner 25 of the second heating device 19 is ignited, the tap water supplied from the water supply system 29 is heated by the heat exchange pipe 27 and the hot water is supplied to the hot water supply system 31.
Further, if the second close valve 37 is opened and both burners 11 and 25 of the first heating device 17 and the second heating device 19 are ignited,
After the temperature of the tap water from the water supply system 29 is raised by the second heating device 19, it is further raised by the first heating device 17,
Bath water reheated and bath water newly replenished are simultaneously supplied to the bathtub 10.

【0018】(微生物浄化槽について)微生物浄化槽40
は、浴用水12に含まれる有機物を微生物の分解作用に
より吸着・分解して浄化するもので、本実施例では微生
物の担体として合成高分子ゲルが好適に使用される。こ
の合成高分子ゲルとしては、優れた耐水性と弾性および
柔軟性を有し、しかも高い含水性を有する粒状のポリビ
ニールアルコール(以下「PVA」という)ゲルが好適に用
いられる。例えば図3に示す如く、微生物浄化槽40
は、直立配置される円筒状ケーシング70と、該ケーシ
ング70の内部に配設され中心軸線に沿って延在する管
状の水流路72と、該ケーシング70の底部に開設した
流入口70aおよび流出口70bと、該ケーシング70
の内部に充填した所要量のPVAゲル74とから基本的
に構成される。前記流入口70aと流出口70bには、
粒状をなすPVAゲル74の外部流出を阻止するメッシ
ュ寸法に設定したフイルタ76が配設されている。従っ
て流入口70aを介してケーシング70に流入した浴用
水は、中心に位置する管状水流路72を上昇した後に反
転し、環状をなす水滞留部78を下降して流出口70b
から流出するものである。
(About microbiological septic tank) Microbiological septic tank 40
Is for adsorbing and decomposing and purifying the organic matter contained in the bath water 12 by the decomposing action of microorganisms, and in this embodiment, a synthetic polymer gel is preferably used as a carrier for microorganisms. As the synthetic polymer gel, granular polyvinyl alcohol (hereinafter referred to as "PVA") gel having excellent water resistance, elasticity and flexibility and having high water content is preferably used. For example, as shown in FIG.
Is an upright cylindrical casing 70, a tubular water channel 72 disposed inside the casing 70 and extending along a central axis, an inflow port 70a and an outflow port opened at the bottom of the casing 70. 70b and the casing 70
It is basically composed of a required amount of PVA gel 74 filled inside. The inlet 70a and the outlet 70b are
A filter 76 having a mesh size that prevents the granular PVA gel 74 from flowing out is provided. Therefore, the bath water that has flowed into the casing 70 through the inflow port 70a reverses after rising in the centrally located tubular water flow path 72 and descending the annular water retention portion 78, and then outflow port 70b.
It is something that flows out from.

【0019】前記PVAゲル74としては、浴用水に含
まれる垢や体脂等の有機物を分解する有用微生物を、予
め内包するように包括固定処理されているものを使用す
るのが望ましい。この種の有用微生物として、例えばシ
ュードモナス(Pseudomonas)属、アスペルギルス(Asperg
illus)属、サッカロマイセス(Saccharomycetes)属の如
き微生物や酵素、その他排水処理に用いられる活性汚
泥、硝化菌、脱窒菌等が挙げられる。このような有用微
生物がPVAゲル74に包括固定処理されていることに
よって、装置を使い始めた時点から直ちに微生物による
有機物の分解が行なわれる。PVAゲル74の夫々は直
径数mm程度の粒状をなし、該PVAゲル74は前記ケ
ーシング70の略20%〜50%程度を占める分量とな
るよう充填されている。すなわち、PVAゲル74の充
填量をこの程度に調節することにより、前記ケーシング
70に流入した浴用水は該PVAゲル74を自由に流動
させ得るので、微生物で分解した後に生成される残渣物
がPVAゲル74の表面に付着する不都合が回避され
る。なおPVAゲル74として、微生物の包括固定処理
がなされていないゲルを用いる場合は、微生物が自然に
PVAゲル74に着床して繁殖するのを待つことにな
る。
As the PVA gel 74, it is desirable to use the PVA gel which has been entrapped and fixed so that useful microorganisms that decompose organic substances such as dirt and body fat contained in bath water are included in advance. Examples of useful microorganisms of this kind include Pseudomonas spp., Aspergillus spp.
illus) and Saccharomycetes, microorganisms and enzymes, and other activated sludge used for wastewater treatment, nitrifying bacteria, denitrifying bacteria and the like. By comprehensively immobilizing such useful microorganisms on the PVA gel 74, the organic substances are decomposed by the microorganisms immediately after the start of using the apparatus. Each of the PVA gels 74 is in the form of particles having a diameter of about several mm, and the PVA gels 74 are filled so as to occupy about 20% to 50% of the casing 70. That is, by adjusting the filling amount of the PVA gel 74 to this extent, the bath water flowing into the casing 70 can freely flow the PVA gel 74, so that the residue produced after being decomposed by microorganisms is PVA. The disadvantage of adhering to the surface of the gel 74 is avoided. When a gel that has not been subjected to entrapping immobilization of microorganisms is used as the PVA gel 74, it waits for the microorganisms to naturally land on the PVA gel 74 and propagate.

【0020】(電解槽について)電解槽38は、例えば図
4に示す如く、直立配置した箱型ケーシング64と、該
ケーシング内部に所要の間隔で配設した2つの電極部6
6,68とからなり、これに印加される直流電圧の極性
を選択することにより、一方の電極部66を陽極として
機能させると共に、他方の電極部68を陰極として機能
させ得るようになっている。また陽極66の材料として
は、アルミニウム、ステンレス、フェライト、白金、白
金被覆のチタン(Ti)等が好適に用いられ、陰極68に
は、アルミニウム、白金、白金被覆の(Ti)等が好適に
用いられる。これら電極材料の内でステンレスやアルミ
ニウムは、電気分解により材料自体が浴用水に溶出する
傾向を有する。この場合は、浴用水に溶出した金属イオ
ンを核として該浴用水中の有機物が凝集されるので、後
の行程での有機物の捕集・濾過を容易とする働きが期待
できる。本実施例では、陽極66および陰極68の双方
に白金被覆のチタン(Ti)が使用されている。なおケー
シング64は円筒状に構成してもよいし、また該ケーシ
ング64を一方の電極とするようにしてもよい。更に電
極の数も、複数対とする必要はなく、奇数本の配列とす
るようにしてもよい。
(About Electrolyzer) As shown in FIG. 4, for example, the electrolyzer 38 includes an upright box-shaped casing 64 and two electrode portions 6 disposed inside the casing at a required interval.
6, 68, and by selecting the polarity of the DC voltage applied thereto, one electrode portion 66 can function as an anode and the other electrode portion 68 can function as a cathode. . As the material of the anode 66, aluminum, stainless steel, ferrite, platinum, platinum-coated titanium (Ti) or the like is preferably used, and as the cathode 68, aluminum, platinum, platinum-coated (Ti) or the like is preferably used. To be Among these electrode materials, stainless steel and aluminum tend to be eluted into the bath water by electrolysis. In this case, since the organic substances in the bath water are aggregated with the metal ions eluted in the bath water as nuclei, it can be expected that the organic substances can be easily collected and filtered in the subsequent process. In this embodiment, platinum-coated titanium (Ti) is used for both the anode 66 and the cathode 68. The casing 64 may have a cylindrical shape, or the casing 64 may serve as one of the electrodes. Furthermore, the number of electrodes does not have to be a plurality of pairs, and may be an odd number array.

【0021】(オゾナイザについて)前述した微生物浄化
槽40,電解槽38および水加熱装置15を連通接続す
る管路系中に、図8に示すオゾナイザ96を別途介挿す
るようにしてもよい。後述するように、電解槽38で浴
用水を電気分解する際にもオゾンが発生し殺菌作用が果
たされるが、更にオゾナイザ96を別途用いることによ
って一層確実に殺菌を行なうことができる。オゾナイザ
96の配設個所は、浴用水が循環する管路内であればよ
いが、微生物浄化槽40の内部に生息している微生物の
働きを阻害しない位置に配設するのが望ましい。なお浴
用水の循環管路とオゾナイザ96は、図8に示すソレノ
イド弁99を介して接続され、該ソレノイド弁99の開
放により管路中の浴用水にオゾンの注入がなされ、また
ソレノイド弁99の閉成により浴用水へのオゾン注入が
停止される。
(Regarding the Ozonizer) The ozonizer 96 shown in FIG. 8 may be inserted separately in the pipe system that connects the above-mentioned microbial purification tank 40, electrolysis tank 38 and water heating device 15 to each other. As will be described later, ozone is also generated when the bath water is electrolyzed in the electrolytic bath 38, and the sterilizing action is achieved. However, by additionally using the ozonizer 96, sterilization can be performed more reliably. The location of the ozonizer 96 may be in a pipeline through which the bath water circulates, but it is desirable that the ozonizer 96 is disposed at a position that does not interfere with the action of the microorganisms inhabiting the inside of the microorganism purification tank 40. The bath water circulation pipe and the ozonizer 96 are connected via a solenoid valve 99 shown in FIG. 8. By opening the solenoid valve 99, ozone is injected into the bath water in the pipe, and the solenoid valve 99 Closing will stop ozone injection into the bath water.

