JP2000130068A - Natural ground settlement measuring device and method therefor - Google Patents

Natural ground settlement measuring device and method therefor

Info

Publication number
JP2000130068A
JP2000130068A JP10308332A JP30833298A JP2000130068A JP 2000130068 A JP2000130068 A JP 2000130068A JP 10308332 A JP10308332 A JP 10308332A JP 30833298 A JP30833298 A JP 30833298A JP 2000130068 A JP2000130068 A JP 2000130068A
Authority
JP
Japan
Prior art keywords
measuring
liquid
liquid tank
pipe
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10308332A
Other languages
Japanese (ja)
Inventor
Osamu Hamada
修 浜田
Gentaro Omote
源太郎 表
Isao Kitada
勲 北田
Sozo Hirota
早三 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKKU KK
Okumura Corp
Original Assignee
SEKKU KK
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKKU KK, Okumura Corp filed Critical SEKKU KK
Priority to JP10308332A priority Critical patent/JP2000130068A/en
Publication of JP2000130068A publication Critical patent/JP2000130068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the settlement of natural ground. SOLUTION: A pipe 5 is constituted by coupling a segment attached to a measuring water tank 6 with a hard rubber pipe joint. This pipe 5 is embedded by inserting diagonally upward to the top portion of the facing of a tunnel. A reference water tank 3 is attached to concrete (immobile place) sprayed to the tunnel. A motor-operated pump 7 supply water from a water supply tank 4 to a reference water tank 3. Then, after overflowing water from the relevant measuring water tank 6 by communicating the reference water tank 3 to a target measuring water tank 6, water level in the reference water tank 3 is measured. In this way, by sequentially measuring the height of a particular position in pipe 5, the settlement of natural ground accompanied by the tunnel excavation can be measured accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トンネルを掘削
する際における切羽周囲の地山の沈下を計測する地山沈
下計測装置および地山沈下計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil subsidence measuring device and a soil subsidence measuring method for measuring settlement of a ground around a face when excavating a tunnel.

【0002】[0002]

【従来の技術】トンネルを掘削するに際して、切羽周囲
の地山の崩壊を予測し、地山崩壊の危険が生じたならば
速やかな処置を講じて崩壊を未然に防がなければならな
い。ところで、従来より、トンネル掘削時に地山の崩壊
を予測する方法としては、トンネル掘削に伴う切羽周囲
の地山の経時的な沈下を計測する方法が行われている。
この地山の沈下計測は、複数の歪計又は傾斜計を付けた
パイプを切羽周囲の地山に複数本埋め込み、各歪計又は
傾斜計の出力に基づく各パイプの撓みから地山の沈下を
予測するのである。
2. Description of the Related Art When excavating a tunnel, it is necessary to predict the collapse of the ground around the face, and if there is a danger of the collapse of the ground, it is necessary to take prompt measures to prevent the collapse. By the way, conventionally, as a method of predicting the collapse of the ground at the time of tunnel excavation, a method of measuring the temporal settlement of the ground around the face due to tunnel excavation has been used.
In this subsidence measurement of ground, a plurality of pipes with multiple strain gauges or inclinometers are embedded in the ground around the face, and the subsidence of the ground is measured from the bending of each pipe based on the output of each strain gauge or inclinometer. Predict.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の地山沈下計測方法においては、地山に埋め込んだパ
イプの撓みから地山の沈下を予測するため、パイプ上の
ある基準点に対する相対撓みは計測できるのであるが、
掘削による沈下の恐れのない不動点に対する上記パイプ
上の基準点の変動が計測できないため、結果的に地山全
体の動きが分からないという問題がある。また、何らか
の方法によって上記パイプ上の基準点の変動を計測した
としても精度的に問題があり、0.5mm程度の誤差の範
囲内で地山の沈下を計測することができない。したがっ
て、地山の正確な挙動を把握することができないという
問題がある。また、傾斜計は高価であるという問題もあ
る。
However, in the above-mentioned conventional method for measuring land subsidence, since the settlement of the ground is predicted from the bending of the pipe embedded in the ground, the relative bending with respect to a certain reference point on the pipe is limited. It can be measured,
Since the fluctuation of the reference point on the pipe with respect to the fixed point where there is no danger of sinking due to excavation cannot be measured, there is a problem that the movement of the whole ground cannot be understood as a result. Further, even if the fluctuation of the reference point on the pipe is measured by any method, there is a problem in accuracy, and the settlement of the ground cannot be measured within an error of about 0.5 mm. Therefore, there is a problem that accurate behavior of the ground cannot be grasped. There is also a problem that the inclinometer is expensive.

【0004】そこで、この発明の目的は、トンネルを掘
削する際における切羽周囲の地山の沈下を精度良く計測
できる地山沈下計測装置および地山沈下計測方法を提供
することにある。
Accordingly, an object of the present invention is to provide a ground subsidence measuring device and a ground subsidence measuring method capable of accurately measuring the subsidence of the ground around a face when excavating a tunnel.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明の地山沈下計測装置は、トンネ
ル掘削時に沈下計測の対象となる地山に穿たれた穴に設
置された複数の計測液槽と、上記トンネルの掘削時に垂
直方向への位置変動がない不動箇所に取り付けられた基
準液槽と、上記基準液槽内における液面の高さを計測す
る液面計測手段と、上記基準液槽と各計測液槽とを接続
して,上記基準液槽内の液体を各計測液槽に独立して供
給する給液管を備えたことを特徴としている。
In order to achieve the above object, a land subsidence measuring device according to the first aspect of the present invention is installed in a hole drilled in the ground to be settled during tunnel excavation. A plurality of measuring liquid tanks, a reference liquid tank attached to an immovable point where there is no vertical position change when excavating the tunnel, and a liquid level measuring means for measuring a liquid level in the reference liquid tank And a liquid supply pipe connecting the reference liquid tank and each measurement liquid tank and supplying the liquid in the reference liquid tank to each measurement liquid tank independently.

