JP3298761B2 - Height difference measuring device and height difference measuring method - Google Patents

Height difference measuring device and height difference measuring method

Info

Publication number
JP3298761B2
JP3298761B2 JP02985095A JP2985095A JP3298761B2 JP 3298761 B2 JP3298761 B2 JP 3298761B2 JP 02985095 A JP02985095 A JP 02985095A JP 2985095 A JP2985095 A JP 2985095A JP 3298761 B2 JP3298761 B2 JP 3298761B2
Authority
JP
Japan
Prior art keywords
liquid
tank
measurement
water
height difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02985095A
Other languages
Japanese (ja)
Other versions
JPH08219777A (en
Inventor
源太郎 表
崇弘 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP02985095A priority Critical patent/JP3298761B2/en
Publication of JPH08219777A publication Critical patent/JPH08219777A/en
Application granted granted Critical
Publication of JP3298761B2 publication Critical patent/JP3298761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、水平方向に点在する
地点の高低差を測定する高低差測定装置および高低差測
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a height difference measuring apparatus and a height difference measuring method for measuring a height difference of points scattered in a horizontal direction.

【0002】[0002]

【従来の技術】鉄道線路下に地下道を建設する際には、
鉄道線路下の地盤を掘削する必要がある。その際に、掘
削によって鉄道線路が沈下したり、掘削機の推力や薬剤
の注入によって鉄道線路が上昇したりする場合がある。
そこで、従来は、鉄道線路の枕木等に水盛式の沈下計を
設置して掘削時に常時レールの高さの変化量を測定し、
上述のような鉄道線路の沈下や上昇の際に即座に対処で
きるようにしている。
2. Description of the Related Art When constructing an underpass under a railway track,
It is necessary to excavate the ground under the railway track. At this time, the railway track may sink due to excavation, or the railway track may rise due to thrust of an excavator or injection of a chemical.
Therefore, conventionally, a water-sink type sinker was installed on a railroad railroad sleeper, etc., and the amount of change in rail height was constantly measured during excavation.
It is designed to be able to respond immediately when the railway track sinks or rises as described above.

【0003】ところで、水盛式沈下計による測定は、図
9に示すような原理に基づいて実施される。掘削によっ
て移動しない定温度の室内に基準水槽1を設置する。一
方、レールや枕木上に設けられた各測定点A,B,Cの夫
々には沈下計2を設置し、各沈下計2のスタンドパイプ
3の下側と基準水槽1の下側とを連通管4とその分岐管
5とで連通する。そうすると、基準水槽1の水面と各ス
タンドパイプ3の水面とは同一レベルとなる。
[0003] Incidentally, the measurement by the immersion type subsidence meter is carried out based on the principle as shown in FIG. The reference water tank 1 is installed in a room at a constant temperature that does not move due to excavation. On the other hand, a sinker 2 is installed at each of the measurement points A, B, and C provided on rails and sleepers, and the lower side of the stand pipe 3 of each sinker 2 and the lower side of the reference water tank 1 are communicated. The pipe 4 communicates with the branch pipe 5. Then, the water surface of the reference water tank 1 and the water surface of each stand pipe 3 are at the same level.

【0004】ここで、例えば測定点Bの地盤が沈下する
と測定点Bに設置された沈下計2Bのスタンドパイプ3B
も沈下する。ところが、各スタンドパイプ3内の水面の
レベルは基準水槽1内の水面と常に同じレベルになるた
めに、スタンドパイプ3B内の水面のスタンドパイプ3B
に対する相対レベルは他のスタンドパイプ3の相対レベ
ルに比して高くなる。地盤が上昇する場合には、逆に相
対レベルは低くなる。そこで、各スタンドパイプ3夫々
の相対レベル差を各スタンドパイプ3に付設された水位
計測手段(図示せず)によって計測すれば、沈下点と沈下
量あるいは上昇点と上昇量を検知できるのである。
[0004] Here, for example, when the ground at the measurement point B sinks, the stand pipe 3 B of the subsidence meter 2 B installed at the measurement point B is set.
Also sinks. However, the water level in each standpipe 3 to become always the same level as the water surface in the reference water tank 1, water standpipe standpipe 3 in B 3 B
Is higher than the relative levels of the other stand pipes 3. Conversely, when the ground rises, the relative level decreases. Therefore, if the relative level difference of each standpipe 3 is measured by a water level measuring means (not shown) attached to each standpipe 3, the sinking point and the sinking amount or the rising point and the rising amount can be detected.

【0005】ところが、図9に示すような沈下計では、
夏季と冬季とで基準水槽1内とスタンドパイプ3内とで
水温差が生ずるという問題や、各沈下計2に水位測定手
段が付設されて寸法が大きくなるという問題や、沈下計
2側で水位を測定するために沈下計2を設置した箇所の
振動の影響を受けるという問題等がある。そこで、最近
図10に示すように、基準水槽側で計測点側の高低差を
計測する高低差測定装置が提案されている。
[0005] However, in the sinkometer as shown in FIG.
There is a problem that a difference in water temperature occurs between the reference water tank 1 and the standpipe 3 in summer and winter, a problem that the water level measuring means is attached to each submergence meter 2 and the size becomes large, and a water level in the submergence meter 2 side. There is a problem that it is affected by the vibration of the place where the subsidence meter 2 is installed to measure the temperature. Therefore, recently, as shown in FIG. 10, a height difference measuring device for measuring a height difference at a measurement point side on a reference water tank side has been proposed.

【0006】水平方向に点在する地点(1)〜(N)に測点
水槽111を設置し、不動箇所に設置された基準水槽1
12と各測点水槽111とを連通管113と分岐管11
4とで連通する。そして、電動ポンプ118によって給
水タンク117の水を基準水槽112に供給し、例えば
地点(1)の相対高さを測定する際には電磁バルブ11
5,1161を開放して基準水槽112と測点水槽111
1とを連通させる。こうして、測点水槽1111と同じ水
位になった基準水槽112内の浮き部材120までの距
離をレーザ距離計119で計測することによって、基準
水槽112側で測点水槽1111の水位を計測するので
ある。
[0006] A measuring point water tank 111 is installed at points (1) to (N) scattered in the horizontal direction, and a reference water tank 1 installed at an immovable point is installed.
A communication pipe 113 and a branch pipe 11
It communicates with 4. Then, the water in the water supply tank 117 is supplied to the reference water tank 112 by the electric pump 118, and when the relative height of the point (1) is measured, for example, the electromagnetic valve 11 is used.
5,116 1 is opened and the reference water tank 112 and the measuring water tank 111 are opened.
Communicate with 1 . Thus, by measuring the distance to the floating member 120 of the reference water tank 112 becomes equal level as the survey point aquarium 111 1 in the laser rangefinder 119 measures the water level of the survey point aquarium 111 1 by the reference water tank 112 side It is.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た基準水槽側で計測点側の水位を計測する高低差測定装
置においては、1つの測点水槽111における水位測定
には数分間(2〜3分間程度)の時間を要する。したがっ
て、測点水槽111を多数設置した場合には1回の測定
(総ての測点水槽111の水位を1通り測定する)に長時
間を要するという問題がある。また、多数地点での計測
を順次行うので、1地点における継続的な水位変動を検
知できないという問題もある。通常、上述のような掘削
工事は安全に留意して行われる。したがって、掘削工事
による地盤の沈下や隆起はめったに起こらない。つま
り、枕木やレールの沈下や隆起もめったに起こるもので
はなく、このめったに起こらない沈下や隆起の検知に長
時間を費やすのは好ましくない。
However, in the above-mentioned elevation difference measuring device for measuring the water level at the measuring point side on the reference water tank side, the water level measurement in one measuring point water tank 111 takes several minutes (two to three minutes). Time). Therefore, when many measuring water tanks 111 are installed, one measurement
There is a problem that it takes a long time to perform one measurement of the water levels of all the measuring tanks 111. In addition, since measurements at multiple points are sequentially performed, there is a problem that continuous water level fluctuation at one point cannot be detected. Usually, excavation work as described above is performed with safety in mind. Therefore, subsidence or uplift of the ground due to excavation work rarely occurs. In other words, subsidence and uplift of the crossties and rails rarely occur, and it is not preferable to spend a long time detecting such rarely occurring subsidence or uplift.