【0022】(装置の制御ブロックについて)図8は、本
発明に係る循環浄化装置の電気的構成部分を個別に制御
するブロックを概略的に示し、制御回路62に前述した
流量センサ56,温度センサ58および水位センサ60
が接続されて、夫々の検出情報を該制御回路62に入力
している。またメモリ(RAM)98には、循環浄化装置
を自動的に稼働させるに必要な各種の情報や指令データ
が格納され、制御回路62との間で信号交換がなされる
ようになっている。なお前記ソレノイド弁99の開閉
は、制御回路62から制御指令を受けた弁駆動回路89
により駆動される。同様に前記循環ポンプ44はポンプ
駆動回路45により駆動され、バーナ11(25)はバー
ナ駆動回路93により駆動される。また電解槽38は電
解槽駆動回路39により駆動され、オゾナイザ96はオ
ゾナイザ駆動回路97により駆動され、更に各種運転に
必要な情報を表示するディスプレイ94は、ディスプレ
イ駆動回路95により適時の駆動がなされる。
(Regarding Control Block of Device) FIG. 8 schematically shows a block for individually controlling the electrical components of the circulation purification device according to the present invention, and the flow rate sensor 56 and the temperature sensor described above are included in the control circuit 62. 58 and water level sensor 60
Are connected to input respective detection information to the control circuit 62. The memory (RAM) 98 stores various kinds of information and command data necessary for automatically operating the circulation purification device, and exchanges signals with the control circuit 62. The solenoid valve 99 is opened and closed by a valve drive circuit 89 which receives a control command from the control circuit 62.
Driven by Similarly, the circulation pump 44 is driven by a pump drive circuit 45, and the burner 11 (25) is driven by a burner drive circuit 93. The electrolytic cell 38 is driven by the electrolytic cell drive circuit 39, the ozonizer 96 is driven by the ozonizer drive circuit 97, and the display 94, which displays information necessary for various operations, is driven by the display drive circuit 95 in a timely manner. .

【0023】(循環浄化装置の作用について)次に、この
ように構成した実施例に係る循環浄化装置の作用を、図
7に示すフローチャートを参照して説明する。浄化装置
の稼働に先立ち前記メモリ(RAM)98には、浴用水
の温度値の設定、電解槽38での電解の開始・終了時
刻の設定、オゾナイザ96での処理の開始・終了時刻
の設定が予めなされているものとする。前記メモリ(R
AM)に入力されるこれら設定値は、前記ディスプレイ
94に表示されて、視覚的に容易に確認し得るようにな
っている。また浴槽10には、浴用水が所要の湯張りレ
ベルまで貯留されているものとする。
(Operation of Circulation Purification Device) Next, the operation of the circulation purification device according to the embodiment thus configured will be described with reference to the flowchart shown in FIG. Prior to the operation of the purifying device, the temperature value of the bath water, the start and end times of electrolysis in the electrolytic bath 38, and the start and end times of the processing in the ozonizer 96 are set in the memory (RAM) 98. It has been done in advance. The memory (R
These set values input to (AM) are displayed on the display 94 so that they can be easily visually confirmed. Further, it is assumed that bath water is stored in the bathtub 10 to a required level of filling water.

【0024】図8のステップS1において、循環浄化装
置に備えた運転キー(図示せず)がオン(ON)しているか否
かを確認し、結果が肯定(YES)であれば循環ポンプ44
が駆動され、浴槽10中の浴用水が図1に示す管路系を
循環し始める。そして循環ポンプ44を駆動した状態で
次の操作を待機する。この待機中にステップS2に移行
し、電解槽38での浴用水の水位が規定値になっている
か否かを確認し、結果が否定(NO)であれば、ディスプレ
イ94にエラー表示を行なって循環ポンプ44の駆動を
停止する。また結果が肯定(YES)であればステップS3
移行し、管路中を流れる浴用水の流量が規定値に達して
いるか否かを確認し、結果が否定(NO)であれば、同じく
ディスプレイ94にエラー表示を行なって循環ポンプ4
4の駆動を停止する。また結果が肯定(YES)であれば、
次のステップS4に移行する。なお前記水位センサ60
および流量センサ56での確認が肯定(YES)されると、
循環ポンプ44での運転が継続され、浴槽10からの浴
用水は微生物浄化槽40,電解槽38および第1加熱装
置17(の熱交換管13)の順で循環した後に、該浴槽1
0へ再び帰還するサイクルを反復する。この場合におけ
る微生物浄化槽40での浄化のプロセスは後述する。
In step S 1 of FIG. 8, it is confirmed whether or not an operation key (not shown) provided in the circulation purification device is turned on (ON), and if the result is affirmative (YES), the circulation pump 44
Is driven, and the bath water in the bath 10 starts to circulate in the pipeline system shown in FIG. Then, the circulating pump 44 is driven and the next operation is awaited. During this waiting, the process proceeds to step S 2 to check whether the water level of the bath water in the electrolytic bath 38 is at a specified value or not, and if the result is negative (NO), an error is displayed on the display 94. Then, the drive of the circulation pump 44 is stopped. The result goes to step S 3, if affirmative (YES), checks whether the flow rate of the bath water flowing through the conduit in the has reached a prescribed value, if the result is negative (NO), the process also An error is displayed on the display 94 and the circulation pump 4
The drive of 4 is stopped. If the result is affirmative (YES),
Then, the process proceeds to next step S 4 . The water level sensor 60
If the confirmation by the flow rate sensor 56 is affirmative (YES),
The operation of the circulation pump 44 is continued, and the bath water from the bath 10 circulates in the order of the microbial purification tank 40, the electrolysis tank 38, and (the heat exchange tube 13 of) the first heating device 17, and then the bath 1
The cycle of returning to 0 again is repeated. The purification process in the microbial septic tank 40 in this case will be described later.

【0025】ステップS4では、第1加熱装置17(の熱
交換管13)に流入する浴用水の温度がメモリ(RAM)
98への設定値より低いか否かを確認し、結果が肯定(Y
ES)であれば、前記バーナ11を自動点火(ON)して熱交
換管13を通過する浴用水の水温を上昇させる。またス
テップS4での結果が否定(NO)であれば、バーナ11を
自動消火(OFF)して次のステップS5に移行する。このス
テップS5では、先にメモリ(RAM)98に設定した電
解槽38での処理時刻になっているか否かを確認し、結
果が否定(NO)であれば、図13に示す電解槽駆動回路3
9を引続きオフ(OFF)とし、また結果が肯定(YES)であれ
ば、電解槽駆動回路39をオン(ON)して電解槽38の電
解作用を開始する。なお、電解槽38での電解プロセス
は後述する。次にステップS6に移行して、前記オゾナ
イザ96での処理時刻になっているか否かを確認する。
その結果が否定(NO)であれば、図13に示すオゾナイザ
駆動回路97および弁駆動回路89を引続きオフ(OFF)
とし、また結果が肯定(YES)であれば、オゾナイザ駆動
回路97と弁駆動回路89をオン(ON)して管路中の浴用
水へのオゾンの注入を行なう。次いでステップS7で運
転キーがオフ(OFF)されているか否かを確認し、結果が
否定(NO)であれば、先のステップS2に戻って前述した
確認作業を反復する。また該ステップS7での結果が肯
定(YES)であれば、循環ポンプ44の運転を停止する。
In step S 4 , the temperature of the bath water flowing into (the heat exchange tube 13 of) the first heating device 17 is stored in the memory (RAM).
Check whether it is lower than the set value to 98, and the result is affirmative (Y
If ES, the burner 11 is automatically ignited (ON) to raise the temperature of the bath water passing through the heat exchange tube 13. If the result of step S 4 is negative (NO), the burner 11 is automatically extinguished (OFF) and the process proceeds to the next step S 5 . In this step S 5 , it is confirmed whether or not the processing time in the electrolytic cell 38 previously set in the memory (RAM) 98 has come, and if the result is negative (NO), the electrolytic cell drive shown in FIG. 13 is performed. Circuit 3
9 is continuously turned off (OFF), and if the result is affirmative (YES), the electrolytic cell drive circuit 39 is turned on (ON) to start the electrolytic action of the electrolytic cell 38. The electrolysis process in the electrolysis tank 38 will be described later. Next, in step S 6 , it is confirmed whether or not the processing time in the ozonizer 96 has come.
If the result is negative (NO), the ozonizer drive circuit 97 and valve drive circuit 89 shown in FIG. 13 are continuously turned off (OFF).
If the result is affirmative (YES), the ozonizer drive circuit 97 and the valve drive circuit 89 are turned on (ON) to inject ozone into the bath water in the pipeline. Then, in step S 7 , it is confirmed whether or not the operation key is turned off (OFF). If the result is negative (NO), the process returns to the previous step S 2 and the above-mentioned confirmation work is repeated. Also if the result at the step S 7 is affirmative (YES), it stops the operation of the circulation pump 44.