【0006】上記構成によれば、不動箇所に取り付けら
れた基準液槽内の液体が給液管によって目的とする計測
液槽に供給される。そして、当該計測液槽から液体がオ
ーバーフローされることによって、上記基準液槽内に当
該計測液槽内の液体と同じ高さの液柱が形成される。し
たがって、液面計測手段によって、上記基準液槽内の液
面の高さを計測することによって、地山における当該計
測液槽が設置されている地点の不動箇所からの高さが計
測される。したがって、同様にして、地山における総て
の計測液槽が設置されている地点の高さの経時変化を計
測することによって、切羽周囲の地山の沈下が精度良く
計測される。
According to the above configuration, the liquid in the reference liquid tank attached to the immovable portion is supplied to the target measurement liquid tank through the liquid supply pipe. When the liquid overflows from the measuring liquid tank, a liquid column having the same height as the liquid in the measuring liquid tank is formed in the reference liquid tank. Therefore, by measuring the height of the liquid level in the reference liquid tank by the liquid level measuring means, the height from the immovable point of the ground where the measurement liquid tank is installed is measured. Therefore, similarly, by measuring the temporal change of the height of the ground where all the measuring liquid tanks are installed, the settlement of the ground around the face is accurately measured.

【0007】また、請求項2に係る発明は、請求項1に
係る発明の地山沈下計測装置において、上記複数の計測
液槽は、パイプ内に取り付けられていることを特徴とし
ている。
According to a second aspect of the present invention, in the apparatus for measuring land subsidence according to the first aspect of the present invention, the plurality of measuring liquid tanks are mounted in a pipe.

【0008】上記構成によれば、内部に上記複数の計測
液槽が取り付けられたパイプを地山に穿たれた穴に挿入
することによって、上記複数の計測液槽が上記穴内に容
易に設置される。
According to the above construction, the plurality of measuring liquid tanks are easily installed in the holes by inserting the pipe having the plurality of measuring liquid tanks therein into the holes formed in the ground. You.

【0009】また、請求項3に係る発明は、請求項2に
係る発明の地山沈下計測装置において、上記パイプは、
内部上側に上記計測液槽が取り付けられる一方、内部下
側に上記給液管が挿通されていることを特徴としてい
る。
According to a third aspect of the present invention, in the ground subsidence measuring apparatus according to the second aspect, the pipe is
The measurement liquid tank is attached to the upper inside, and the liquid supply pipe is inserted through the lower inside.

【0010】上記構成によれば、上記パイプを地山に穿
たれた穴に挿入することによって、上記複数の計測液槽
の設置と上記基準液槽および各計測液槽を接続する給液
管の配設とが同時に且つ容易に行われる。
[0010] According to the above configuration, by inserting the pipe into a hole drilled in the ground, the plurality of measurement liquid tanks are installed and the supply pipe for connecting the reference liquid tank and each measurement liquid tank is connected. The arrangement is performed simultaneously and easily.

【0011】また、請求項4に係る発明は、請求項2に
係る発明の地山沈下計測装置において、上記パイプは、
所定長の複数のパイプを屈曲可能に連結して構成されて
いることを特徴としている。
According to a fourth aspect of the present invention, in the ground subsidence measuring apparatus according to the second aspect, the pipe comprises:
It is characterized in that a plurality of pipes of a predetermined length are connected to bendable.

【0012】上記構成によれば、上記地山における各計
測液槽が設置されている地点が異なる度合いで沈下した
場合に、上記パイプは各連結位置で個々の沈下の度合い
に追従して屈曲する。こうして、各計測液槽の配列方向
への沈下の度合いの差異が的確に計測される。
[0012] According to the above configuration, when the points where the measuring liquid tanks are installed in the ground sink at different degrees, the pipe bends at each connection position according to the degree of the individual settlement. . In this way, the difference in the degree of subsidence in the arrangement direction of each measurement liquid tank is accurately measured.

【0013】また、請求項5に係る発明の地山沈下計測
方法は、トンネル掘削時に沈下の計測対象となる地山に
穿たれた穴に複数の計測液槽を設置し、上記トンネルの
掘削時に垂直方向への位置変動がない不動箇所に基準液
槽を取り付け、上記基準液槽内の液体を目的とする計測
液槽に供給して当該計測液槽からオーバーフローさせる
と共に,上記基準液槽内に当該計測液槽の液面と同じ高
さの液柱を形成し、上記基準液槽内の液面の高さを計測
することによって当該計測液槽の液面の高さを計測し、
上記総ての計測液槽の液面の高さの経時変化を求めるこ
とによって,上記地山の沈下を計測することを特徴とし
ている。
Further, according to a fifth aspect of the present invention, there is provided a method for measuring land subsidence, wherein a plurality of measurement liquid tanks are installed in holes drilled in the ground at the time of tunnel excavation, and Attach a reference liquid tank to an immovable point where there is no vertical position change, supply the liquid in the reference liquid tank to the target measurement liquid tank, overflow it from the measurement liquid tank, and place it in the reference liquid tank. Form a liquid column of the same height as the liquid surface of the measurement liquid tank, measure the liquid surface height of the measurement liquid tank by measuring the liquid surface height in the reference liquid tank,
The method is characterized in that the subsidence of the ground is measured by calculating the temporal change of the liquid level of all the measuring liquid tanks.

【0014】上記構成によれば、上記基準液槽内には目
的とする計測液槽の液面と同じ高さの液柱が形成され
る。そのために、上記基準液槽の液面の高さを計測する
ことによって、当該計測液槽の液面の高さが計測され
る。したがって、上記総ての計測液槽の液面の高さの経
時変化を求めることによって、切羽周囲の地山の沈下が
精度良く計測される。
According to the above configuration, a liquid column having the same height as the liquid level of the target measuring liquid tank is formed in the reference liquid tank. For this purpose, the height of the liquid surface of the reference liquid tank is measured to measure the height of the liquid surface of the measurement liquid tank. Therefore, the subsidence of the ground around the face is accurately measured by determining the temporal change of the liquid level of all the measuring liquid tanks.

【0015】[0015]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。図1は、本実施の形態の地山
沈下計測装置における概念図である。1は基準部であ
り、2は測定部である。基準部1は基準液槽3および給
水タンク4を有し、基準液槽3は、既に掘削されたトン
ネルの岩盤に吹き付けられたコンクリート等の垂直方向
への移動の恐れがない不動箇所に取り付けられる。側定
部2は複数の計測液槽6,6,…が所定の間隔で設けられ
た塩化ビニール等のパイプ5で構成され、沈下計測の対
象となる地山に埋め込まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a conceptual diagram of a land subsidence measuring device according to the present embodiment. 1 is a reference part, 2 is a measurement part. The reference portion 1 has a reference liquid tank 3 and a water supply tank 4, and the reference liquid tank 3 is attached to an immovable place where there is no risk of vertical movement of concrete or the like sprayed on rocks of an already excavated tunnel. . The side fixing part 2 is constituted by a pipe 5 made of vinyl chloride or the like in which a plurality of measuring liquid tanks 6, 6,... Are provided at predetermined intervals, and is embedded in the ground to be settled.