【0008】そこで、この発明の目的は、平常時には短
時間に測定位置の高低差を測定できる高低差測定装置お
よび高低差測定方法を提供することにある。
An object of the present invention is to provide a height difference measuring apparatus and a height difference measuring method which can measure a height difference of a measurement position in a short time in normal times.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明の高低差測定装置は、供給口を
下方に有すると共に,液体がオーバーフローするオーバ
ーフロー口を上方に有して,測定位置に設置される複数
の測定液槽と、各測定液槽の供給口に一端が接続される
と共に,バルブが介設された複数の供給パイプと、バル
ブを介設した1本の連通管によって上記各供給パイプ夫
々の他端に連通される排液口を有して,上記測定液槽の
液面と同じ高さの液柱を形成する基準液槽と、上記連通
管における上記バルブと上記供給パイプへの最初の分岐
点との間を貯液槽に接続すると共に,バルブが介設され
た第1給液パイプと、補給槽と上記基準液槽とを連通す
ると共に,上記補給槽内の液体を上記基準液槽に滴下補
給するために補給量を調節する調節手段が介設された第
2給液パイプと、上記基準液槽の液面の基準位置からの
高さを計測する計測計を備えたことを特徴としている。
Means for Solving the Problems To achieve the above object, an elevation difference measuring apparatus according to the first aspect of the present invention has a supply port below and an overflow port above which liquid overflows, A plurality of measuring liquid tanks installed at the measuring position, a plurality of supply pipes each having one end connected to a supply port of each measuring liquid tank, having a valve interposed, and one communicating pipe having a valve interposed; A reference liquid tank having a drain port communicating with the other end of each of the supply pipes, and forming a liquid column having the same height as the liquid surface of the measurement liquid tank; and the valve in the communication pipe. A first storage pipe is connected between the supply pipe and the first branch point, and a first supply pipe provided with a valve is connected to the supply tank and the reference liquid tank. Liquid in the reference liquid tank
A second liquid supply pipe provided with an adjusting means for adjusting a supply amount for supplying the liquid, and a measuring meter for measuring a height of the liquid surface of the reference liquid tank from a reference position. .

【0010】又、請求項2に係る発明は、請求項1に係
る発明の高低差測定装置において、上記連通管の先端を
上記貯液槽に連通し,最終分岐点よりも下流側にバルブ
が介設された返送パイプを有すると共に、上記第1給液
パイプにポンプを介設したことを特徴としている。
According to a second aspect of the present invention, in the elevation difference measuring apparatus according to the first aspect, the distal end of the communication pipe communicates with the storage tank, and a valve is provided downstream of the final branch point. It has a return pipe interposed, and a pump is interposed in the first liquid supply pipe.

【0011】又、請求項3に係る発明は、請求項1また
は請求項2に係る発明の高低差測定装置を用いた高低差
測定方法であって、上記基準液槽に常時上記補給槽内の
液体を滴下させて補給しつつ,上記複数の測定液槽のう
ち何れか一つの特定測定液槽内の液体の高さを上記基準
液槽側で測定し、上記特定測定液槽の液面の高さが異常
値を呈した際には,全測定液槽内の液体を上記第1給液
パイプ及び連通管を介して上記貯液槽の液体で順次入れ
換えて,この液体が入れ換えられた測定液槽の液面の高
さを上記基準液槽側で順次測定することを特徴としてい
る。
According to a third aspect of the present invention, there is provided a height difference measuring method using the height difference measuring device according to the first or second aspect of the present invention, wherein the reference liquid tank is always in the supply tank.
While dropping and replenishing the liquid, measure the height of the liquid in any one of the plurality of measuring liquid tanks on the reference liquid tank side, and measure the liquid level of the specific measuring liquid tank. When the height shows an abnormal value, the liquid in all the measuring liquid tanks is sequentially replaced with the liquid in the storage tank via the first liquid supply pipe and the communication pipe, and the measurement in which the liquid is replaced is performed. The height of the liquid surface of the liquid tank is sequentially measured on the reference liquid tank side.

【0012】又、請求項4に係る発明は、請求項1また
は請求項2に係る発明の高低差測定装置を用いた高低差
測定方法であって、上記基準液槽に常時上記補給槽内の
液体を滴下させて液体を補給しつつ,上記複数の測定液
槽のうち何れか一つの特定測定液槽内の液体の高さを上
記基準液槽側で測定し、所定時間が経過する毎に,全測
定液槽内の液体を上記第1給液パイプおよび連通管を介
して上記貯液槽の液体で順次入れ換えて,この液体が入
れ換えられた測定液槽の液面の高さを上記基準液槽側で
順次測定することを特徴としている。
According to a fourth aspect of the present invention, there is provided a height difference measuring method using the height difference measuring apparatus according to the first or second aspect of the present invention, wherein the reference liquid tank is always in the replenishing tank.
While dropping the liquid and replenishing the liquid, the height of the liquid in any one of the plurality of measurement liquid tanks is measured on the reference liquid tank side, and every time a predetermined time elapses. The liquid in all the measuring liquid tanks is sequentially replaced with the liquid in the storage tank via the first liquid supply pipe and the communication pipe, and the liquid level of the measuring liquid tank in which the liquid has been replaced is determined by the above-described reference. It is characterized in that measurement is performed sequentially on the liquid tank side.

【0013】[0013]

【0014】又、請求項5に係る発明は、請求項3また
は請求項4に係る発明の高低差測定方法において、全測
定液槽内の液面の高さを順次測定する際には、上記基準
液槽に対する液体の常時補給を停止することを特徴とし
ている。
According to a fifth aspect of the present invention, in the height difference measuring method according to the third or fourth aspect, when sequentially measuring the liquid level in all the measuring liquid tanks, It is characterized in that the constant supply of liquid to the reference liquid tank is stopped.

【0015】[0015]

【作用】請求項1に係る発明では、第1給液パイプのバ
ルブと連通管のバルブとが開放されて、上記第1給液パ
イプおよび連通管を介して貯液槽から基準水槽に液体が
供給される。また、上記連通管のバルブが閉鎖されて供
給パイプのバルブが開放されると、上記貯液槽から第1
給液パイプ,連通管および供給パイプを介して測定位置
に設置された測定液槽に液体が供給され、やがて上記測
定液槽のオーバーフロー口から液体がオーバーフローし
て上記測定液槽内の液体が入れ替わる。そして、上記第
1給液パイプのバルブが閉鎖されて上記連通管のバルブ
が開放されると上記基準液槽の液面と測定液槽の液面と
が同じ高さになる。その際における上記基準液槽の液面
の基準位置からの高さが距離計によって計測される。こ
うして、各測定位置における上記測定液槽内の液面の高
さが上記基準液槽側で計測されて、各測定位置の高低差
が測定される。その際に、列車の通過による軌道の上下
動で液体がオーバーフローして減少するが、上記第2給
液パイプに介設された調整手段によって、上記補給槽内
の液体を上記基準液槽の液面に滴下することによって常
時少しずつ補給される。こうして、上記特定測定液槽に
おける液面の高さの測定が長時間に亘って安定して行わ
れる。
In the invention according to the first aspect, the valve of the first liquid supply pipe and the valve of the communication pipe are opened, and the liquid is supplied from the liquid storage tank to the reference water tank via the first liquid supply pipe and the communication pipe. Supplied. Further, when the valve of the communication pipe is closed and the valve of the supply pipe is opened, the first liquid is removed from the liquid storage tank.
The liquid is supplied to the measurement liquid tank installed at the measurement position via the liquid supply pipe, the communication pipe, and the supply pipe, and the liquid overflows from the overflow port of the measurement liquid tank and the liquid in the measurement liquid tank is replaced. . When the valve of the first liquid supply pipe is closed and the valve of the communication pipe is opened, the liquid level of the reference liquid tank and the liquid level of the measurement liquid tank become the same. At this time, the height of the liquid surface of the reference liquid tank from the reference position is measured by a distance meter. Thus, the height of the liquid level in the measurement liquid tank at each measurement position is measured on the reference liquid tank side, and the height difference between each measurement position is measured. At that time, up and down the track due to the passage of the train
The liquid overflows and decreases due to the movement.
By the adjusting means interposed in the liquid pipe,
Liquid is dropped on the liquid surface of the reference liquid tank.
It is replenished little by little. Thus, the specified measuring solution tank
Measurement of liquid level in the chamber is performed stably for a long time
It is.