【0026】(微生物浄化槽でのプロセスについて)先に
述べた如く微生物浄化槽40には、予めバクテリア等の
微生物を繁殖固定させたPVAゲル74が浴用水の流入
により自由流動し得る程度の分量で充填されている。従
って、浴槽10から汚染された浴用水が循環ポンプ44
で吸い上げられて微生物浄化槽40に供給されると、図
3に示す如く、前記PVAゲル74は浴用水の流勢によ
り翻弄され激しく流動する。使用により汚染された浴用
水がPVAゲル74に接触すると、これに繁殖固定させ
た微生物は水中の垢や体脂等の有機物を分解して汚泥状
の汚染残査とする。この汚染残査は、PVAゲル74に
膜状に付着しようとするが、該PVAゲル74は槽中で
激しく流動しているので付着が極めて困難であり、また
該汚染物質がPVAゲル74に付着しても、該ゲルの流
動により容易に剥落させられてしまう。従ってPVAゲ
ル74は目詰まりを生ずることがなく、これらPVAゲ
ル74に対する洗浄処理や交換等の定期的なメンテナン
スは不要となる。また、PVAゲル74が激しく流動す
るため、微生物浄化槽40に供給される浴用水に対する
実効接触面積を大きく確保でき、浴用水に対し充分な浄
化力を発揮し得る等の利点がある。
(Regarding Process in Microbial Septic Tank) As described above, the microbial septic tank 40 is filled with an amount such that the PVA gel 74 in which microorganisms such as bacteria have been propagated and fixed in advance can freely flow by the inflow of bath water. Has been done. Therefore, the contaminated bath water from the bathtub 10 is circulated by the circulation pump 44.
When the PVA gel 74 is sucked up by and is supplied to the microbial septic tank 40, the PVA gel 74 is violated by the flow of the bath water and vigorously flows. When the bath water contaminated by use comes into contact with the PVA gel 74, the microorganisms propagated and fixed on the PVA gel 74 decompose organic matter such as dirt and body fat in the water to produce sludge-like contaminated residue. The contamination residue tends to adhere to the PVA gel 74 in a film form, but the PVA gel 74 is extremely difficult to adhere because it is flowing violently in the tank, and the contaminant adheres to the PVA gel 74. Even if the gel flows, it is easily peeled off. Therefore, the PVA gel 74 does not become clogged, and periodical maintenance such as cleaning processing and replacement of these PVA gels 74 becomes unnecessary. Further, since the PVA gel 74 flows violently, it is possible to secure a large effective contact area for the bath water supplied to the microbial septic tank 40, and it is possible to exert a sufficient purification power for the bath water.

【0027】更にPVAゲル74の成分の一部は浴用水
に溶出する傾向を示すが、この溶出した成分は水中の有
機物の一部に対し凝集剤として機能し、該有機物の一部
を凝集させるに至る。そして部分的に凝集した有機物
は、微生物によっても分解されなかった有機物や、分解
により発生した汚泥状の汚染残査と共に浴用水に分散さ
れて混在する。なお本実施例では、PVAゲル74の内
部に微生物が包括固定処理されたものを用いたために、
微生物浄化槽40に充填したPVAゲル74に微生物が
繁殖するのを待つ必要はなく、使い始めから微生物によ
る有機物の浄化能力が充分に発揮される。すなわち循環
浄化装置を設置した当初から充分に有機物の分解作用が
行なわれ、浴用水が始めのうちひどく濁ったりヌメリを
生じたりすることなく、清浄な浴用水での入浴を楽しみ
得るものである。但し、微生物の包括固定処理がなされ
ていないPVAゲル74であっても、先に述べた如くゲ
ル成分の溶出による一部の有機物の凝集効果はあるの
で、微生物が繁殖するまでの間でも相当程度の浄化効果
が得られる。
Further, some of the components of the PVA gel 74 tend to be eluted in the bath water. The eluted components function as a flocculant for a part of the organic matter in the water and cause a part of the organic matter to coagulate. Leading to. Then, the partially aggregated organic matter is dispersed and mixed in the bath water together with the organic matter which is not decomposed by the microorganisms and the sludge-like pollution residue generated by the decomposition. In this example, since the PVA gel 74 used was one in which microorganisms were entrapped and fixed,
It is not necessary to wait for the microorganisms to propagate in the PVA gel 74 filled in the microorganism purification tank 40, and the ability of the microorganisms to purify organic substances can be sufficiently exhibited from the beginning of use. That is, since the organic substances are sufficiently decomposed from the beginning of the installation of the circulation purifying device, the bath water can be enjoyed bathing with clean bath water without causing turbidity or sliminess of the bath water at the beginning. However, even with PVA gel 74 that has not been subjected to entrapping immobilization of microorganisms, the elution of gel components has the effect of aggregating some organic substances as described above, so even before the microorganisms proliferate. The purification effect of is obtained.

【0028】(電解槽でのプロセスについて)図1におい
て、微生物浄化槽40での浄化処理が終了した浴用水
は、管路46を介して電解槽38に流入し、所要の直流
電圧が印加されている陽極66および陰極68に接触す
る。このため浴用水は電気分解されて、陽極66の近傍
に酸素ガスを生ずると共に、該陽極66の周囲に存在す
る浴用水の水素イオン濃度は高くなって酸性となる。ま
た陰極68の近傍には水素ガスを生ずると共に、該陰極
68の周囲に存在する浴用水の水素イオン濃度は低くな
ってアルカリ性となる。しかも陽極66の側では、浴用
水に含まれる垢や体脂のような有機物が酸化分解されて
微小化する。なお酸化分解された有機物の一部は、不溶
性となってコロニー状態に凝集する。
(Regarding Process in Electrolyzer) In FIG. 1, the bath water, which has been purified by the microbial septic tank 40, flows into the electrolyzer 38 through the pipe 46, and a required DC voltage is applied. The positive electrode 66 and the negative electrode 68 are in contact with each other. Therefore, the bath water is electrolyzed to generate oxygen gas in the vicinity of the anode 66, and the hydrogen ion concentration of the bath water existing around the anode 66 becomes high and becomes acidic. Further, hydrogen gas is generated in the vicinity of the cathode 68, and the concentration of hydrogen ions in the bath water existing around the cathode 68 is lowered to become alkaline. Moreover, on the side of the anode 66, organic substances such as dirt and body fat contained in the bath water are oxidatively decomposed and become minute. A part of the oxidatively decomposed organic matter becomes insoluble and aggregates in a colony state.

【0029】更に陽極66の近傍には、オゾン(O3)や
過酸化水素(H22)の形で活性酸素が生成される。この
ため浴用水中の雑菌は、この活性酸素により相当の程度
殺菌されるに至る。更に電気分解により前記陽極66の
近傍は強酸性になり、また前記陰極68の近傍は強アル
カリ性になるので、このような水素イオン濃度(pH)の
変化によっても殺菌効果が発揮される。なお、陽極66
の近傍に生ずる酸素ガスおよび酸性化した水と、陰極6
8の近傍に生ずる水素ガスおよびアルカリ性化した水は
明確な分離状態で存在するものでなく、浴用水中に気水
が混在した状態で存在するものである。この電解分解に
より一部殺菌がなされ、かつ微細化した有機物を凝集さ
せた浴用水は、電解槽38から下流側の管路48を経て
水加熱装置15に供給される。
Further, in the vicinity of the anode 66, active oxygen is produced in the form of ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ). Therefore, various bacteria in the bath water are sterilized to a considerable extent by this active oxygen. Furthermore, since the vicinity of the anode 66 becomes strongly acidic and the vicinity of the cathode 68 becomes strongly alkaline due to electrolysis, the sterilizing effect is exhibited even by such a change in the hydrogen ion concentration (pH). The anode 66
Oxygen gas and acidified water generated in the vicinity of the
Hydrogen gas and alkalized water generated in the vicinity of 8 do not exist in a clearly separated state, but exist in a state where steam water is mixed in the bath water. The bath water, which is partially sterilized by this electrolytic decomposition and in which finely divided organic substances are aggregated, is supplied from the electrolytic bath 38 to the water heating device 15 via the downstream pipe line 48.

【0030】ところで電解槽38で電気分解を行なう
と、前述したアルカリ性水の生成により陰極68の近傍
のpH値が上昇し、浴用水に含まれるカルシウムイオン
やマグネシウムイオンが該陰極68の表面に析出する。
このように陰極68の表面がこれら析出物により層状に
被覆されると、結果的に電解作用が次第に低下する不都
合を来す。そこで本実施例では、電気分解を開始した後
の電解槽38への通水量を流量センサ56で積算計測
し、その計測値が前記メモリ(RAM)に予め設定してお
いた通水量に達すると、陰極68および陽極66に逆極
性の直流電圧を印加し、該陰極68を被覆していた析出
物を溶解させることにより清浄化を行なっている。なお
浴用水の通水量の積算に代えて、通水時間の積算を電極
における極性変換の関数として採用してもよい。
When electrolysis is carried out in the electrolytic cell 38, the pH value in the vicinity of the cathode 68 rises due to the generation of the alkaline water described above, and calcium ions and magnesium ions contained in the bath water are deposited on the surface of the cathode 68. To do.
When the surface of the cathode 68 is coated with these deposits in a layered manner as described above, there is a disadvantage that the electrolytic action is gradually reduced. Therefore, in the present embodiment, the amount of water flowing into the electrolytic cell 38 after the start of electrolysis is integrated and measured by the flow rate sensor 56, and when the measured value reaches the amount of water flowing preset in the memory (RAM). Cleaning is performed by applying a DC voltage of opposite polarity to the cathode 68 and the anode 66, and dissolving the deposit covering the cathode 68. It should be noted that instead of integrating the water flow rate of the bath water, the water flow time may be integrated as a function of polarity conversion in the electrodes.