【0016】上記給水タンク4の底部には電動ポンプ7
が設けられており、この電動ポンプ7には、先端に電動
バルブ9を有する給水管10が電動バルブ8を介して接
続されている。そして、基準液槽3と給水管10とは、
電動バルブ11が介設された枝管13で接続されてい
る。同様に、各計測液槽6,6,…と給水管10とは、電
動バルブ12が介設された枝管14で接続されている。
また、給水管10先端の電動バルブ9には戻り管15が
取り付けられており、余分な水が給水タンク4に戻され
るようにしている。
An electric pump 7 is provided at the bottom of the water supply tank 4.
A water supply pipe 10 having an electric valve 9 at the tip is connected to the electric pump 7 via the electric valve 8. And the reference liquid tank 3 and the water supply pipe 10
The electric valve 11 is connected by a branch pipe 13 interposed. Similarly, the measuring liquid tanks 6, 6,... And the water supply pipe 10 are connected by a branch pipe 14 in which an electric valve 12 is provided.
A return pipe 15 is attached to the electric valve 9 at the tip of the water supply pipe 10 so that excess water is returned to the water supply tank 4.

【0017】図2は、上記パイプ5の埋設状態を示す。
本実施の形態においては、トンネルの切羽21の上部
に、地山崩壊予測線22より内側の地山崩壊予測領域を
過ぎて斜め上方に孔を穿ち、その孔に上記パイプ5を挿
入して埋設している。また、切羽後方のトンネルに吹き
付けられたコンクリート23には後に詳述するように基
準液槽3が取り付けられている。尚、24は、掘削の対
象となる地盤の状態が悪く、崩落の恐れがある場合に、
掘削開始前に掘進方向斜め前方に向かって地山に複数打
ち込まれて多数の支保工25で支えられ、地山を支保す
る支保パイプである。この支保パイプ24を打ち込む際
に地山沈下計測用のパイプ5も打ち込むことによって、
特にパイプ5を埋設するための工程を設ける必要はな
い。
FIG. 2 shows a state in which the pipe 5 is buried.
In the present embodiment, a hole is drilled diagonally upward above the face 21 of the tunnel past the ground collapse prediction area inside the ground collapse prediction line 22, and the pipe 5 is inserted into the hole and buried. are doing. Further, a reference liquid tank 3 is attached to the concrete 23 sprayed on the tunnel behind the face as described later in detail. In addition, 24, when the condition of the ground to be excavated is bad and there is a possibility of collapse,
Before the start of excavation, a plurality of striking pipes are driven into the ground diagonally forward in the direction of excavation, supported by a large number of supports 25, and support the ground. When the support pipe 24 is driven, the ground subsidence measurement pipe 5 is also driven.
In particular, there is no need to provide a step for burying the pipe 5.

【0018】尚、本実施の形態においては、パイプ5を
切羽21の上部から斜め上方に向かって挿入している
が、パイプの挿入位置や挿入方向はこれに限定されるも
のではない。要は、地山崩壊予測領域内であってトンネ
ル掘削の邪魔にならない位置や方向であればよいのであ
る。以下、パイプ5と基準液槽3について、詳細に説明
する。
In the present embodiment, the pipe 5 is inserted obliquely upward from the upper part of the cutting face 21, but the insertion position and the insertion direction of the pipe are not limited to this. In short, it is only necessary that the position and the direction be within the ground collapse prediction area and not hinder the tunnel excavation. Hereinafter, the pipe 5 and the reference liquid tank 3 will be described in detail.

【0019】図3は、上記パイプ5の軸に沿った縦断面
図である。このパイプ5は剛性の低い塩化ビニールで形
成されており、地山の沈下に応じて変形可能になってい
る。さらに、パイプ5は、所定長のセグメント5aを硬
質ゴムの継手管26で連結して構成されており、地山の
沈下に追従して個々のセグメント5aが連結箇所で容易
に折れ曲がって屈曲可能になっている。個々のセグメン
ト5a内の上側には計測液槽6が一つずつ取り付けられ
ている。図1に示す給水管10,枝管14および戻り管
15は、パイプ5内の下側に配設されて対応する計測液
槽6や給水タンク4に接続されている。こうして、セグ
メント5aを連結したパイプ5を地山に挿入して地山に
固定することによって、計測液槽6の設置と各管10,
14,15の配設とを同時に、且つ、各管10,14,1
5の絡み付き無くして容易に行うことができるのであ
る。尚、供給管10,戻り管15はパイプ5内に配設せ
ずに、各計測液槽に対応した枝管14のみを配設しても
よい。この場合、電動バルブをパイプ5の外部に配設す
る。
FIG. 3 is a longitudinal sectional view along the axis of the pipe 5. This pipe 5 is formed of low rigidity vinyl chloride, and is deformable in accordance with the settlement of the ground. Further, the pipe 5 is formed by connecting segments 5a of a predetermined length with a joint pipe 26 made of hard rubber, so that the individual segments 5a can be easily bent and bent at the connection points following the settlement of the ground. Has become. One measuring liquid tank 6 is mounted on the upper side of each segment 5a. The water supply pipe 10, the branch pipe 14, and the return pipe 15 shown in FIG. 1 are arranged below the pipe 5 and connected to the corresponding measurement liquid tank 6 and the water supply tank 4. Thus, by inserting the pipe 5 connecting the segments 5a into the ground and fixing it to the ground, the installation of the measuring liquid tank 6 and the respective pipes 10,
14 and 15 at the same time, and each pipe 10, 14, 1
5 can be easily performed without entanglement. Note that the supply pipe 10 and the return pipe 15 may not be provided in the pipe 5, and only the branch pipe 14 corresponding to each measurement liquid tank may be provided. In this case, the electric valve is provided outside the pipe 5.