【0016】又、請求項2に係る発明では、上記測定液
槽の液体が入れ替えられるに先立って、第1給液パイプ
および返送パイプのバルブが開放されると共に、ポンプ
が駆動される。そうすると、上記連通管内の液体が上記
返送パイプを介して上記貯液槽に押し戻される。こうし
て、上記連通管内の液体が上記貯液槽を介して循環する
ことによって、液体の消費量が少なくなり、液体の温度
が上記貯液槽内の温度に保たれる。
In the invention according to claim 2, before the liquid in the measuring liquid tank is replaced, the valves of the first liquid supply pipe and the return pipe are opened and the pump is driven. Then, the liquid in the communication pipe is pushed back to the liquid storage tank via the return pipe. In this way, the liquid in the communication pipe is circulated through the liquid storage tank, so that the consumption of the liquid is reduced, and the temperature of the liquid is maintained at the temperature in the liquid storage tank.

【0017】又、請求項3に係る発明では、上記基準液
槽に対して常時上記補給槽内の液体が滴下されて補給さ
れる。そして、上記複数の測定液槽のうち何れか一つの
特定測定液槽内の液体の高さが上記基準液槽側で測定さ
れる。そして、このようにして、上記特定測定液槽内の
液面の高さが監視されている際に、上記特定測定液槽の
液面の高さが異常値を呈すると、上記第1給液パイプお
よび連通管を介して全測定液槽内の液体が上記貯液槽の
液体で順次入れ換えられて、その液面の高さが上記基準
液槽側で順次測定される。こうして、通常は、高低差の
変位が大きいと予想される特定の測定位置における高さ
の変動のみが短時間で測定され、上記特定の測定位置の
高さ変動が異状を呈した際にのみ全測定位置における高
低差が正確に測定される。
Further, in the invention according to claim 3, the liquid in the replenishing tank is constantly dropped and supplied to the reference liquid tank. Then, the height of the liquid in any one of the plurality of measurement liquid tanks is measured on the reference liquid tank side. Then, when the liquid level in the specific measurement liquid tank exhibits an abnormal value while the liquid level in the specific measurement liquid tank is monitored, the first liquid supply is performed. The liquid in all the measuring liquid tanks is sequentially replaced with the liquid in the liquid storage tank via the pipe and the communication pipe, and the height of the liquid surface is sequentially measured on the reference liquid tank side. Thus, normally, only the height fluctuation at a specific measurement position where the height difference is expected to be large is measured in a short time, and only when the height fluctuation at the specific measurement position becomes abnormal, The height difference at the measurement position is accurately measured.

【0018】又、請求項4に係る発明では、上記基準液
槽に対して常時上記補給槽内の液体が滴下されて補給さ
れる。そして、上記複数の測定液槽のうち何れか一つの
特定測定液槽内の液体の高さが上記基準液槽側で測定さ
れる。そして、所定時間が経過する毎に、上記第1給液
パイプおよび連通管を介して全測定液槽内の液体が上記
貯液槽の液体で順次入れ換えられて、その液面の高さが
上記基準液槽側で順次測定される。こうして、高低差の
変位が大きいと予想される特定の測定位置における高さ
の変動のみが測定されて測定位置の高さ変動が短時間に
且つ大まかに監視され、所定の時間間隔で全測定位置に
おける高低差が測定されて測定位置の高低差が正確にチ
ェックされる。
Further, in the invention according to claim 4, the liquid in the replenishing tank is constantly dropped and supplied to the reference liquid tank. Then, the height of the liquid in any one of the plurality of measurement liquid tanks is measured on the reference liquid tank side. Then, every time a predetermined time elapses, the liquid in all the measuring liquid tanks is sequentially replaced with the liquid in the liquid storage tank via the first liquid supply pipe and the communication pipe, and the height of the liquid surface is increased. It is measured sequentially on the reference liquid tank side. In this way, only the height fluctuation at a specific measurement position where the displacement of the height difference is expected to be large is measured, and the height fluctuation at the measurement position is monitored in a short time and roughly, and all the measurement positions are measured at predetermined time intervals. Is measured, and the height difference at the measurement position is accurately checked.

【0019】[0019]

【0020】又、請求項5に係る発明では、全測定液槽
内の液面の高さを順次測定する際には、上記基準液槽に
対する液体の常時補給が停止される。こうして、全測定
液槽における液面の高さの測定が、上記基準液槽の液面
の変動等に影響されずに安定して行われる。
In the invention according to claim 5, when the liquid levels in all the measuring liquid tanks are sequentially measured, the liquid supply to the reference liquid tank is always stopped. In this way, the measurement of the liquid level in all the measuring liquid tanks is performed stably without being affected by the fluctuation of the liquid level in the reference liquid tank.

【0021】[0021]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。本実施例においては、鉄道線路下に地下道を
建設する際における鉄道線路の沈下や上昇の計測を例に
説明する。図1は本実施例の高低差測定装置における動
作系の構成図である。工事区間における鉄道線路に一定
間隔に計測点(1)〜(N)を設け、各計測点(1)〜(N)の
夫々に水槽(以下、測点水槽と言う)111〜11Nを設置
する。各測点水槽111〜11Nは、その底に電磁バルブ
581〜58Nが介設されたドレイン591〜59Nを有し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. In the present embodiment, an example will be described in which a subsidence or a rise of a railway line is measured when an underpass is constructed under the railway line. FIG. 1 is a configuration diagram of an operation system in the height difference measuring apparatus of the present embodiment. Measurement points (1) to (N) are provided at regular intervals on the railway line in the construction section, and water tanks (hereinafter referred to as measurement point water tanks) 11 1 to 11 N are provided at each of the measurement points (1) to (N). Install. Each of the measuring point tanks 11 1 to 11 N has drains 59 1 to 59 N at the bottoms of which are provided electromagnetic valves 58 1 to 58 N.

【0022】上記計測点(1)〜(N)の近傍における不動
箇所に、各測点水槽11と同程度の高さの水位が得られ
る基準水槽12を設置する。そして、一端が基準水槽1
2の下部に接続された親パイプ13を、各計測点に設け
られた測点水槽11の近傍を通るように配設する。そし
て、上記親パイプ13と各測点水槽11の下部とを子パ
イプ141〜14Nで接続し、親パイプ13の基準水槽1
2側に電磁バルブ15を介設する一方、各子パイプ14
1〜14Nにも電磁バルブ161〜16Nを介設する。その
際に、上記基準水槽12の横断面と測点水槽11の横断
面との面積比を、約10:1にしておく。
A reference water tank 12 is provided at an immovable point near the measurement points (1) to (N) so as to obtain a water level approximately equal to the height of each measurement point water tank 11. And one end is reference tank 1
The main pipe 13 connected to the lower part of the measuring point 2 is arranged so as to pass near the measuring point tank 11 provided at each measuring point. Then, a lower portion of the parent pipe 13 and the respective survey point water tank 11 connected with the daughter pipe 14 1 to 14 N, the reference water tank 1 of the parent pipe 13
While the electromagnetic valve 15 is provided on the second side,
To 1 to 14 N to interposed a solenoid valve 16 1 ~ 16 N. At this time, the area ratio between the cross section of the reference water tank 12 and the cross section of the measuring point water tank 11 is set to about 10: 1.