【0031】(水加熱装置でのプロセスについて)電解槽
38で電解処理された浴用水は、温度センサ58を設置
した管路48を経て水加熱装置15(第1加熱装置17)
へ供給される。温度センサ58は、管路48を通過する
浴用水の温度を計測監視し、該センサ58の検出結果が
図8に示すメモリ(RAM)98での設定値よりも低い場
合は、制御回路62がバーナ駆動回路93を制御してバ
ーナ11を点火し、浴用水の所謂追焚きを行なう。逆に
温度センサ58の検出結果がメモリ(RAM)98での設
定値より高い場合は、制御回路62がバーナ駆動回路9
3に制御指令を与え、前記バーナ11を消火する。この
ように第1加熱装置17の熱交換管13を通過する浴用
水は、必要に応じて追焚きがなされ、入浴に適した温度
に維持される。また2基の水加熱装置17,19を備え
る図1の実施例において、浴槽10中の水量が低下した
場合は、先に述べた如く、第2閉開弁37を開放した状
態で第1加熱装置17および第2加熱装置19を点火す
る。これにより水道供給系29からの水道水は、第2加
熱装置19で昇温された後に第1加熱装置17でも昇温
され、浴槽10に追焚き後の浴用水と新たな補充浴用水
とが併せて供給される。なお水加熱装置15として2基
の水加熱装置17,19を備える場合は、後述の如く、
浴用水が循環する管路系に若干の改変を加えるだけで、
通常運転モード→各槽を通過させないバイパスモード
→浴槽に湯張りを行なう湯張りモードの選択を容易に行
ない得る。
(Regarding Process in Water Heating Device) The bath water electrolyzed in the electrolytic bath 38 passes through the pipe line 48 in which the temperature sensor 58 is installed and the water heating device 15 (first heating device 17).
Supplied to The temperature sensor 58 measures and monitors the temperature of the bath water passing through the pipe 48, and when the detection result of the sensor 58 is lower than the set value in the memory (RAM) 98 shown in FIG. The burner drive circuit 93 is controlled to ignite the burner 11 to perform so-called reheating of the bath water. On the contrary, when the detection result of the temperature sensor 58 is higher than the set value in the memory (RAM) 98, the control circuit 62 causes the burner drive circuit 9
A control command is given to 3 to extinguish the burner 11. In this way, the bath water passing through the heat exchange tube 13 of the first heating device 17 is reheated as necessary and is maintained at a temperature suitable for bathing. Further, in the embodiment of FIG. 1 provided with two water heating devices 17 and 19, when the amount of water in the bathtub 10 decreases, as described above, the first heating is performed with the second closing valve 37 open. The device 17 and the second heating device 19 are ignited. As a result, the tap water from the tap water supply system 29 is heated in the first heating device 17 after being heated in the second heating device 19, and the bath water after being heated in the bathtub 10 and the new replenishing bath water are generated. Supplied together. When two water heating devices 17 and 19 are provided as the water heating device 15, as described later,
With a slight modification to the pipeline system in which the bath water circulates,
It is possible to easily select a normal operation mode → a bypass mode that does not pass through each tank → a bath filling mode in which the bath is filled.

【0032】この水加熱装置15に関連して、図1に示
す如く、バイパス管21に第1閉開弁23を介挿した理
由を説明する。この第1閉開弁23は、浴用水の追焚
きがなされない場合は開放して、浄化済みの浴用水の一
部を該加熱装置17からバイパスさせ、また浴用水の
追焚きがなされる場合は閉成して、浴用水を専ら熱交換
管13に通過させると共に、水圧送時の圧力を低下させ
ることにより、該熱交換管13の耐久性を保持するのに
使用される。すなわち熱交換管13は、バーナ11から
の熱で浴用水を昇温させるものであるから、その熱交換
効率を高めるために管厚が薄く設定され、また中空孔の
内径も小さく設定されている。従って熱交換管13の耐
久性は、管内部から加わる通水圧力に対して余り充分で
ない。殊に本実施例の浴用水は、循環ポンプ44により
高い圧力の下で熱交換管13に供給されるので、管の耐
久性を維持する観点から好ましくない。
With respect to the water heating device 15, the reason why the first closed / open valve 23 is inserted in the bypass pipe 21 as shown in FIG. 1 will be described. When the bath water is not reheated, the first open / close valve 23 is opened to bypass a part of the purified bath water from the heating device 17, and when the bath water is reheated. Is used to maintain the durability of the heat exchange pipe 13 by closing the bath water to allow the bath water to pass exclusively through the heat exchange pipe 13 and reducing the pressure during water pressure feeding. That is, since the heat exchange tube 13 is for raising the temperature of the bath water by the heat from the burner 11, the tube thickness is set thin and the inner diameter of the hollow hole is set small in order to increase the heat exchange efficiency. . Therefore, the durability of the heat exchange tube 13 is not sufficiently high with respect to the water pressure applied from the inside of the tube. In particular, the bath water of the present embodiment is supplied to the heat exchange pipe 13 under high pressure by the circulation pump 44, and is not preferable from the viewpoint of maintaining the durability of the pipe.

【0033】そこで、追焚きをしないで浴用水を循環だ
けさせる場合は、第1閉開弁23を開放して浄化後の浴
用水の一部を管路21を介して管路54へバイパスさ
せ、また追焚きを行なう場合は、第1閉開弁23を閉成
すると共に、循環ポンプ44を低速運転に切換えて、浴
用水の供給圧力が低い状態で熱交換管13に供給するよ
うにしたものである。この手順を、図9のフローチャー
トを参照しながら説明する。種々の運転必要条件を初期
設定した後、運転キー(図示せず)をオン(ON)して循環ポ
ンプ44を通常運転に入らせる。そしてステップS1
浴用水が設定流量以上になっているか否かを確認し、肯
定(YES)であればステップS2に移行する。このステップ
2の確認結果が肯定(YES)であれば、第1閉開弁23を
閉成して循環ポンプ44を低速運転に切換える。これに
より浴用水の供給圧力が低い状態となるので、第1加熱
装置17のバーナ11を点火(ON)する。すなわち追焚き
運転に入るが、この第1加熱装置17の熱交換管13を
通過する浴用水は低圧に維持されているので、該熱交換
管13の耐久性を損なうことはない。
Therefore, when only circulating the bath water without additional heating, the first closing valve 23 is opened to bypass a portion of the purified bath water to the pipe 54 via the pipe 21. When reheating is performed, the first closing / opening valve 23 is closed, the circulation pump 44 is switched to low speed operation, and the bath water is supplied to the heat exchange pipe 13 at a low supply pressure. It is a thing. This procedure will be described with reference to the flowchart of FIG. After initializing various operation requirements, an operation key (not shown) is turned on to turn on the circulation pump 44 in normal operation. The bath water to confirm whether or not it is more than the set flow rate in step S 1, the process proceeds to step S 2 if affirmative (YES). If the confirmation result in step S 2 is affirmative (YES), the first closing valve 23 is closed and the circulation pump 44 is switched to the low speed operation. As a result, the supply pressure of the bath water becomes low, so that the burner 11 of the first heating device 17 is ignited (ON). That is, although the reheating operation is started, since the bath water passing through the heat exchange tube 13 of the first heating device 17 is maintained at a low pressure, the durability of the heat exchange tube 13 is not impaired.

【0034】前記ステップS2の確認結果が否定(NO)で
あれば、第1加熱装置17のバーナ11を消火(OFF)し
て第1閉開弁23を開放する。また循環ポンプ44は、
先の低速運転から定常運転に切換える。これにより追焚
きが停止され、浄化後の浴用水は、第1加熱装置17の
熱交換管13とバイパス路である前記管路21との両方
に分かれて流れることになる。この場合も、熱交換管1
3の耐久性が損なわれることはなく、しかも浴用水の循
環抵抗が増大することもない。なお、前記電解槽38の
流出側に接続する管路48の分岐部に切換弁を配設し、
この切換弁を切換え操作することによって、追焚きを行
なわない場合は、浴用水を第1加熱装置17の熱交換管
13に通過させず、専らバイパス管21だけを通過させ
るよう構成してもよい。
If the confirmation result in the step S 2 is negative (NO), the burner 11 of the first heating device 17 is extinguished (OFF) and the first closed / open valve 23 is opened. The circulation pump 44 is
Switch from low speed operation to steady operation. As a result, the reheating is stopped, and the purified bath water flows separately in both the heat exchange pipe 13 of the first heating device 17 and the pipe line 21 which is the bypass line. Also in this case, the heat exchange tube 1
The durability of No. 3 is not impaired, and the circulating resistance of bath water is not increased. In addition, a switching valve is provided at a branch portion of a pipe line 48 connected to the outflow side of the electrolytic cell 38,
When the reheating is not performed by switching the switching valve, the bath water may not be passed through the heat exchange pipe 13 of the first heating device 17, but may be passed through the bypass pipe 21 only. .