【0020】図4は、上記計測液槽6の詳細斜視図であ
る。この計測液槽6は直方体の箱状に形成されて、パイ
プ5の各セグメント5aに取り付けられている。そし
て、計測液槽6の一側面6aには枝管14の取付口27
が設けられる一方、他側面6b上端には切り欠き28が
設けられている。そして、図3に示すように、給水管1
0および枝管14を介して計測液槽6に供給された水は
切り欠き28からオーバーフローして、常時液面が切り
欠き28の位置に保たれるようになっている。尚、切り
欠き28の位置は、特に限定されるものではない。
FIG. 4 is a detailed perspective view of the measuring liquid tank 6. The measuring liquid tank 6 is formed in a rectangular parallelepiped box shape, and is attached to each segment 5 a of the pipe 5. An installation port 27 for the branch pipe 14 is provided on one side surface 6a of the measurement liquid tank 6.
Is provided, while a notch 28 is provided at the upper end of the other side surface 6b. Then, as shown in FIG.
The water supplied to the measurement liquid tank 6 via the zero and the branch pipe 14 overflows from the notch 28 so that the liquid level is always maintained at the position of the notch 28. The position of the notch 28 is not particularly limited.

【0021】図5は、上記基準液槽3の詳細図である。
この基準液槽3は、トンネル天端の吹付コンクリート2
3の箇所に孔を穿ち、この孔に挿入固定された硬質塩化
ビニールの筒31内に挿入され、下端が取付治具32の
固定用アンカー33,33で吹付コンクリート23に固
定されている。こうして、基準液槽3は、トンネル掘進
時に沈下しない不動箇所に取り付けられるのであるが、
その取り付け箇所や固定方法は上記取り付け箇所や固定
方法に限定されるものではない。
FIG. 5 is a detailed view of the reference liquid tank 3.
This reference liquid tank 3 is a spray concrete 2 at the top of the tunnel.
Holes are drilled in three places, inserted into a rigid vinyl chloride tube 31 inserted and fixed in these holes, and the lower end is fixed to the shotcrete 23 by fixing anchors 33, 33 of a mounting jig 32. In this way, the reference liquid tank 3 is attached to an immovable place that does not sink during tunnel excavation.
The mounting location and the fixing method are not limited to the mounting location and the fixing method.

【0022】上記基準液槽3は、縦長の筒状体で構成さ
れて、下端部には枝管13が取り付けられており、この
枝管13を介して給水タンク4および計測液槽5と接続
されている。また、基準液槽3の上端には液位計本体3
6が配設され、液位計本体36の下端から突出されたセ
ンサープローブ34が液槽3の軸に沿って中央に配設さ
れ、このプローブ34には本体36からパルス電流が与
えられる。ここで、プローブ34は磁気をおびたリング
状のフロート35の穴に挿通されている。したがって、
プローブ34にパルス電流を与えて磁場を生じさせると
フロート35の磁気によって磁場に歪み(一種の振動)が
発生する。そこで、この振動を本体36に内蔵された圧
電素子で電気信号で捉え本体36に接続したコントロー
ラー(図示せず)で測定することによって、フロートの位
置(液槽3の液の高さ)を計測するようになっている。
The reference liquid tank 3 is composed of a vertically long cylindrical body, and a branch pipe 13 is attached to a lower end thereof. The branch pipe 13 is connected to the water supply tank 4 and the measuring liquid tank 5 through the branch pipe 13. Have been. The liquid level meter main body 3 is provided at the upper end of the reference liquid tank 3.
6, a sensor probe 34 protruding from the lower end of the liquid level meter main body 36 is disposed at the center along the axis of the liquid tank 3, and a pulse current is given from the main body 36 to the probe 34. Here, the probe 34 is inserted into a hole of a ring-shaped float 35 having magnetism. Therefore,
When a pulse current is applied to the probe 34 to generate a magnetic field, the magnetic field of the float 35 causes a distortion (a kind of vibration) in the magnetic field. Therefore, the position of the float (the height of the liquid in the liquid tank 3) is measured by capturing the vibration with an electric signal using a piezoelectric element built in the main body 36 and measuring the vibration with a controller (not shown) connected to the main body 36. It is supposed to.

【0023】上記構成の地盤沈下計測装置は、以下のよ
うに動作してトンネル掘削に伴う地山沈下を計測する。
尚、上記電磁バルブ8,9,11,12及び電動ポンプ7
は、パーソナルコンピュ−タ(図示せず)の制御の下に動
作が制御されるようになっている。
The ground subsidence measuring device having the above configuration operates as described below to measure the subsidence caused by tunnel excavation.
The electromagnetic valves 8, 9, 11, 12 and the electric pump 7
Are controlled under the control of a personal computer (not shown).

【0024】まず、上記電磁バルブ8,11が開放され
ると共に、電動ポンプ7が駆動されて、給水タンク4か
ら基準液槽3内に基準液位まで給水される。ここで、上
記基準液位とは、測定の対象となる計測液槽6に基準液
槽3から水を供給した際に切り欠き28からオーバーフ
ローできる量に、当該計測液槽6の容積に当該計測液槽
6と基準液槽3とを連通する各管13,10,14の容積
とを加えた量の水が、基準液槽3に満たされた際の液位
のことである。そうした後、電動ポンプ7が停止される
と共に、電磁バルブ8が閉鎖される。
First, the electromagnetic valves 8 and 11 are opened, and the electric pump 7 is driven to supply water from the water supply tank 4 to the reference liquid tank 3 up to the reference liquid level. Here, the reference liquid level refers to the volume that can overflow from the notch 28 when water is supplied from the reference liquid tank 3 to the measurement liquid tank 6 to be measured, and the volume of the measurement liquid tank 6 The liquid level when the reference liquid tank 3 is filled with water in an amount that is the sum of the volumes of the pipes 13, 10, and 14 that communicate the liquid tank 6 and the reference liquid tank 3. After that, the electric pump 7 is stopped and the electromagnetic valve 8 is closed.