【0023】上記基準水槽12近傍には給水タンク17
を設置し、この給水タンク17の下部と親パイプ13に
おける電磁バルブ15より測点水槽11側とを、電動ポ
ンプ18,電磁バルブ56および流量計57が介設され
た第1給水パイプ55で接続する。さらに、上記基準水
槽12近傍に補給タンク19を設置し、この補給タンク
19の下部と基準水槽12の下部とを電磁バルブ20お
よび液溜29が介設された第2給水パイプ30で接続し
て、液溜29内に基準水槽12と同じ高さの液面を形成
する。さらに、親パイプ13の先端には、この親パイプ
13内の水を給水タンク17に戻す為の返送パイプ40
を取り付け、この返送パイプ40の最終の測点水槽11
よりも下流側には電磁バルブ39を介設している。ここ
で、上記基準水槽12,給水タンク17,補給タンク1
9,第1給水パイプ55および第2給水パイプ30を一
つの覆いで囲って、基準水槽12,給水タンク17およ
び補給タンク19内の水温が同じになるようにしてお
く。
In the vicinity of the reference water tank 12, a water supply tank 17 is provided.
The lower part of the water supply tank 17 is connected to the measuring water tank 11 side from the electromagnetic valve 15 in the parent pipe 13 by the first water supply pipe 55 in which the electric pump 18, the electromagnetic valve 56 and the flow meter 57 are provided. I do. Further, a supply tank 19 is installed near the reference water tank 12, and a lower part of the supply tank 19 and a lower part of the reference water tank 12 are connected by a second water supply pipe 30 in which an electromagnetic valve 20 and a liquid reservoir 29 are provided. Then, a liquid surface having the same height as the reference water tank 12 is formed in the liquid reservoir 29. Further, a return pipe 40 for returning water in the parent pipe 13 to the water supply tank 17 is provided at the end of the parent pipe 13.
Is attached, and the final measuring point tank 11 of the return pipe 40 is attached.
An electromagnetic valve 39 is provided further downstream than the electromagnetic valve 39. Here, the reference water tank 12, the water supply tank 17, the supply tank 1
9. The first water supply pipe 55 and the second water supply pipe 30 are surrounded by one cover so that the water temperatures in the reference water tank 12, the water supply tank 17 and the supply tank 19 are the same.

【0024】本実施例における各測点水槽11の水位測
定は基準水槽12側で行う。図2は、上記基準水槽12
の部分断面図である。円筒形の基準水槽12の下部には
親パイプ13が接続される排水口21、側部には第2給
水パイプ30が接続される給水口22、及び、上部にオ
ーバーフロー口23が設けてある。そして、基準水槽1
2内の水面には、基準水槽12の内径に略等しい外径の
金属の円板で成る反射板24の周囲に複数の球形フロー
ト25を円形に取り付けた浮き部材26を浮設する。
In this embodiment, the water level of each measuring point tank 11 is measured on the reference tank 12 side. FIG. 2 shows the reference water tank 12.
FIG. A drain port 21 to which the parent pipe 13 is connected is provided at a lower portion of the cylindrical reference water tank 12, a water supply port 22 to which a second water supply pipe 30 is connected at a side portion, and an overflow port 23 is provided at an upper portion. And the reference tank 1
A floating member 26 in which a plurality of spherical floats 25 are circularly mounted around a reflector 24 made of a metal disk having an outer diameter substantially equal to the inner diameter of the reference water tank 12 is floated on the water surface in the inside 2.

【0025】上記基準水槽12の蓋27における中央に
はレーザ距離計28を設置する。このレーザ距離計28
は、下部中央の発光部(図示せず)から発射されて水面上
の反射板24によって反射されたレーザ光を発光部に隣
接する受光部で受光し、受光したことを表す電流信号を
出力する。尚、上述のように、上記基準水槽12の内径
に略等しい外径の円板で成る反射板24の周囲に球形フ
ロート25を設置して浮き部材26を構成することによ
って、水面が揺れても反射板24の中心部は安定する。
したがって、レーザ距離計28からのレーザ光を反射板
24の中央部を狙って発射すれば、安定した計測値を得
ることができるのである。
At the center of the lid 27 of the reference water tank 12, a laser distance meter 28 is installed. This laser distance meter 28
Receives a laser beam emitted from a lower central light emitting unit (not shown) and reflected by the reflector 24 on the water surface at a light receiving unit adjacent to the light emitting unit, and outputs a current signal indicating that the light is received. . In addition, as described above, the spherical member 25 is provided around the reflecting plate 24 made of a disk having an outer diameter substantially equal to the inner diameter of the reference water tank 12 to form the floating member 26, so that the water surface can be shaken. The central part of the reflector 24 is stable.
Therefore, if the laser beam from the laser distance meter 28 is emitted aiming at the center of the reflector 24, a stable measurement value can be obtained.

【0026】図3は上記測点水槽11の詳細図である。
この測点水槽11は函体を成し、側壁下部には上記子パ
イプ14が接続される給水口31を有し、側壁上部には
オーバーフロー孔32を有する。そして、測点水槽11
は金属板33の表面に取り付けられている。60は、ド
レイン59が接続される排水口である。上記構成の測点
水槽11は、次のようにして鉄道線路の枕木38に取り
付けられる。すなわち、孔37,37が穿たれた取付板
34の裏面が枕木38の表面に接着剤で固定される。そ
して、その取付板34の表面に立設された3本のボルト
(図3では2本が現れている)35に、上記金属板33を
ナット36,36で上下位置が調整可能に取り付けるの
である。
FIG. 3 is a detailed view of the measuring point tank 11.
The measuring point tank 11 forms a box, has a water supply port 31 at the lower part of the side wall to which the child pipe 14 is connected, and has an overflow hole 32 at the upper part of the side wall. And the measuring point tank 11
Is attached to the surface of the metal plate 33. Reference numeral 60 denotes a drain port to which the drain 59 is connected. The measuring water tank 11 having the above configuration is attached to a railroad railroad sleeper 38 as follows. That is, the back surface of the mounting plate 34 having the holes 37, 37 is fixed to the surface of the sleeper 38 with an adhesive. Then, three bolts erected on the surface of the mounting plate 34
The metal plate 33 is attached to the nut 35 (in FIG. 3, two are shown) so that the vertical position can be adjusted.

【0027】ここで、上記測点水槽11の高さ“H"
は、金属板33がボルト35における最上位に位置した
際に、測点水槽11がレールから突出しない程度の高さ
に設定しておく。これは、本測点水槽11には水位測定
手段を付設する必要がないので十分可能である。こうす
ることによって、列車が通過可能な状態で水位測定を実
行できるのである。その際に、上述のように、基準水槽
12の横断面と測点水槽11の横断面との面積比を約1
0:1にすることによって、測点水槽11内の水面の揺
れの影響が基準水槽12内の水面に達しないようにす
る。
Here, the height "H" of the measuring point water tank 11 is set.
Is set to such a height that the measuring point tank 11 does not protrude from the rail when the metal plate 33 is positioned at the highest position in the bolt 35. This is sufficiently possible because there is no need to add a water level measuring means to the main measuring point tank 11. In this way, the water level measurement can be performed in a state where the train can pass. At that time, as described above, the area ratio between the cross section of the reference water tank 12 and the cross section of the measurement point water tank 11 was set to about 1
By setting the ratio to 0: 1, the influence of the fluctuation of the water surface in the measuring point water tank 11 does not reach the water surface in the reference water tank 12.