【0035】(各構成の変更例について)本発明の構成
は、図1に述べた実施形態に限定されるものではなく、
その要旨を逸脱しない範囲で種々の変更を加えることが
できる。例えば図2に示す如く、浴用水の流れる方向に
電解槽38,微生物浄化槽40および水加熱装置15の
順に配設するようにしてもよい。なお図1に示す実施例
では、殺菌作用を果たす電解槽38が浴槽10に近接し
て位置するので、該浴槽10へ帰還する浴用水に含まれ
る雑菌や微生物の数を更に低減させると共に、ヌメリの
発生をより効果的に抑制し得る。また前記電解槽38に
おいて、電気分解により陽極66の近傍に生成される活
性酸素(過酸化水素)は、浴用水に含まれる雑菌だけでな
く有機物を分解する有用微生物までも殺す能力を有して
いる。従って図2の如く電解槽38を微生物浄化槽40
の上流側に配設する場合は、この活性酸素を含む浴用水
が該微生物浄化槽40に流入して、PVAゲル74に繁
殖固定させた有用微生物を死滅させることも懸念され
る。勿論、活性酸素の寿命は極めて短いので、図2に示
す例の場合であっても、電解槽38と微生物浄化槽40
との間を適当に離すように配慮しておけば全く問題はな
い。しかし図1のように、微生物浄化槽40を電解槽3
8の上流側に配置する構成とすれば、これら微生物浄化
槽40と電解槽38は極めて近接的に設置することもで
き、装置全体をコンパクト化するのに寄与し得る。
(Regarding Modifications of Each Structure) The structure of the present invention is not limited to the embodiment shown in FIG.
Various changes can be made without departing from the spirit of the invention. For example, as shown in FIG. 2, the electrolytic cell 38, the microbial purification tank 40, and the water heating device 15 may be arranged in this order in the flowing direction of the bath water. In the embodiment shown in FIG. 1, since the electrolytic cell 38 that performs a sterilizing action is located close to the bath 10, the number of bacteria and microorganisms contained in the bath water returning to the bath 10 can be further reduced, and the slime can be reduced. Can be suppressed more effectively. In the electrolyzer 38, the active oxygen (hydrogen peroxide) generated near the anode 66 by electrolysis has the ability to kill not only the bacteria contained in the bath water but also useful microorganisms that decompose organic substances. There is. Therefore, as shown in FIG.
When disposed on the upstream side of the above, the bath water containing the active oxygen may flow into the microorganism purification tank 40 to kill the useful microorganisms propagated and fixed on the PVA gel 74. Of course, since the life of active oxygen is extremely short, even in the case of the example shown in FIG.
There will be no problem if you take care to keep the space between and. However, as shown in FIG.
If it is arranged on the upstream side of 8, the microbial purification tank 40 and the electrolysis tank 38 can be installed very close to each other, which can contribute to downsizing of the entire apparatus.

【0036】図2に示す電解槽38において、その流入
側管路53と流出側管路46を2点鎖線で示す管路49
でバイパスし、浴用水の一部が該電解槽38を通過する
ことなく下流の微生物浄化槽40へ流入する構成として
もよい。これは、電解槽38における電極間距離を狭く
する場合に効果的である。すなわち電解槽38は、その
電極66,68の距離を狭めることによって、低電圧の
直流印加で浴用水の電気分解をより効率的に行なうこと
ができる。これによれば、直流電源に対する負荷を軽減
させることができると共に、万一の感電事故の心配もな
くなり安全性が高まる。しかし反面で、電解槽38にお
ける浴用水の流路抵抗が増大し、循環ポンプ44に対す
る負荷が逆に大きくなる問題を有している。このような
場合に、前述した如く電解槽38への流入側にバイパス
管路49を設けてやれば、全体的な流路抵抗は低く抑え
ることができ、直流電源に対する負荷の軽減に加えて、
循環ポンプ44の負荷も低減させ得るものである。
In the electrolytic cell 38 shown in FIG. 2, the inflow side pipeline 53 and the outflow side pipeline 46 are shown by a two-dot chain line pipeline 49.
Alternatively, a part of the bath water may flow into the downstream microbial purification tank 40 without passing through the electrolysis tank 38. This is effective in reducing the distance between the electrodes in the electrolytic cell 38. That is, in the electrolytic bath 38, by narrowing the distance between the electrodes 66, 68, electrolysis of bath water can be more efficiently performed by applying a low voltage DC. According to this, it is possible to reduce the load on the DC power source, and there is no fear of an electric shock accident, so that safety is improved. However, on the other hand, there is a problem in that the flow path resistance of the bath water in the electrolytic cell 38 increases, and the load on the circulation pump 44 increases conversely. In such a case, if the bypass conduit 49 is provided on the inflow side to the electrolytic cell 38 as described above, the overall flow path resistance can be suppressed low, and in addition to reducing the load on the DC power supply,
The load on the circulation pump 44 can also be reduced.

【0037】(水加熱装置を2基備えた場合の運転モー
ドについて)水加熱装置15が、先に述べた2基の加熱
装置17,19を備える場合は、図10〜図13に示す
運転モードを採用することができる。例えば、図10の
管路系は基本的に図1の配列を採用すると共に、第1加
熱装置17における熱交換管13の入口側に第1切換弁
43が設けられ、この第1切換弁43の第1切換側に前
記管路33(熱交換管27の出口側から導出)が接続され
ると共に、第2切換側に前記管路48(電解槽38の流
出口から導出)が接続されている。また循環ポンプ44
の吐出側に第2切換弁55が設けられ、この第2切換弁
55の第1切換側に管路53(微生物浄化槽40の入口
側から導出)が接続している。更に、前記管路33に介
挿したチェック弁35と第2閉開弁37との間から管路
47が導出され、この管路47は前記第2切換弁55の
第2切換側に接続している。
(Operation Mode When Two Water Heating Devices are Provided) When the water heating device 15 is provided with the two heating devices 17 and 19 described above, the operation modes shown in FIGS. Can be adopted. For example, the pipeline system of FIG. 10 basically adopts the arrangement of FIG. 1, and a first switching valve 43 is provided on the inlet side of the heat exchange pipe 13 in the first heating device 17, and the first switching valve 43 is provided. Of the pipe line 33 (leading out from the outlet side of the heat exchange pipe 27) is connected to the first switching side, and the pipe line 48 (leading out from the outlet port of the electrolytic cell 38) is connected to the second switching side. There is. The circulation pump 44
The second switching valve 55 is provided on the discharge side, and the conduit 53 (derived from the inlet side of the microbial septic tank 40) is connected to the first switching side of the second switching valve 55. Further, a pipe line 47 is led out from between the check valve 35 and the second closing / opening valve 37 inserted in the pipe line 33, and the pipe line 47 is connected to the second switching side of the second switching valve 55. ing.

【0038】図10は、通常運転モードを示すもので、
第1切換弁43は前記管路48に連通する第2切換側に
切換えられると共に、第2切換弁55は微生物浄化槽4
0に連通する第1切換側に切換えられている。従って前
記管路47での浴用水の循環はなされない。また第2閉
開弁37は閉成されて、水道水供給系29との連通は絶
たれている。この状態で循環ポンプ44を運転すれば、
浴槽10中の浴用水は先に述べた如く、微生物浄化槽4
0→電解槽38→第1加熱装置17の経路を経て循環
し、該浴用水の好適な浄化が達成される。なお第1加熱
装置17では、浴用水の温度に応じて適時にバーナ11
の点火による追焚きがなされる。
FIG. 10 shows the normal operation mode.
The first switching valve 43 is switched to the second switching side that communicates with the pipe 48, and the second switching valve 55 is used for the microbial septic tank 4.
It is switched to the first switching side communicating with 0. Therefore, the bath water is not circulated in the pipe line 47. Further, the second closing / opening valve 37 is closed, and communication with the tap water supply system 29 is cut off. If the circulation pump 44 is operated in this state,
As described above, the bath water in the bathtub 10 is the microbial septic tank 4
It circulates through the path of 0 → electrolyzer 38 → first heating device 17, and a suitable purification of the bath water is achieved. In the first heating device 17, the burner 11 is timely depending on the temperature of the bath water.
Is fired by the ignition of.