【0025】次に、最初の計測液槽6の電磁バルブ12
が開放されて、当該計測液槽6に給水される。その際
に、前回の測定の際に当該計測液槽6に給水された水は
切り欠き28から押し出されてオーバーフローし、当該
計測液槽6内の水は基準液槽3内の水と同じ温度の水に
置き換えられる。こうして、基準液槽3内の水と各計測
液槽6内の水とに温度差が生じて比重差が生ずることを
防止するのである。そして、基準液槽3内の液位がセン
サープローブ34を介して上記コントローラによって計
測されて、計測値W1がパーソナルコンピュータ(以下、
パソコンと略称する)の記憶部に記憶される。さらに、
所定時間が経過した後に再度基準液槽3内の液位が計測
されて、計測値W2が上記記憶部に記憶される。そし
て、上記計測値W2と計測値W1との差の絶対値が基準値
より小さければ基準液槽3の液面は静止状態に入ったと
して、上記計測値W2を測定値であると確定する。
Next, the electromagnetic valve 12 of the first measuring liquid tank 6
Is opened and water is supplied to the measuring liquid tank 6. At that time, the water supplied to the measuring liquid tank 6 at the time of the previous measurement is pushed out from the notch 28 and overflows, and the water in the measuring liquid tank 6 has the same temperature as the water in the reference liquid tank 3. Is replaced by water. Thus, it is possible to prevent a difference in temperature between the water in the reference liquid tank 3 and the water in each of the measurement liquid tanks 6 from causing a difference in specific gravity. Then, is measured by the controller level of the reference fluid tank 3 through the sensor probe 34, the measured value W 1 is a personal computer (hereinafter,
(Abbreviated as a personal computer). further,
Liquid level again reference fluid tank 3 after a predetermined time has elapsed is measured, the measured value W 2 are stored in the storage unit. Then, the liquid level of the measured value W 2 and the measured value W 1 absolute value criteria if smaller reference fluid tank than value 3 of the difference between as entered a quiescent state, when there the measured value W 2 with measurements Determine.

【0026】次に、上記確定された測定値W2が下限値
より低くなければ、上記測定値W2が当該計測液槽6の
測定値Wとして上記記憶部に格納される。そして、上記
記憶部に格納されている総ての測定値Wの最大差Dが上
記記憶部に登録されている2次管理値より大きければ、
即刻工事停止を促す表示がカラーディスプレイ(図示せ
ず)等に表示されると共に、警報ベル(図示せず)が警報
音を出力する。また、上記最大差Dが上記記憶部に登録
されている1次管理値(<2次管理値)より大きければ、
工事を中止して沈下原因や上昇原因を調査することを促
す表示が上記カラーディスプレイに表示される。また、
上記最大差Dが上記1次管理値以下であれば、次の計測
液槽6の液位測定処理を行う。こうして、総ての計測液
槽6の液位測定処理が行われる。
Next, if the determined measured value W 2 is not lower than the lower limit, the measured value W 2 is stored in the storage unit as the measured value W of the measuring liquid tank 6. If the maximum difference D between all the measured values W stored in the storage unit is larger than the secondary management value registered in the storage unit,
A display prompting immediate stop of the construction is displayed on a color display (not shown) or the like, and an alarm bell (not shown) outputs an alarm sound. If the maximum difference D is larger than the primary management value (<secondary management value) registered in the storage unit,
A display prompting to cancel the construction and investigate the cause of settlement or the cause of rise is displayed on the color display. Also,
If the maximum difference D is equal to or less than the primary control value, the next liquid level measurement processing of the measurement liquid tank 6 is performed. Thus, the liquid level measurement processing of all the measurement liquid tanks 6 is performed.

【0027】上述のように、本実施の形態においては、
塩化ビニールで形成されると共に、計測液槽6が一つず
つ取り付けられた所定長のセグメント5aを硬質ゴムの
継手管26で連結してパイプ5を構成し、このパイプ5
をトンネルの切羽21の上部から地山崩壊予測領域を過
ぎて斜め上方に穿たれた孔に挿入している。また、トン
ネルに吹き付けられたコンクリート23には基準液槽3
を取り付けている。そして、この基準液槽3と給水タン
ク4の電動ポンプ7と各計測液槽6とを、給水管10と
電動バルブ11が介設された枝管13と電動バルブ12
が介設された枝管14とで接続している。
As described above, in the present embodiment,
A pipe 5 is formed by connecting a predetermined length of a segment 5a formed of vinyl chloride and having a measuring liquid tank 6 attached thereto one by one with a joint pipe 26 made of hard rubber.
Is inserted from the upper part of the face 21 of the tunnel into a hole that is formed diagonally upward from the ground collapse prediction area. Also, the reference liquid tank 3 is placed on the concrete 23 sprayed on the tunnel.
Is installed. Then, the reference liquid tank 3, the electric pump 7 of the water supply tank 4, and each of the measurement liquid tanks 6 are connected to a water supply pipe 10, a branch pipe 13 having an electric valve 11 interposed, and an electric valve 12
Are connected by a branch pipe 14 interposed.

【0028】したがって、上記基準液槽3内に上記基準
液位まで給水した後、目的とする計測液槽6の電磁バル
ブ12を開放して計測液槽6に給水して切り欠き28か
らオーバーフローさせた後、基準液槽3内の液位をセン
サープローブ34を介して上記コントローラによって計
測することによって、パイプ5における該当する計測液
槽6の高さを計測できる。すなわち、このようにしてパ
イプ5に設けられた総ての計測液槽6の高さの経時変化
を求めることによって、トンネル掘削による沈下の恐れ
のない不動箇所に対する上記掘削に伴う地山の挙動を正
確に把握することができるのである。さらに、パイプ5
における任意の計測液槽6の高さの過去に計測した総て
の計測液槽6に関する高さからの沈下量に応じて、掘削
工事の停止を促すメッセージを出力することも可能にな
る。
Therefore, after water is supplied to the reference liquid tank 3 up to the reference liquid level, the electromagnetic valve 12 of the target measurement liquid tank 6 is opened to supply water to the measurement liquid tank 6 and overflow from the notch 28. After that, by measuring the liquid level in the reference liquid tank 3 by the controller via the sensor probe 34, the height of the corresponding measuring liquid tank 6 in the pipe 5 can be measured. That is, by determining the time-dependent change in the height of all the measuring liquid tanks 6 provided in the pipe 5 in this manner, the behavior of the ground accompanying the excavation at an immovable place where there is no danger of settlement due to tunnel excavation is obtained. It can be accurately grasped. In addition, pipe 5
It is also possible to output a message urging the stop of the excavation work in accordance with the sinking amount from the height of all the measurement liquid tanks 6 measured in the past at the height of the arbitrary measurement liquid tank 6 in the above.