【0028】図4は、上記測点水槽11の枕木38に対
する取り付け状態を示す図である。尚、図4(a)は軌道
及び道床の断面図であり、図4(b)は平面図であり、図
4(c)は図4(a)におけるA−A断面矢視図である。ボル
ト35,35によって測点水槽11が取り付けられた取
付板34は、上述のように枕木38上に接着剤で固定さ
れると同時に、孔37(図3参照)を貫通したフックボル
ト41とナット42とで枕木38に確実に取り付けられ
るのである。
FIG. 4 is a view showing a state in which the measuring point tank 11 is attached to the sleeper 38. As shown in FIG. 4 (a) is a sectional view of the track and the track bed, FIG. 4 (b) is a plan view, and FIG. 4 (c) is a sectional view taken along the line AA in FIG. 4 (a). The mounting plate 34 to which the measuring water tank 11 is mounted by the bolts 35, 35 is fixed on the sleeper 38 with an adhesive as described above, and at the same time, the hook bolt 41 and the nut which penetrate the hole 37 (see FIG. 3) 42 and 42 can be securely attached to the sleeper 38.

【0029】こうして、上記枕木38に取り付けられた
測点水槽11には、上述のように、電磁バルブ16を動
作させることによって、親パイプ13および子パイプ1
4を介して基準水槽12内の水が供給される。また、測
点水槽11内の水は電磁バルブ58を開放することによ
ってドレイン59より排出される。その状態における上
記測点水槽11の高さは、図4(a)に示すように、レー
ル43の高さよりも低く、測点水槽11は建物限界(つ
まり、列車限界)外に位置することになり、列車は安全
に通過できるのである。
As described above, by operating the electromagnetic valve 16 in the measuring point tank 11 attached to the sleeper 38, the parent pipe 13 and the child pipe 1 are operated.
The water in the reference water tank 12 is supplied via 4. The water in the measuring point tank 11 is discharged from the drain 59 by opening the electromagnetic valve 58. The height of the measuring tank 11 in that state is lower than the height of the rail 43, as shown in FIG. 4A, and the measuring tank 11 is located outside the building limit (that is, the train limit). The train can pass safely.

【0030】図5は、上記測点水槽11,基準水槽12,
給水タンク17および補給タンク19等によって構成さ
れる動作系を制御する制御系のブロック図である。パー
ソナルコンピュータ(以下、パソコンと略称する)45
は、リレー出力ボード46を介して、各測点水槽11の
電磁バルブ16・58,親パイプ13の電磁バルブ15,
第2給水パイプ30の電磁バルブ20,返送パイプ40
の電磁バルブ39および第1給水パイプ55の電磁バル
ブ56の開閉動作と電動ポンプ18の動作を制御して、
水位測定処理を実行する。そして、レーザ距離計28か
ら送出されてくる上記電流信号を電流入力型A/D変換
器47でディジタル変換して取り込み、レーザ距離計2
8の発光部からレーザ光が発射されてから受光部で受光
されるまでの時間を得て、基準水槽12内の水位を算出
するのである。その際に、上記流量計57から送出され
てくる流量を表す電流信号を電流入力型A/D変換器4
7でディジタル変換して取り込み、基準水槽12あるい
は測点水槽11への給水量を得る。
FIG. 5 shows the measuring point tank 11, the reference tank 12,
FIG. 3 is a block diagram of a control system that controls an operation system configured by a water supply tank 17 and a supply tank 19; Personal computer (hereinafter abbreviated as personal computer) 45
Are connected via the relay output board 46 to the electromagnetic valves 16 and 58 of each measuring tank 11, the electromagnetic valves 15 of the parent pipe 13,
Electromagnetic valve 20 of second water supply pipe 30, return pipe 40
The opening and closing operation of the electromagnetic valve 39 and the electromagnetic valve 56 of the first water supply pipe 55 and the operation of the electric pump 18 are controlled,
Execute the water level measurement process. Then, the current signal sent from the laser distance meter 28 is digitally converted by the current input type A / D converter 47 and taken in.
The time from when the laser beam is emitted from the light emitting unit 8 to when it is received by the light receiving unit is obtained, and the water level in the reference water tank 12 is calculated. At this time, a current signal representing the flow rate sent from the flow meter 57 is converted to a current input type A / D converter 4.
At 7, the digital water is converted and taken in, and the amount of water supplied to the reference water tank 12 or the measuring water tank 11 is obtained.

【0031】こうして得られた上記基準水槽12内の水
位に基づいて、各計測点(1)〜(N)における測点水槽1
1の水位差を求め、カラーディスプレイ48に数値表示
したり、グラフ表示したりする。また、カラーディスプ
レイ48とキーボード49とで、対話的にパラメータの
設定を行う。得られた測定データはプリンタ50で印刷
し、さらにハードディスク51に保存する。
Based on the water level in the reference water tank 12 thus obtained, the measuring water tank 1 at each of the measuring points (1) to (N) is used.
The water level difference of 1 is obtained and numerically displayed on the color display 48 or graphically displayed. The color display 48 and the keyboard 49 interactively set parameters. The obtained measurement data is printed by the printer 50 and further stored in the hard disk 51.

【0032】本実施例においては、通常状態には工事施
工中に最も地盤が沈下あるいは隆起し易い1箇所の代表
計測点での高低差測定を繰り返して行う。そして、得ら
れた測定値がある設定値を越えて異常値となった場合、
あるいは、上記代表計測点での高低差測定を開始してか
ら所定時間が経過した場合には、全計測点での高低差測
定に切り替えて詳細な高低差測定を行う。こうして、通
常状態における計測時間の短縮と異常値の早期発見とを
両立させるのである。
In this embodiment, in a normal state, the height difference measurement is repeatedly performed at one representative measurement point where the ground is most likely to sink or rise during construction. And when the obtained measured value exceeds a certain set value and becomes an abnormal value,
Alternatively, when a predetermined time has elapsed since the start of the height difference measurement at the representative measurement point, the measurement is switched to the height difference measurement at all the measurement points, and the detailed height difference measurement is performed. In this way, both the reduction of the measurement time in the normal state and the early detection of an abnormal value are compatible.

【0033】尚、その際に、上記代表計測点での高低差
測定に際しては、第2給水パイプ30の電磁バルブ20
を所定の開度に開放して補給タンク19内の水を液溜2
9の液面に滴下して、基準水槽11に点滴方式で常時少
しずつ給水するのである。
At this time, when measuring the height difference at the representative measurement point, the electromagnetic valve 20 of the second water supply pipe 30 is used.
Is opened to a predetermined opening and the water in the supply tank 19 is
The water is supplied to the reference water tank 11 little by little by a drip method at all times.

【0034】上記構成の高低差測定装置による水位測定
処理はパソコン45の制御の下に、図6〜図8に示す水
位測定処理動作のフローチャートに従って次のように実
行される。上記パソコン45の制御の下に、上記リレー
出力ボード46を介して電磁バルブ161〜16N,15,
20,39,56が閉鎖されて水位測定処理動作がスター
トする。
The water level measurement processing by the height difference measuring apparatus having the above-described configuration is executed as follows under the control of the personal computer 45 in accordance with the flow chart of the water level measurement processing operation shown in FIGS. Under the control of the personal computer 45, the electromagnetic valves 16 1 to 16 N , 15,
20, 39, 56 are closed and the water level measurement processing operation starts.