【0039】図11は、浴用水を各槽に通過させないバ
イパスモードを示すもので、第1切換弁43は前記管路
33に連通する第1切換側に切換えられると共に、第2
切換弁55は前記管路47に連通する第2切換側に切換
えられている。このため循環ポンプ44の吐出側は、微
生物浄化槽40との連通が絶たれると共に、前記管路4
7との連通がなされている。なお第2閉開弁37は同じ
く閉成されて、水道水の供給は絶たれている。この状態
で循環ポンプ44を運転すると、浴槽10中の浴用水は
前記管路47および管路33を介して流れ、第1切換弁
43および第1加熱装置17(熱交換管13)を経て浴槽
10に帰還するサイクルを反復する。すなわち浴用水の
状態によっては、浄化や濾過を必要としない場合がある
ので、このときは該浴用水を、微生物浄化槽40,電解
槽38に循環させることなくバイパスさせるものであ
る。このモードが必要とされるケースとして、第1加熱
装置17のバーナ11を点火して浴用水の追焚きだけを
行なう場合が想定される。
FIG. 11 shows a bypass mode in which bath water does not pass through each tank. The first switching valve 43 is switched to the first switching side communicating with the pipe 33, and the second switching valve 43 is connected to the second switching valve 43.
The switching valve 55 is switched to the second switching side that communicates with the pipe line 47. Therefore, the discharge side of the circulation pump 44 is cut off from the communication with the microbial septic tank 40, and
It is in communication with 7. The second open / close valve 37 is also closed, and the supply of tap water is cut off. When the circulation pump 44 is operated in this state, the bath water in the bathtub 10 flows through the pipe line 47 and the pipe line 33, and passes through the first switching valve 43 and the first heating device 17 (heat exchange pipe 13) to the bathtub. The cycle of returning to 10 is repeated. That is, depending on the state of the bath water, purification or filtration may not be necessary, so at this time, the bath water is bypassed without being circulated in the microbial purification tank 40 and the electrolytic cell 38. As a case where this mode is required, it is assumed that the burner 11 of the first heating device 17 is ignited to only reheat the bath water.

【0040】図12は、浴槽10に湯張りを行なう場合
の湯張りモードを示すもので、この場合は前述のバイパ
スモードの場合と同じく、第1切換弁43は前記管路3
3と連通する側に切換えられ、また第2切換弁55は前
記管路47と連通する側に切換えられている。但し循環
ポンプ44は運転を停止した状態になっており、更に第
2閉開弁37は開放されて水道水供給系29に連通して
いる。この状態で水道水供給系29から水道水を供給す
れば、該水道水は圧力下に第2加熱装置19の熱交換管
27を流過した後、一方では前記管路47→第2切換
弁55→循環ポンプ44→吸水ホース16の経路を経て
浴槽10に供給されると共に、他方では前記管路33
→第1切換弁43→第1加熱装置17の熱交換管13→
管路54→排水ホース18の経路を経て該浴槽10に供
給される。すなわち水道水は、微生物浄化槽40,電解
槽38をバイパスした形で供給される。このとき、第1
加熱装置17と第2加熱装置19のバーナ11,25を
点火すれば、浴槽10には昇温された水道水が供給され
て湯張りが行なわれる。なお水加熱装置15は、第1加
熱装置17または第2加熱装置19の何れかのバーナだ
けを点火するようにしてもよい。
FIG. 12 shows a water filling mode when the bathtub 10 is filled with water. In this case, the first switching valve 43 is connected to the conduit 3 as in the bypass mode described above.
3, and the second switching valve 55 is switched to the side communicating with the pipe line 47. However, the circulation pump 44 is stopped, and the second closing / opening valve 37 is opened to communicate with the tap water supply system 29. If tap water is supplied from the tap water supply system 29 in this state, the tap water flows under pressure through the heat exchange pipe 27 of the second heating device 19, and on the other hand, the pipe line 47 → the second switching valve. 55 → circulation pump 44 → supplied to the bathtub 10 via the path of the water absorption hose 16 and, on the other hand, the pipe 33
→ first switching valve 43 → heat exchange tube 13 of first heating device 17 →
The water is supplied to the bathtub 10 via the path from the pipe 54 to the drain hose 18. That is, tap water is supplied in a form in which the microbial purification tank 40 and the electrolytic tank 38 are bypassed. At this time, the first
When the burners 11 and 25 of the heating device 17 and the second heating device 19 are ignited, the heated tap water is supplied to the bathtub 10 to fill the water. The water heating device 15 may ignite only the burner of either the first heating device 17 or the second heating device 19.

【0041】[0041]

【発明の効果】以上に説明した如く、本願の請求項1に
記載の循環浄化装置によれば、微生物浄化手段では、微
生物により汚染液体に含まれる有機物を分解して該液体
を浄化する。電解手段への通電により汚染液体が電気分
解され、活性酸素が発生して殺菌を行なうと共に、汚染
液体中の有機物が酸化分解される。これら微生物浄化手
段と電解手段が相俟って、汚染液体の殺菌、該液体に含
まれる有機物の分解がなされるので、汚染液体の効率的
な清浄化が達成される。しかもバーナ燃焼器による液体
加熱手段を備えているから、浄化された液体を必要に応
じ加熱して簡単に昇温させ得る利点も有している。また
本願の請求項2に記載の循環浄化装置によれば、微生物
浄化槽では、粒状の合成高分子ゲルに存在させた微生物
により、汚染液体に含まれる有機物を分解して該液体を
浄化する。電解槽への通電により汚染液体が電気分解さ
れ、活性酸素が発生して殺菌を行なうと共に、汚染液体
中の有機物が酸化分解される。そして電解槽と微生物浄
化槽が相俟って、汚染液体の殺菌、該液体に含まれる有
機物の分解がなされ、汚染液体の効率的な清浄化が達成
される。しかもバーナ燃焼器による液体加熱装置を備え
ているから、必要に応じて該液体の加熱による昇温を簡
単になし得る利点も有している。
As described above, according to the circulation purification apparatus of the first aspect of the present application, the microorganism purification means decomposes the organic matter contained in the contaminated liquid by the microorganisms to purify the liquid. By energizing the electrolysis means, the contaminated liquid is electrolyzed, active oxygen is generated and sterilized, and at the same time, the organic matter in the contaminated liquid is oxidatively decomposed. Since the microbial purification means and the electrolysis means work together to sterilize the contaminated liquid and decompose organic substances contained in the liquid, efficient cleaning of the contaminated liquid is achieved. Moreover, since the liquid heating means by the burner combustor is provided, there is an advantage that the purified liquid can be heated as needed to easily raise the temperature. Further, according to the circulation purification apparatus of the second aspect of the present application, in the microbial purification tank, the microorganisms present in the granular synthetic polymer gel decompose the organic matter contained in the contaminated liquid to purify the liquid. By energizing the electrolytic cell, the contaminated liquid is electrolyzed, active oxygen is generated and sterilized, and the organic matter in the contaminated liquid is oxidatively decomposed. The electrolytic cell and the microbial purification tank work together to sterilize the contaminated liquid and decompose organic substances contained in the liquid, thereby achieving efficient cleaning of the contaminated liquid. Moreover, since the liquid heating device using the burner combustor is provided, there is also an advantage that the temperature can be easily raised by heating the liquid if necessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適実施例に係る循環浄化装置の基本
構成を示す概略図である。
FIG. 1 is a schematic diagram showing a basic configuration of a circulation purification device according to a preferred embodiment of the present invention.

【図2】本発明の別の好適実施例に係る循環浄化装置の
概略図である。
FIG. 2 is a schematic view of a circulation purification device according to another preferred embodiment of the present invention.

【図3】微生物浄化槽の概略構造を示す縦断面図であ
る。
FIG. 3 is a vertical sectional view showing a schematic structure of a microbial septic tank.

【図4】電解槽の概略構造を示す縦断面図である。FIG. 4 is a vertical sectional view showing a schematic structure of an electrolytic cell.

【図5】浴室に本願に係る汚染液体の循環浄化装置を設
置した状態を示す概略斜視図である。
FIG. 5 is a schematic perspective view showing a state in which a circulation purification device for polluted liquid according to the present application is installed in a bathroom.

【図6】循環浄化装置の一部を構成する給排水ユニット
を、浴槽内壁面に取付けた状態で示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing a water supply / drainage unit which constitutes a part of the circulation purification device, in a state where the water supply / drainage unit is attached to the inner wall surface of the bath.

【図7】循環浄化装置の制御の流れを示すフローチャー
ト図である。
FIG. 7 is a flowchart showing a control flow of the circulation purification device.

【図8】循環浄化装置の電気的構成部分を、個別に制御
し得る制御ブロックを示す概略図である。
FIG. 8 is a schematic diagram showing a control block that can individually control electrical components of the circulation purification device.

【図9】水加熱装置にバイパス用の開閉弁を介挿した場
合に、追焚きを行なうか否かを決定する制御の流れを示
すフローチャート図である。
FIG. 9 is a flowchart showing a flow of control for determining whether or not additional heating is performed when a bypass opening / closing valve is inserted in the water heating device.

【図10】水加熱装置として2基の加熱装置を備える構
成において、通常の循環浄化運転を行なうモードを示す
概略説明図である。
FIG. 10 is a schematic explanatory diagram showing a mode in which a normal circulation purification operation is performed in a configuration including two heating devices as water heating devices.

【図11】図10に示す構成において、循環浄化用の各
槽を通過させることなく、浴用水を循環させるバイパス
モードを示す概略説明図である。
FIG. 11 is a schematic explanatory view showing a bypass mode in which bath water is circulated without passing through each tank for circulation purification in the configuration shown in FIG.