【0029】その場合における上記基準液槽3内の液位
の計測は、基準液槽3のフロート35に設けられた磁石
を貫通して垂直方向に配設されたコイルを流れる電流で
行うので、各計測液槽6の液位を0.5mm程度の誤差の
範囲内で計測することができる。また、パイプ5は、セ
グメント5aを硬質ゴムの継手管26で連結して構成さ
れている。したがって、パイプ5は、地山の沈下の度合
いがパイプ5の長手方向に異なっても各沈下の度合いに
追従して屈曲でき、上記長手方向への沈下の度合いの差
異を的確に検出できる。
In this case, the liquid level in the reference liquid tank 3 is measured by a current flowing through a coil provided in a vertical direction through a magnet provided on a float 35 of the reference liquid tank 3. The liquid level in each measuring liquid tank 6 can be measured within an error range of about 0.5 mm. The pipe 5 is formed by connecting the segments 5a with a joint pipe 26 made of hard rubber. Therefore, even if the degree of settlement of the ground differs in the longitudinal direction of the pipe 5, the pipe 5 can bend following the degree of settlement, and the difference in the degree of settlement in the longitudinal direction can be accurately detected.

【0030】[0030]

【発明の効果】以上より明らかなように、請求項1に係
る発明の地山沈下計測装置は、不動箇所に取り付けられ
た基準液槽と地山に穿たれた穴に設置された複数の計測
液槽とを給液管で接続し、上記基準液槽内の液体を夫々
の計測液槽に独立して供給するので、給液された計測液
槽内の液体と同じ高さの液柱を上記基準液槽内に形成で
きる。そして、液面計測手段によって上記基準液槽内に
おける液面の高さを計測するので、当該計測液槽内の液
面の上記不動箇所からの高さ(つまり、地山における当
該計測液槽が設置されている地点の上記不動箇所からの
高さ)を計測できる。
As is apparent from the above description, the apparatus for measuring land subsidence according to the first aspect of the present invention includes a reference liquid tank attached to an immovable point and a plurality of measuring units installed in holes drilled in the ground. The liquid tank is connected with a liquid supply pipe, and the liquid in the reference liquid tank is supplied independently to each of the measurement liquid tanks.Therefore, a liquid column having the same height as the liquid in the supplied measurement liquid tank is formed. It can be formed in the reference liquid tank. Then, since the liquid level measuring means measures the liquid level in the reference liquid tank, the height of the liquid level in the measured liquid tank from the immovable portion (i.e., the measured liquid tank in the ground is not (The height of the installed point from the immovable point) can be measured.

【0031】したがって、この発明によれば、上述の計
測を繰り返して、地山における総ての計測液槽が設置さ
れている地点の高さの経時変化を計測することによっ
て、切羽周囲の地山の沈下を精度良く計測できる。
Therefore, according to the present invention, the above measurement is repeated to measure the temporal change in the height of the point where all the measuring liquid tanks are installed in the ground, thereby obtaining the ground around the face. Subsidence can be accurately measured.

【0032】また、請求項2に係る発明の地山沈下計測
装置における上記複数の計測液槽はパイプ内に取り付け
られているので、このパイプを地山に穿たれた穴に挿入
することによって、上記複数の計測液槽を上記穴内に容
易に設置できる。
The plurality of measuring liquid tanks in the ground subsidence measuring apparatus according to the second aspect of the present invention are mounted in a pipe. By inserting the pipe into a hole formed in the ground, The plurality of measurement liquid tanks can be easily installed in the holes.

【0033】また、請求項3に係る発明の地山沈下計測
装置における上記パイプは、内部上側に上記計測液槽が
取り付けられる一方、内部下側に上記給液管が挿通され
ているので、このパイプを地山に穿たれた穴に挿入する
ことによって、上記複数の計測液槽の設置と上記基準液
槽および各計測液槽を接続する給液管の配設とを同時に
且つ容易に行うことができる。
In the above-mentioned pipe set in the apparatus for measuring land subsidence according to the third aspect of the present invention, the measuring liquid tank is attached to the upper inside and the liquid supply pipe is inserted to the lower inside. By inserting a pipe into a hole drilled in the ground, it is possible to simultaneously and easily perform the installation of the plurality of measurement liquid tanks and the arrangement of the liquid supply pipe connecting the reference liquid tank and each measurement liquid tank. Can be.

【0034】また、請求項4に係る発明の地山沈下計測
装置における上記パイプは、所定長の複数のパイプを屈
曲可能に連結して構成したので、地山における各計測液
槽が設置されている地点が異なる度合いで沈下した場合
に、各連結位置で個々の沈下の度合いに追従して容易に
屈曲できる。したがって、この発明によれば、各計測液
槽の配列方向への沈下の度合いの差異を的確に計測でき
る。
Further, since the pipe in the land subsidence measuring device according to the fourth aspect of the present invention is formed by connecting a plurality of pipes of a predetermined length in a bendable manner, each measuring liquid tank in the ground is installed. When a certain point sinks to a different degree, it can be easily bent at each connection position according to the degree of the individual sinking. Therefore, according to the present invention, it is possible to accurately measure the difference in the degree of settlement in the arrangement direction of each measurement liquid tank.

【0035】また、請求項5に係る発明の地山沈下計測
方法は、地山に穿たれた穴に複数の計測液槽を設置し、
不動箇所に基準液槽を取り付け、上記基準液槽内の液体
を目的とする計測液槽に供給して上記基準液槽内に当該
計測液槽の液面と同じ高さの液柱を形成し、上記基準液
槽内の液面の高さを計測して当該計測液槽の液面の高さ
を計測し、総ての計測液槽の液面の高さの経時変化を求
めて上記地山の沈下を計測するので、トンネル掘削時に
おける切羽周囲の地山の沈下を精度良く計測できる。
Further, according to a fifth aspect of the present invention, there is provided a ground subsidence measuring method, wherein a plurality of measuring liquid tanks are installed in a hole formed in the ground.
A reference liquid tank is attached to an immovable point, and the liquid in the reference liquid tank is supplied to a target measurement liquid tank to form a liquid column having the same height as the liquid surface of the measurement liquid tank in the reference liquid tank. Measuring the height of the liquid surface in the reference liquid tank, measuring the liquid surface height of the measurement liquid tank, and determining the temporal change in the liquid surface height of all the measurement liquid tanks, Since the settlement of the mountain is measured, the settlement of the ground around the face at the time of tunnel excavation can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の地山沈下計測装置における概念図
である。
FIG. 1 is a conceptual diagram of a land subsidence measuring device of the present invention.