【0035】ステップS1で、上記パソコン45内の記
憶部(図示せず)にセットされた測点水槽11の番号i
(i=1〜N)に初期値“0"がセットされる。ステップ
S2で、上記番号iの内容に上記代表計測点の番号“n"
がセットされる。ステップS3で、上記リレー出力ボー
ド46を介して電磁バルブ39が開放されると共に、電
動ポンプ18が駆動される。こうして、親パイプ13内
の水が給水タンク17に押し戻される。直径が3〜5cm
φであり、長さが20〜80mである親パイプ13内を
満たす水の量は少なくはない。そこで、本実施例におい
ては、上記親パイプ13内の水を給水タンク17に戻す
ことによって、給水タンク17の水の量を確保すると共
に、親パイプ13内の水温と基準水槽12や給水タンク
17等の水温とを等しくするのである。
In step S1, the number i of the measuring point tank 11 set in the storage section (not shown) in the personal computer 45 is set.
The initial value “0” is set to (i = 1 to N). In step S2, the number "n" of the representative measurement point is added to the content of the number i.
Is set. In step S3, the electromagnetic valve 39 is opened via the relay output board 46, and the electric pump 18 is driven. Thus, the water in the parent pipe 13 is pushed back to the water supply tank 17. 3-5cm in diameter
The amount of water that fills the parent pipe 13 that is φ and has a length of 20 to 80 m is not small. Therefore, in this embodiment, by returning the water in the parent pipe 13 to the water supply tank 17, the amount of water in the water supply tank 17 is ensured, and the water temperature in the parent pipe 13 and the reference water tank 12 and the water supply tank 17 are maintained. And so on.

【0036】ステップS4で、上記親パイプ13内の水
が完全に押し戻されるに充分な時間が経過した後、上記
リレー出力ボード46を介して、電磁バルブ39が閉鎖
されて電動ポンプ18が停止されると共に、i番目の測
点水槽11iの電磁バルブ58iが開放されて、当該測点
水槽11i内の水が抜かれる。ステップS5で、当該測点
水槽11i内の水が完全に抜かれるに充分な時間が経過
した後、上記リレー出力ボード46を介して電磁バルブ
58iが閉鎖され、電磁バルブ15,56が開放されると
共に、電動ポンプ18が駆動される。こうして、給水タ
ンク17から基準水槽12内に給水される。ここで、上
記各測点水槽11への給水は第1給水パイプ55および
親パイプ13を介して給水タンク17から直接行われ
る。したがって、基準水槽12内の水は一度満たされれ
ば殆ど変化することはない。そこで、本実施例において
は、基準水槽12への給水は一度実行した後は不足分を
補給するだけで十分である。
In step S4, after a lapse of time sufficient to completely push back the water in the main pipe 13, the electromagnetic valve 39 is closed and the electric pump 18 is stopped via the relay output board 46. Rutotomoni, i-th measurement point aquarium 11 i solenoid valves 58 i of is opened, water in the stations aquarium 11 i is withdrawn. In step S5, after a sufficient time has elapsed in the water in the stations aquarium 11 i is completely pulled out, the electromagnetic valve 58 i via the relay output board 46 is closed, the electromagnetic valve 15,56 is open And the electric pump 18 is driven. Thus, water is supplied from the water supply tank 17 into the reference water tank 12. Here, the water supply to each of the measuring point water tanks 11 is performed directly from the water supply tank 17 via the first water supply pipe 55 and the parent pipe 13. Therefore, once the water in the reference tank 12 is filled, it hardly changes. Therefore, in the present embodiment, it is sufficient to supply the shortage once the water is supplied to the reference water tank 12 once.

【0037】ステップS6で、上記基準水槽12内の水
位がレーザ距離計28からの電気信号に基づいて計測さ
れ、この計測結果が基準水位に至ったか否かが判別され
る。その結果、基準水位に至っていればステップS7に
進む。ここで、上記基準水槽12における基準水位と
は、測定の対象となる測点水槽11iにおけるオーバー
フロー孔32の位置よりやや高い水位のことである。
In step S6, the water level in the reference water tank 12 is measured based on the electric signal from the laser distance meter 28, and it is determined whether or not the measurement result has reached the reference water level. As a result, if the reference water level has been reached, the process proceeds to step S7. Here, the reference water level in the reference water tank 12 is slightly higher level that from the position of the overflow hole 32 in the stations aquarium 11 i to be measured.

【0038】ステップS7で、上記リレー出力ボード4
6を介して電磁バルブ15が閉鎖されると同時に、電磁
バルブ16iが開放される。こうして、給水タンク17
から基準水槽12への給水が停止されると同時に、当該
測点水槽11iへの給水が開始される。ステップS8で、
当該測点水槽11iへ給水された水がオーバーフローし
たか否かが判別される。その結果、オーバーフローして
いればステップS9に進む。ここで、上記オーバーフロ
ーの判定は、給水を始めてから所定時間経過したか否か
によって判定することが望ましい。
At step S7, the relay output board 4
At the same time as the electromagnetic valve 15 is closed via 6, the electromagnetic valve 16i is opened. Thus, the water tank 17
At the same time the water supply to the reference water tank 12 is stopped from the water supply to the stations water tank 11 i starts. In step S8,
Whether the water is feed water to the stations water tank 11 i overflows is determined. As a result, if overflow has occurred, the process proceeds to step S9. Here, it is desirable that the above-mentioned overflow is determined based on whether or not a predetermined time has elapsed since the start of water supply.

【0039】ステップS9で、上記リレー出力ボード4
6を介して電動ポンプ18が停止されると共に、電磁バ
ルブ56が閉鎖される。こうして、i番目の測点水槽1
iへの給水が停止される。ステップS10で。上記リレ
ー出力ボード46を介して電磁バルブ20が所定開度で
開放されて基準水槽12への点滴給水が開始される。こ
うして、常時少量の水を供給することによって、測点水
槽11i自身の上下動によって水が漏れたり蒸発したり
しても、測点水槽11iのオーバーフロー孔まで水が常
時満たされた状態になるのである。ステップS11で、上
記リレー出力ボード46を介して親パイプ13の電磁バ
ルブ15が開放されて、測点水槽11iと基準水槽12
とが連通される。その際に、上記基準水槽12には当該
測点水槽11iのオーバーフロー孔32の高さよりやや
高い水位まで水が給水タンク17から供給されており、
当該測点水槽11iにはオーバーフローするだけの水が
給水タンク17から供給されている。したがって、電磁
バルブ15が閉鎖された際に余分な水がオーバーフロー
孔32から押し出されて、当該測点水槽11i内の水と
基準水槽12内の水とは同じ温度で且つ同じレベルとな
るのである。こうして、外気温の影響によって基準水槽
12内の水と各測点水槽11内の水とに温度差が生じて
比重差が生じ、測定誤差が発生することを防止するので
ある。ステップS12で、上記パソコン45のタイマによ
って、代表計測点での計測が開始されてからの経過時間
の計時が開始される。
In step S9, the relay output board 4
6, the electric pump 18 is stopped, and the electromagnetic valve 56 is closed. Thus, the i-th station water tank 1
Water supply to 1 i is stopped. In step S10. The electromagnetic valve 20 is opened at a predetermined opening via the relay output board 46, and the drip water supply to the reference water tank 12 is started. Thus, by supplying a constant amount of water, even or evaporation or leakage of water through the vertical movement of the stations aquarium 11 i itself, a state where water is always filled up to the overflow hole of the stations aquarium 11 i It becomes. In step S11, it is opened electromagnetic valve 15 of the parent pipe 13 via the relay output board 46, stations water tub 11 i and the reference water tank 12
Is communicated. At that time, water to slightly higher level than the height of the overflow hole 32 of the above criteria aquarium 12 the stations aquarium 11 i are supplied from the water supply tank 17,
Water that only overflows is supplied from the water supply tank 17 to the measuring point water tank 11 i . Therefore, excess water when the electromagnetic valve 15 is closed is pushed from the overflow hole 32, so the and the same level at the same temperature as the water in the water and the reference water tank 12 in the stations aquarium 11 i is there. In this way, it is possible to prevent a temperature difference between the water in the reference water tank 12 and the water in each of the measuring point water tanks 11 due to the influence of the outside air temperature, a specific gravity difference, and a measurement error. In step S12, the timer of the personal computer 45 starts measuring the elapsed time from the start of the measurement at the representative measurement point.