【図12】図10に示す構成において、循環浄化をしな
いで浴槽に湯張りを行なう湯張りモードを示す概略説明
図である。
FIG. 12 is a schematic explanatory view showing a filling mode in which the bath is filled without circulating purification in the configuration shown in FIG.

【符号の説明】[Explanation of symbols]

10 浴槽 11 ガス燃焼器(バーナ) 12 浴用水 13 熱交換管 14 給排水ユニット 15 水加熱装置 16 吸水ホース 17 第1加熱装置 18 排水ホース 19 第2加熱装置 20 装置本体 21 バイパス管 22 漏電ブレーカ 23 第1閉開弁 24 ケーブル 25 バーナ 26 アースケーブル 27 熱交換管 28 吸盤 29 水道供給系 30 箱状ケース 31 給湯系 32 吸水口 33 管路 34 吐出口 35 チェック弁 36 フィルタ 37 第2閉開弁 38 電解槽 39 電解槽駆動回路 40 微生物浄化槽 41 ブロワ 43 第1切換弁 44 循環ポンプ 45 ポンプ駆動回路 46 管路 47 管路 48 管路 49 バイパス管 50 電気加熱槽 53 管路 54 管路 55 第2切換弁 56 流量センサ 58 温度センサ 59 チェック弁 60 水位センサ 62 制御回路 64 箱型ケーシング 66,68 電極部 70 円筒状ケーシング 70a 流入口 70b 流出口 72 管状水流路 74 合成高分子ゲル(PVAゲル) 76 フイルタ 78 水滞留部 89 弁駆動回路 93 バーナ駆動回路 94 ディスプレイ 95 ディスプレイ駆動回路 96 オゾナイザ 97 オゾナイザ駆動回路 98 メモリ(RAM) 99 ソレノイド弁 10 Bathtub 11 Gas Combustor (Burner) 12 Bath Water 13 Heat Exchange Tube 14 Water Supply / Drainage Unit 15 Water Heating Device 16 Water Absorption Hose 17 First Heating Device 18 Drain Hose 19 Second Heating Device 20 Device Main Body 21 Bypass Pipe 22 Electric Leak Breaker 23 No. 1 Closed Open Valve 24 Cable 25 Burner 26 Ground Cable 27 Heat Exchange Tube 28 Suction Cup 29 Water Supply System 30 Box Case 31 Hot Water Supply System 32 Water Intake Port 33 Pipeline 34 Discharge Port 35 Check Valve 36 Filter 37 Second Closed Open Valve 38 Electrolysis Tank 39 Electrolysis tank drive circuit 40 Microbial purification tank 41 Blower 43 First switching valve 44 Circulation pump 45 Pump drive circuit 46 Pipe line 47 Pipe line 48 Pipe line 49 Bypass pipe 50 Electric heating tank 53 Pipe line 54 Pipe line 55 Second switch valve 56 Flow rate sensor 58 Temperature sensor 59 Check valve 60 Water level sensor 2 Control Circuit 64 Box Casing 66,68 Electrode Section 70 Cylindrical Casing 70a Inlet 70b Outlet 72 Tubular Water Channel 74 Synthetic Polymer Gel (PVA Gel) 76 Filter 78 Water Retaining Section 89 Valve Drive Circuit 93 Burner Drive Circuit 94 Display 95 Display drive circuit 96 Ozonizer 97 Ozonizer drive circuit 98 Memory (RAM) 99 Solenoid valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/465 C02F 1/50 540A 1/50 510 550D 520 560A 531 560B 540 560F 550 560H 560 1/78 3/10 A F24H 9/00 W B01D 35/02 J 1/78 C02F 1/46 101Z 3/10 102 E04H 4/12 E04H 3/20 B F24H 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 1/465 C02F 1/50 540A 1/50 510 550D 520 560A 531 560B 540 560F 550 560H 560 1 / 78 3/10 A F24H 9/00 W B01D 35/02 J 1/78 C02F 1/46 101Z 3/10 102 E04H 4/12 E04H 3/20 B F24H 9/00