【図2】 図1におけるパイプの埋設状態を示す図であ
る。
FIG. 2 is a view showing a buried state of a pipe in FIG. 1;

【図3】 図1におけるパイプの軸に沿った縦断面図で
ある。
FIG. 3 is a longitudinal sectional view along the axis of the pipe in FIG.

【図4】 図1における計測液槽の詳細斜視図である。FIG. 4 is a detailed perspective view of a measurement liquid tank in FIG.

【図5】 図1における基準液槽の詳細図である。FIG. 5 is a detailed view of a reference liquid tank in FIG.

【符号の説明】[Explanation of symbols]

1…基準部、 2…測定部、3…基準液槽、
4…給水タンク、5…パイプ、
5a…セグメント、6…計測液槽、
7…電動ポンプ、8,9,11,
12…電動バルブ、 10…給水管、13,14…枝
管、 15…戻り管、21…切羽、
23…コンクリート、26…
継手管、 28…切り欠き、32
…取付治具、 34…センサープロ
ーブ、35…フロート。
1: Reference part, 2: Measurement part, 3: Reference liquid tank,
4 ... water tank, 5 ... pipe,
5a: segment, 6: measuring liquid tank,
7 ... Electric pump, 8, 9, 11,
12 ... electric valve, 10 ... water supply pipe, 13, 14 ... branch pipe, 15 ... return pipe, 21 ... face,
23 ... concrete, 26 ...
Fitting tube, 28 ... Notch, 32
... Mounting jig, 34 ... Sensor probe, 35 ... Float.

フロントページの続き (72)発明者 表 源太郎 大阪府大阪市阿倍野区松崎町2丁目2番2 号 株式会社奥村組内 (72)発明者 北田 勲 大阪府東住吉区針中野2丁目3番65号 (72)発明者 広田 早三 大阪府堺市北田出井町2丁1番2号Continuation of front page (72) Inventor Table Gentaro 2-2-2 Matsuzaki-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Okumura Gumi Co., Ltd. ) Inventor Hayazo Hirota 2-1-2 Kitadaizuicho, Sakai City, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 トンネル掘削時に沈下計測の対象となる
地山に穿たれた穴に設置された複数の計測液槽と、 上記トンネルの掘削時に垂直方向への位置変動がない不
動箇所に取り付けられた基準液槽と、 上記基準液槽内における液面の高さを計測する液面計測
手段と、 上記基準液槽と各計測液槽とを接続して、上記基準液槽
内の液体を各計測液槽に独立して供給する給液管を備え
たことを特徴とする地山沈下計測装置。
1. A plurality of measuring liquid tanks installed in a hole drilled in the ground to be settled during the excavation of a tunnel, and attached to an immovable place where there is no vertical displacement when excavating the tunnel. A reference liquid tank, a liquid level measuring means for measuring the height of the liquid level in the reference liquid tank, and connecting the reference liquid tank and each of the measurement liquid tanks to each of the liquids in the reference liquid tank. A land subsidence measuring device comprising a liquid supply pipe for independently supplying a measuring liquid tank.
【請求項2】 請求項1に記載の地山沈下計測装置にお
いて、 上記複数の計測液槽は、パイプ内に取り付けられている
ことを特徴とする地山沈下計測装置。
2. The land subsidence measuring apparatus according to claim 1, wherein the plurality of measurement liquid tanks are mounted in a pipe.
【請求項3】 請求項2に記載の地山沈下計測装置にお
いて、 上記パイプは、内部上側に上記計測液槽が取り付けられ
る一方、内部下側に上記給液管が挿通されていることを
特徴とする地山沈下計測装置。
3. The land subsidence measuring device according to claim 2, wherein the pipe has the measurement liquid tank attached to an upper inside thereof, and the liquid supply pipe inserted into a lower inside of the pipe. Land subsidence measurement device.
【請求項4】 請求項2に記載の地山沈下計測装置にお
いて、 上記パイプは、所定長の複数のパイプを屈曲可能に連結
して構成されていることを特徴とする地山沈下計測装
置。
4. The land subsidence measuring apparatus according to claim 2, wherein the pipe is formed by connecting a plurality of pipes of a predetermined length in a bendable manner.
【請求項5】 トンネル掘削時に沈下計測の対象となる
地山に穿たれた穴に複数の計測液槽を設置し、 上記トンネルの掘削時に垂直方向への位置変動がない不
動箇所に基準液槽を取り付け、 上記基準液槽内の液体を目的とする計測液槽に供給して
当該計測液槽からオーバーフローさせると共に、上記基
準液槽内に当該計測液槽の液面と同じ高さの液柱を形成
し、 上記基準液槽内の液面の高さを計測することによって、
当該計測液槽の液面の高さを計測し、 上記総ての計測液槽の液面の高さの経時変化を求めるこ
とによって、上記地山の沈下を計測することを特徴とす
る地山沈下計測方法。
5. A plurality of measuring liquid tanks are installed in holes drilled in the ground to be settled when excavating a tunnel, and a reference liquid tank is provided at an immovable point where there is no vertical positional change when excavating the tunnel. The liquid in the reference liquid tank is supplied to the target measuring liquid tank to overflow from the measuring liquid tank, and a liquid column having the same height as the liquid surface of the measuring liquid tank in the reference liquid tank. By measuring the height of the liquid level in the reference liquid tank,
Measuring the subsidence of the ground by measuring the height of the liquid level of the measuring liquid tank and determining a temporal change in the height of the liquid level of all the measuring liquid tanks Settlement measurement method.
JP10308332A 1998-10-29 1998-10-29 Natural ground settlement measuring device and method therefor Pending JP2000130068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308332A JP2000130068A (en) 1998-10-29 1998-10-29 Natural ground settlement measuring device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308332A JP2000130068A (en) 1998-10-29 1998-10-29 Natural ground settlement measuring device and method therefor

Publications (1)

Publication Number Publication Date
JP2000130068A true JP2000130068A (en) 2000-05-09

Family

ID=17979789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308332A Pending JP2000130068A (en) 1998-10-29 1998-10-29 Natural ground settlement measuring device and method therefor

Country Status (1)