【0040】ステップS13で、上記基準水槽12内の水
位Wがレーザ距離計28からの電気信号に基づいて計測
される。ステップS14で、上記ステップS13において計
測された測定値Wが上記記憶部に記録される。ステップ
S15で、上記測定値Wが上記記憶部に登録されている基
準値以上の異常値であるか否かが判別される。その結
果、異常値であればステップS18に進む一方、異常値で
なければステップS16に進む。ステップS16で、上記ス
テップS12において計時が開始されてから所定時間が経
過したか否かが判別される。その結果、経過していれば
ステップS17に進み、経過していなければ上記ステップ
S13に戻って上記代表計測点(n)での計測における次の
サイクルに移行する。以後、上記ステップS15において
測定値Wが異常値であると判別されるか、上記ステップ
S16において代表計測点(n)での計測が開始されてから
所定時間が経過したと判定されるまで、n番目の測点水
槽11nの水位が計測され続ける。
In step S13, the water level W in the reference water tank 12 is measured based on the electric signal from the laser distance meter 28. In step S14, the measured value W measured in step S13 is recorded in the storage unit. In step S15, it is determined whether the measured value W is an abnormal value equal to or greater than the reference value registered in the storage unit. As a result, if it is an abnormal value, the process proceeds to step S18, and if it is not an abnormal value, the process proceeds to step S16. In step S16, it is determined whether or not a predetermined time has elapsed since the time measurement was started in step S12. As a result, if it has passed, the process proceeds to step S17, and if not, the process returns to step S13 to shift to the next cycle in the measurement at the representative measurement point (n). Thereafter, until the measured value W is determined to be an abnormal value in the step S15, or until it is determined in the step S16 that the predetermined time has elapsed since the start of the measurement at the representative measurement point (n), n The water level of the 11th measuring point tank 11 n is continuously measured.

【0041】ステップS17で、上記代表計測点(n)での
計測が開始されてから所定時間が経過したので、全測定
点(1)〜(N)での高低差測定に入るために上記タイマの
計時内容がクリアされる。ステップS18で、上記リレー
出力ボード46を介して電磁バルブ20が閉鎖されて上
記点滴給水が停止される。ステップS19で、上記番号i
の内容に“1"がセットされる。ステップS20で、上記
測点水槽11i内の水位Wが測定される。ステップS21
で、上記測点水槽11iの水位Wが異常値であるか否か
が判別される。その結果、異常値であればステップS26
に進み、そうでなければステップS22に進む。ステップ
S22で、上記番号iの内容がインクリメントされる。ス
テップS23で、上記番号iの内容が最大値“N"に至っ
たか否かが判別される。その結果、“N"に至っていれ
ばステップS24に進み、至っていなければ上記ステップ
S20に戻って次の測点水槽11の水位測定に移行する。
In step S17, since a predetermined time has elapsed since the start of the measurement at the representative measurement point (n), the timer is used to start the height difference measurement at all the measurement points (1) to (N). Is cleared. In step S18, the electromagnetic valve 20 is closed via the relay output board 46, and the drip water supply is stopped. In step S19, the above number i
Is set to "1". In step S20, the water level W in the stations water tank 11 i are measured. Step S21
In, whether the stations aquarium 11 i of the water level W is an abnormal value or not. If the result is an abnormal value, step S26
Otherwise, to step S22. In step S22, the content of the number i is incremented. In step S23, it is determined whether or not the content of the number i has reached the maximum value "N". As a result, if it has reached "N", the flow proceeds to step S24, and if not, the flow returns to step S20 to shift to the next measurement of the water level in the measuring point tank 11.

【0042】ステップS24で、上記全計測点(1)〜(N)
での計測の結果が異常ではないと判断されて、全測点水
槽11の電磁バルブ16と親パイプ13の電磁バルブ1
5とが閉鎖されて、全測点水槽11に係る水位測定が終
了される。ステップS25で、上記水位測定処理動作を続
行するか否かが判別される。その結果、続行する場合に
は上記ステップS1に戻って上記代表計測点による計測
に移行する。一方、そうでなければ水位測定処理動作を
終了する。
In step S24, all the measurement points (1) to (N)
It is determined that the result of the measurement is not abnormal, and the electromagnetic valves 16 of all the measuring tanks 11 and the electromagnetic valves 1 of the parent pipe 13 are determined.
5 is closed, and the water level measurement for all the measuring point water tanks 11 is completed. In step S25, it is determined whether or not to continue the water level measurement processing operation. As a result, if the process is to be continued, the process returns to step S1 and shifts to measurement at the representative measurement point. On the other hand, if not, the water level measurement processing operation ends.

【0043】ステップS26で、上記全計測点(1)〜(N)
での計測の結果が異常であると判断されて、沈下原因や
上昇原因の調査を促す表示がカラーディスプレイ48に
表示される。ステップS27で、上記水位測定処理動作を
続行するか否かが判別される。その結果、続行する場合
には上記ステップS26に戻って上記全計測点(1)〜(N)
での計測が継続される。一方、そうでなければ水位測定
処理動作を終了する。
In step S26, all the measurement points (1) to (N)
Is determined to be abnormal, and a display prompting an investigation of the cause of settlement or the cause of rise is displayed on the color display 48. In step S27, it is determined whether or not to continue the water level measurement processing operation. As a result, when continuing, the process returns to step S26, and returns to all the measurement points (1) to (N).
The measurement at is continued. On the other hand, if not, the water level measurement processing operation ends.

【0044】このように、本実施例においては、平常時
には、工事区間における鉄道線路に設定された複数の計
測点(1)〜(N)における代表計測点(n)の枕木38上に
設置された測点水槽11nの水位を、基準水槽12上部
のレーザ距離計28から発射されて浮き部材26の反射
板24の中央部で反射されたレーザ光の往復時間から基
準水槽12内の水位を計測することによって計測する。
そして、その計測結果が異常である場合、あるいは、代
表計測点(n)での水位計測が開始されてから所定時間が
経過した場合には、全計測点での計測に移行する。そし
て、全計測点(1)〜(N)における測点水槽111〜11N
の水位を基準水槽12側で計測するようにしている。し
たがって、平常時には測定位置の高低差を短時間で測定
でき、平常時における計測時間の短縮と異常値の早期発
見とを両立できる。
As described above, in the present embodiment, in normal times, a plurality of measurement points (1) to (N) are set on the sleepers 38 at the representative measurement points (n) of the plurality of measurement points (1) to (N) set on the railway track in the construction section. The water level in the reference water tank 11 n is determined from the reciprocating time of the laser light emitted from the laser rangefinder 28 above the reference water tank 12 and reflected by the central portion of the reflector 24 of the floating member 26. Measure by measuring.
Then, when the measurement result is abnormal, or when a predetermined time has elapsed since the start of the water level measurement at the representative measurement point (n), the process shifts to the measurement at all the measurement points. Then, the measuring point tanks 11 1 to 11 N at all the measuring points (1) to (N)
Is measured on the reference water tank 12 side. Therefore, the height difference between the measurement positions can be measured in a short time in normal times, and both the reduction of the measurement time in normal times and the early detection of abnormal values can be achieved.