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 経時的に汚染される液体を液体貯留手段
に貯留し、この汚染液体を該貯留手段の外部でポンプ循
環させつつ浄化および殺菌を行なうようにした汚染液体
の循環浄化装置において、 前記汚染液体に含まれる有機物を微生物により分解して
浄化する微生物浄化手段と、 この汚染液体を電気分解して前記有機物の酸化分解を促
進する電解手段と、 バーナ燃焼器および熱交換器を備える液体加熱手段とを
備え、 これら微生物浄化手段、電解手段および液体加熱手段を
接続して前記汚染液体の循環経路を構成したことを特徴
とする汚染液体の循環浄化装置。
1. A circulation purification device for a contaminated liquid, wherein a liquid contaminated with time is stored in a liquid storage means, and the contaminated liquid is circulated and pumped outside the storage means for purification and sterilization. A microbial purification means for decomposing and purifying organic matter contained in the contaminated liquid by microorganisms, an electrolysis means for electrolyzing the contaminated liquid to promote oxidative decomposition of the organic matter, and a liquid including a burner combustor and a heat exchanger. A circulation purification device for a contaminated liquid, comprising: a heating means, wherein the microorganism purification means, the electrolysis means, and the liquid heating means are connected to form a circulation path for the contaminated liquid.
【請求項2】 貯留槽中の汚染液体を循環ポンプで汲み
上げ、該汚染液体の浄化および殺菌を行なった後、再び
該貯留槽に戻すようにした汚染液体の循環浄化装置にお
いて、 前記汚染液体に含まれる有機物の吸着・分解を行なう微
生物を存在させた粒状の合成高分子ゲルを充填した微生
物浄化槽と、 この汚染液体を電気分解して前記有機物の酸化分解を促
進する電解槽と、 バーナ燃焼器および熱交換器を備える液体加熱装置とを
備え、 これら微生物浄化槽、電解槽および液体加熱装置を接続
して前記汚染液体の循環経路を構成したことを特徴とす
る汚染液体の循環浄化装置。
2. A contaminated liquid circulation purifying apparatus which pumps up a contaminated liquid in a storage tank with a circulation pump to purify and sterilize the contaminated liquid, and then returns the contaminated liquid to the storage tank again. A microbial septic tank filled with a granular synthetic polymer gel in which microorganisms for adsorbing and decomposing the contained organic matter are present, an electrolytic cell for electrolyzing this contaminated liquid to promote the oxidative decomposition of the organic matter, and a burner combustor And a liquid heating device provided with a heat exchanger, wherein the contaminated liquid circulation purification device is characterized in that the contaminated liquid circulation path is constituted by connecting the microbial purification tank, the electrolytic cell and the liquid heating device.
【請求項3】 前記合成高分子ゲルの充填量は、前記微
生物浄化槽に流入する汚染液体により自由に流動し得る
程度に調節されている請求項2に記載の汚染液体の循環
浄化装置。
3. The circulating purifying apparatus for polluted liquid according to claim 2, wherein the filling amount of the synthetic polymer gel is adjusted so that the polluted liquid flowing into the microorganism purification tank can freely flow.
【請求項4】 前記合成高分子ゲルは、その内部に有機
物の吸着・分解を行なう微生物が包括固定処理されてい
る請求項2または3に記載の汚染液体の循環浄化装置。
4. The circulating purification apparatus for contaminated liquid according to claim 2 or 3, wherein the synthetic polymer gel is entrapped with microorganisms that adsorb and decompose organic substances.
【請求項5】 前記微生物浄化槽は汚染液体の流入口お
よび流出路を備え、これら流入口および流出路に前記粒
状の合成高分子ゲルの外部流出を阻止するメッシュのフ
イルタが配設されている請求項2〜4の何れかに記載の
汚染液体の循環浄化装置。
5. The microbial septic tank is provided with an inlet and an outlet for a contaminated liquid, and a mesh filter for preventing the granular synthetic polymer gel from flowing out is disposed in the inlet and the outlet. Item 5. A circulation purification device for contaminated liquid according to any one of items 2 to 4.
【請求項6】 前記電解槽への汚染液体の流入路には、
該電解槽を回避して下流側に連通するバイパス流路が設
けられている請求項2に記載の汚染液体の循環浄化装
置。
6. The inflow passage of the contaminated liquid to the electrolytic cell,
The circulation purification device for polluted liquid according to claim 2, further comprising a bypass flow path which is provided so as to communicate with the downstream side while avoiding the electrolytic cell.
【請求項7】 前記電解槽は2つの電極部を備え、一方
の電極部は陽極として機能すると共に他方の電極部は陰
極として機能するようになっている請求項2および6の
何れかに記載の汚染液体の循環浄化装置。
7. The electrolytic cell is provided with two electrode portions, one electrode portion functions as an anode and the other electrode portion functions as a cathode. Circulation purification equipment for polluted liquids.
【請求項8】 前記電解槽における2つの電極部は、汚
染液体の通過量や通過時間に応じて、その極性を交互に
切換え得るようになっている請求項2,6および7の何
れかに記載の汚染液体の循環浄化装置。
8. The two electrode parts in the electrolytic cell are capable of alternately switching their polarities according to the amount and time of passage of a contaminated liquid. The circulating purification apparatus for polluted liquid described.
【請求項9】 前記液体加熱装置は、汚染液体の追焚き
に供される請求項2に記載の汚染液体の循環浄化装置。
9. The circulating purification device for contaminated liquid according to claim 2, wherein the liquid heating device is used for reheating the contaminated liquid.
【請求項10】 前記液体加熱装置は、汚染液体を追焚
きする第1加熱装置と、水道水を加熱して給湯系に供給
する第2加熱装置とで構成される請求項2に記載の汚染
液体の循環浄化装置。
10. The pollution according to claim 2, wherein the liquid heating device is composed of a first heating device for heating a contaminated liquid and a second heating device for heating tap water to supply it to a hot water supply system. Liquid circulation purification device.
【請求項11】 前記第1加熱装置で追焚きされる汚染
液体は、常には前記微生物浄化槽および電解槽を通過し
て循環されると共に、必要に応じてこれら微生物浄化槽
および電解槽をバイパスして循環され、また貯留槽への
湯張り時には水道水を前記第2加熱装置および/または
第1加熱装置により加熱し、前記微生物浄化槽および電
解槽をバイパスして前記貯留槽に汚染液体として供給し
得るようになっている請求項2に記載の汚染液体の循環
浄化装置。
11. The contaminated liquid reheated by the first heating device is always circulated through the microbial purification tank and the electrolysis tank and, if necessary, bypasses the microbial purification tank and the electrolysis tank. The circulating water may be heated by the second heating device and / or the first heating device when water is filled in the storage tank, and the tap water may be supplied to the storage tank as a contaminated liquid by bypassing the microbial purification tank and the electrolytic cell. The circulation purification apparatus for polluted liquid according to claim 2, wherein
【請求項12】 前記汚染液体が循環する方向に、前記
微生物浄化槽、電解槽および液体加熱装置が順に配置さ
れている請求項2に記載の汚染液体の循環浄化装置。
12. The circulation purification device for polluted liquid according to claim 2, wherein the microorganism purification tank, the electrolytic cell, and the liquid heating device are sequentially arranged in a direction in which the contamination liquid is circulated.
【請求項13】 前記汚染液体が循環する方向に、前記
電解槽、微生物浄化槽および液体加熱装置が順に配置さ
れている請求項2に記載の汚染液体の循環浄化装置。
13. The circulation purification device for polluted liquid according to claim 2, wherein the electrolytic cell, the microbial purification tank, and the liquid heating device are sequentially arranged in a direction in which the contamination liquid circulates.
【請求項14】 前記液体加熱装置の液体流入側および
液体流出側に接続する各管路系をバイパス管で連通する
と共に、該バイパス管に開閉弁を配設し、 前記バーナ燃焼器の非点火時は該開閉弁を開放して、浄
化された汚染液体を該バイパス管および該液体加熱装置
の双方に流通させ、 また該バーナ燃焼器の点火時は該開閉弁を閉成して、浄
化された汚染液体を該液体加熱装置だけに流通させると
共に、前記循環ポンプを低速運転に切換えるようにした
請求項2に記載の汚染液体の循環浄化装置。
14. A non-ignition system for the burner combustor, wherein a bypass pipe is connected to each of the pipeline systems connected to the liquid inflow side and the liquid outflow side of the liquid heating device, and an opening / closing valve is arranged in the bypass pipe. When the burner combustor is ignited, the on / off valve is opened and the purified contaminated liquid is circulated through both the bypass pipe and the liquid heating device. 3. The contaminated liquid circulation purification apparatus according to claim 2, wherein the contaminated liquid is circulated only through the liquid heating device, and the circulation pump is switched to a low speed operation.
【請求項15】 前記液体加熱装置の水流入側に接続す
る管路系からバイパス管を分岐し、このバイパス管を該
液体加熱装置の水流出側に接続する管路系に連通すると
共に該バイパス管の分岐部に切換弁を配設し、 前記バーナ燃焼器の非点火時は該切換弁を該バイパス管
側に切換えて、浄化された汚染液体を該バイパス管にだ
け流通させ、 また該バーナ燃焼器の点火時は該切換弁を該液体加熱装
置の水流入管路側に切換えて、浄化された汚染液体を該
液体加熱装置にだけ流通させると共に、前記循環ポンプ
を低速運転に切換えるようにした請求項2に記載の汚染
液体の循環浄化装置。
15. A bypass pipe is branched from a pipe line system connected to a water inflow side of the liquid heating device, the bypass pipe is connected to a pipe line system connected to a water outflow side of the liquid heating device, and the bypass pipe is connected. A switching valve is provided at a branch portion of the pipe, and when the burner combustor is not ignited, the switching valve is switched to the bypass pipe side to allow purified contaminated liquid to flow only to the bypass pipe. When the combustor is ignited, the switching valve is switched to the water inflow pipe side of the liquid heating device so that the purified contaminated liquid is circulated only to the liquid heating device and the circulation pump is switched to a low speed operation. Item 2. The circulating purification apparatus for contaminated liquid according to Item 2.
【請求項16】 前記微生物浄化槽および電解槽を連通
する汚染液体循環路の適宜個所にオゾン発生装置が配設
されている請求項2に記載の汚染液体の循環浄化装置。
16. The circulation purification device for polluted liquid according to claim 2, wherein an ozone generator is disposed at an appropriate position in a circulation route for polluted liquid which connects the microorganism purification tank and the electrolytic cell.
JP7326373A 1995-11-20 1995-11-20 Circulation purifying device for contaminated liquid Pending JPH09141285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7326373A JPH09141285A (en) 1995-11-20 1995-11-20 Circulation purifying device for contaminated liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7326373A JPH09141285A (en) 1995-11-20 1995-11-20 Circulation purifying device for contaminated liquid

Publications (1)

Publication Number Publication Date
JPH09141285A true JPH09141285A (en) 1997-06-03

Family

ID=18187082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7326373A Pending JPH09141285A (en) 1995-11-20 1995-11-20 Circulation purifying device for contaminated liquid

Country Status (1)

Country Link
JP (1) JPH09141285A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325922B1 (en) * 1999-11-30 2002-02-27 이병헌 Method for treating unresolvable wastewater
EP1666423A1 (en) * 2004-12-03 2006-06-07 Aqua Biotec GmbH Method and device for treating waste water
JP2015129603A (en) * 2014-01-07 2015-07-16 有限会社イシズチコーポレーション Gas heating device for pool facility
JP5946563B1 (en) * 2015-06-16 2016-07-06 イノベーティブ・デザイン&テクノロジー株式会社 Purification device and heat exchange system using the purification device
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325922B1 (en) * 1999-11-30 2002-02-27 이병헌 Method for treating unresolvable wastewater
EP1666423A1 (en) * 2004-12-03 2006-06-07 Aqua Biotec GmbH Method and device for treating waste water
JP2015129603A (en) * 2014-01-07 2015-07-16 有限会社イシズチコーポレーション Gas heating device for pool facility
US9657600B2 (en) 2015-02-02 2017-05-23 Innovative Designs & Technology Inc. Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
JP5946563B1 (en) * 2015-06-16 2016-07-06 イノベーティブ・デザイン&テクノロジー株式会社 Purification device and heat exchange system using the purification device
JP2017001004A (en) * 2015-06-16 2017-01-05 イノベーティブ・デザイン&テクノロジー株式会社 Cleaning apparatus and heat exchange system using the same

Similar Documents

Publication Publication Date Title
KR20090047585A (en) Drinking water purifier which can automatically disinfect water tank and waterline, and method for disinfecting the purifier
CN212246592U (en) Well water purification treatment equipment
JPH09141285A (en) Circulation purifying device for contaminated liquid
JPH09141282A (en) Circulation purifying apparatus for contaminated liquid
JPH09239368A (en) Circulating purifier for contaminated liquid
JPH09141283A (en) Circulation purifying device for contaminated liquid
JPH09220558A (en) Water purifier
CN205687709U (en) A kind of novel micro-polluted water cleaning equipment
JP3791158B2 (en) Water purification equipment
JP3574677B2 (en) Bathtub cleaning equipment
JP4771396B2 (en) Method and apparatus for sterilizing and purifying bath water
JPH09174097A (en) Circulating and purifying apparatus for contaminated liquid
JP3812023B2 (en) Circulating water bath
JPH07284774A (en) Purifier for bathtub water
JP2000117257A (en) Equipment for utilization of domestic wastewater
JP2589263B2 (en) Bathtub circulation supply device
JPH0847610A (en) Bath water adjusting apparatus
CN216737839U (en) Comprehensive water treatment device for preventing and treating underground water pollution
CN214192926U (en) Self-suction type sewage treatment device
JPH10470A (en) Wastewater treatment apparatus
JP3858330B2 (en) Water purification equipment
JPH09308898A (en) Apparatus for circulating and purifying contaminated liquid
JPH09174080A (en) Circulating and purifying apparatus for contaminated solution
JPH07185574A (en) Circulation adjusting device for bathing hot water
JP3095339U (en) Water circulation treatment system