Country Link
JP (1) JP2000130068A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792400B1 (en) 2006-09-07 2008-01-08 윤용수 The measuring device for the sinking of soft ground
JP2010014435A (en) * 2008-07-01 2010-01-21 Toyoko Elmes Co Ltd Settlement measuring device and method
KR101008307B1 (en) * 2008-09-19 2011-01-14 주식회사 서신엔지니어링 Sinking measuring method for soft ground
CN102878980A (en) * 2012-09-19 2013-01-16 北京交通大学 Indirect testing method for underground pipeline settlement induced by subway tunnel construction
CN102927966A (en) * 2012-10-31 2013-02-13 清华大学 Method for improving monitoring accuracy of structural settlement
CN104613934A (en) * 2015-01-21 2015-05-13 北京航空航天大学 Remote and real-time ground surface settlement monitoring system based on connected vessel principle
CN105041325A (en) * 2015-07-13 2015-11-11 长沙理工大学 Construction method of high-tension water-rich extra-large-section weak breccia tunnel
CN105203080A (en) * 2015-10-28 2015-12-30 石家庄铁道大学 Roadbed settlement observation device and observation method thereof
CN108801213A (en) * 2018-08-13 2018-11-13 浙江广川工程咨询有限公司 Tunnel vault sinking monitoring system device and measurement method based on isobaris surface principle
CN109489626A (en) * 2017-09-13 2019-03-19 上海港湾工程质量检测有限公司 Hydraulic sensing surface settlement meter and settlement measurement method
CN109900244A (en) * 2019-03-26 2019-06-18 深圳市北斗云信息技术有限公司 A kind of hydrostatic level wide range multistage series sys-tems
CN110044330A (en) * 2019-04-26 2019-07-23 中铁十六局集团地铁工程有限公司 A kind of tunnel roof surrounding rock displacement measuring device and method
CN113776498A (en) * 2021-09-01 2021-12-10 中铁四局集团有限公司 River bed sedimentation static force leveling system and method for river-crossing tunnel construction
CN116399293A (en) * 2023-06-08 2023-07-07 中铁五局集团电务工程有限责任公司 Operation tunnel settlement deformation monitoring system and method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792400B1 (en) 2006-09-07 2008-01-08 윤용수 The measuring device for the sinking of soft ground
JP2010014435A (en) * 2008-07-01 2010-01-21 Toyoko Elmes Co Ltd Settlement measuring device and method
KR101008307B1 (en) * 2008-09-19 2011-01-14 주식회사 서신엔지니어링 Sinking measuring method for soft ground
CN102878980A (en) * 2012-09-19 2013-01-16 北京交通大学 Indirect testing method for underground pipeline settlement induced by subway tunnel construction
CN102927966A (en) * 2012-10-31 2013-02-13 清华大学 Method for improving monitoring accuracy of structural settlement
CN104613934B (en) * 2015-01-21 2017-02-22 北京航空航天大学 Remote and real-time ground surface settlement monitoring system based on connected vessel principle
CN104613934A (en) * 2015-01-21 2015-05-13 北京航空航天大学 Remote and real-time ground surface settlement monitoring system based on connected vessel principle
CN105041325B (en) * 2015-07-13 2017-03-22 长沙理工大学 Construction method of high-tension water-rich extra-large-section weak breccia tunnel
CN105041325A (en) * 2015-07-13 2015-11-11 长沙理工大学 Construction method of high-tension water-rich extra-large-section weak breccia tunnel
CN105203080A (en) * 2015-10-28 2015-12-30 石家庄铁道大学 Roadbed settlement observation device and observation method thereof
CN109489626B (en) * 2017-09-13 2021-11-02 上海港湾工程质量检测有限公司 Hydraulic sensing surface layer settlement meter and settlement measuring method
CN109489626A (en) * 2017-09-13 2019-03-19 上海港湾工程质量检测有限公司 Hydraulic sensing surface settlement meter and settlement measurement method
CN108801213A (en) * 2018-08-13 2018-11-13 浙江广川工程咨询有限公司 Tunnel vault sinking monitoring system device and measurement method based on isobaris surface principle
CN109900244A (en) * 2019-03-26 2019-06-18 深圳市北斗云信息技术有限公司 A kind of hydrostatic level wide range multistage series sys-tems
CN110044330A (en) * 2019-04-26 2019-07-23 中铁十六局集团地铁工程有限公司 A kind of tunnel roof surrounding rock displacement measuring device and method
CN113776498A (en) * 2021-09-01 2021-12-10 中铁四局集团有限公司 River bed sedimentation static force leveling system and method for river-crossing tunnel construction
CN113776498B (en) * 2021-09-01 2023-05-16 中铁四局集团有限公司 River bed settlement static force leveling system and method for river crossing tunnel construction
CN116399293A (en) * 2023-06-08 2023-07-07 中铁五局集团电务工程有限责任公司 Operation tunnel settlement deformation monitoring system and method
CN116399293B (en) * 2023-06-08 2023-08-15 中铁五局集团电务工程有限责任公司 Operation tunnel settlement deformation monitoring system and method

Similar Documents

Publication Publication Date Title
JP2000130068A (en) Natural ground settlement measuring device and method therefor
CN111947562A (en) Method for integrally monitoring internal and external deformation of rock-fill dam
CN106767676A (en) A kind of space vertical characteristics point location measurement method and system
CN105806418A (en) Reservoir landslide multi-field information field monitoring system and construction method thereof
US20100315654A1 (en) LIDAR Instrument System and Process
CN105525634B (en) Anti-slide pile monitoring system and monitoring method and anti-slide pile construction method
CN205748469U (en) Many Information Field monitoring systems of a kind of reservoir landslide
KR20100041996A (en) Apparatus and method for measuring ground settlement of whole section
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
JP5648311B2 (en) Vertical accuracy measurement system for back struts
KR101730481B1 (en) A route detection equipment for underground utilities and server for providing location information
CN110130413A (en) Pit retaining monitoring method based on underground datum mark arrangement
KR100787157B1 (en) Ground sinking sensing system
US20220316873A1 (en) A settlement monitoring system and method
JP6281148B2 (en) Permeability test apparatus and permeability test method
JP2002090187A (en) Settlement measuring system and settlement measuring method
JP3406723B2 (en) Height difference measuring device and height difference measuring method
JP2614006B2 (en) Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor
JP3780460B2 (en) Settlement measuring method and settling meter
JP3298761B2 (en) Height difference measuring device and height difference measuring method
JP6472926B1 (en) Landfill management method and landfill management system
JPH11173841A (en) Liquid pressure type groun subsidence measurement device
JP3218204B2 (en) Level measuring device and reference tank
CN212001306U (en) Foundation pit horizontal displacement monitoring device
JP3054000U (en) On-site automatic pumping test equipment using weir type flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120