【0045】また、その際に、上記代表計測点での水位
計測時における代表計測点(n)の測点水槽11nへの水
の補給は、給水タンク17から親パイプ13を介して直
接行われる。したがって、その間における基準水槽12
内の水は殆ど変換しない。そのために、本実施例におい
ては、基準水槽12に対して常時補給タンク19から点
滴補給によって水を補給して、漏れ等による僅かの不足
分を補うのである。一方、上記全計測点での水位計測時
においては、液溜29に水が滴下された際に基準水槽1
2内の水面が変動して基準水槽12の正確な水位計測に
影響を及ぼす。そこで、上記点滴補給をせずに、水位計
測毎に給水タンク17から第1給水パイプ55および親
パイプ13を介して補給するのである。したがって、平
常時における計測時間を更に短縮することができる。
At this time, the supply of water to the measuring point tank 11 n at the representative measuring point (n) at the time of measuring the water level at the representative measuring point is performed directly from the water supply tank 17 through the parent pipe 13. Will be Therefore, the reference water tank 12
The water inside hardly converts. For this purpose, in the present embodiment, the reference water tank 12 is constantly replenished with water from the replenishment tank 19 by drip replenishment to compensate for a slight shortage due to leakage or the like. On the other hand, when the water level is measured at all the measurement points, when water is dropped into the liquid reservoir 29, the reference water tank 1
The water level in 2 fluctuates and affects the accurate water level measurement of the reference tank 12. Therefore, the water supply is performed from the water supply tank 17 via the first water supply pipe 55 and the parent pipe 13 every time the water level is measured, without performing the above-described drip supply. Therefore, the measurement time in normal times can be further reduced.

【0046】尚、上記実施例においては、上記浮き部材
26およびレーザ計測計28で基準水槽12の水位(基
準点(例えば底面)から水面までの高さ)を測定している
が、この発明はこれに限定されるものではない。例え
ば、基準水槽12の底面に水圧計を取り付けて、水圧を
測定して水位を求めることもできる。また、上記実施例
は、鉄道線路下に地下道を建設する際における鉄道線路
の沈下や上昇の計測を例に説明している。しかしなが
ら、この発明はこれに限定されるものではなく、水平方
向に点在する各地点の高低差を測定する場合であれば、
どのような場合にも適用できる。
In the above embodiment, the water level (the height from the reference point (for example, the bottom surface) to the water surface) of the reference water tank 12 is measured by the floating member 26 and the laser meter 28. It is not limited to this. For example, a water pressure gauge can be attached to the bottom surface of the reference water tank 12 to measure the water pressure and obtain the water level. Further, the above embodiment has been described by taking as an example the measurement of settlement or rise of a railway line when constructing an underpass below the railway line. However, the present invention is not limited to this, as long as the height difference of each point scattered in the horizontal direction is measured,
Applicable in any case.

【0047】[0047]

【発明の効果】以上より明らかなように、請求項1に係
る発明の高低差測定装置は、基準液層に第1給液パイプ
および連通管を介して貯液槽の液体を供給した後、上記
第1給液パイプのバルブを閉鎖して補給槽内の液体を第
2給液パイプに介設された調整手段で補給量を調節して
上記基準水槽に滴下補給するので、上記貯液槽の液体が
供給された上記測定液槽と基準液槽を連通して上記基準
液槽に上記測定液槽の液面と同じ高さの液柱を形成し、
計測計で上記基準液槽における液面の基準位置からの高
さを計測して各測定位置の高低差を測定するに際して、
漏れ等によって僅かに減少する上記基準液槽内の液体が
自動的に補給される。したがって、この発明によれば、
上記基準液槽へ逐次液体を補給することなく上記測定液
槽と基準液槽との液面を常に自動的に同じ高さに保つこ
とができ、各測定位置の高低差を迅速に且つ安定して測
定できる。
As is apparent from the above description, the elevation difference measuring apparatus according to the first aspect of the present invention supplies the liquid in the liquid storage tank to the reference liquid layer through the first liquid supply pipe and the communication pipe. By closing the valve of the first liquid supply pipe and adjusting the supply amount of the liquid in the supply tank by adjusting means provided in the second liquid supply pipe and dropping and supplying the liquid to the reference water tank, A liquid column having the same height as the liquid surface of the measurement liquid tank is formed in the reference liquid tank by connecting the measurement liquid tank and the reference liquid tank to which the liquid has been supplied,
When measuring the height from the reference position of the liquid surface in the reference liquid tank with a measuring instrument to measure the height difference of each measurement position,
The liquid in the reference liquid tank, which slightly decreases due to leakage or the like, is automatically replenished. Therefore, according to the present invention,
The liquid level of the measurement liquid tank and the reference liquid tank can always be automatically kept at the same level without successively replenishing the liquid to the reference liquid tank, and the height difference between the measurement positions can be quickly and stably maintained. Can be measured.

【0048】また、請求項2に係る発明の高低差測定装
置は、バルブを介設した返送パイプで上記連通管の先端
を上記貯液槽に連通すると共に、上記第1給液パイプに
ポンプを介設したので、上記測定液槽内の液体を入れ換
えるに先立って、上記ポンプを駆動して連通管内の液体
を上記返送パイプを介して上記貯液槽に返送できる。し
たがって、この発明によれば、上記測定液槽の液面の高
さを測定するに際しては測定の対象となる測定液槽内の
液体のみを入れ換えればよく、必要最小限の液体で迅速
に各測定位置の高低差を測定できる。
In the height difference measuring apparatus according to the present invention, the end of the communication pipe is connected to the liquid storage tank by a return pipe provided with a valve, and a pump is connected to the first liquid supply pipe. Because of the interposition, the liquid in the communication pipe can be returned to the storage tank via the return pipe by driving the pump before the liquid in the measurement liquid tank is replaced. Therefore, according to the present invention, when measuring the height of the liquid surface of the measurement liquid tank, only the liquid in the measurement liquid tank to be measured need be replaced, and each liquid can be quickly changed with the minimum necessary liquid. The height difference of the measurement position can be measured.

【0049】また、請求項3に係る発明の高低差測定方
法は、請求項1あるいは請求項2に係る発明の高低差測
定装置における上記基準液槽に常時上記補給槽内の液体
を滴下させて補給しつつ、特定測定液槽内の液体の高さ
を上記基準液槽側で測定し、測定結果が異常値を呈した
際には、全測定液槽内の液体を上記貯液槽の液体で順次
入れ換えて、この液体が入れ換えられた測定液槽の液面
の高さを上記基準液槽側で順次測定するので、平常時に
は上記特定測定液槽内の液体のみを入れ換えて短時間に
測定位置の高低差を測定できる。また、上記特定測定液
槽に係る測定の結果異常の兆候が認められた場合には、
即座に全測定液槽に係る測定に移行して、各測定位置の
高低差の異常の有無を正確にチェックできる。
According to a third aspect of the invention, there is provided a method for measuring a height difference according to the first or second aspect of the invention, wherein the reference liquid tank in the height difference measuring apparatus according to the first or second aspect is always provided in the replenishment tank.
The height of the liquid in the specific measuring liquid tank is measured on the reference liquid tank side while dropping and replenishing the liquid, and when the measurement result shows an abnormal value, the liquid in all the measuring liquid tanks is stored in the above-mentioned manner. The liquid in the liquid tank is sequentially replaced, and the liquid level of the measurement liquid tank in which the liquid has been replaced is sequentially measured on the reference liquid tank side, so that only the liquid in the specific measurement liquid tank is replaced in normal times. The height difference of the measurement position can be measured in a short time. In addition, if any sign of abnormality is found as a result of the measurement of the specific measurement liquid tank,
The measurement immediately proceeds to the measurement for all the measurement liquid tanks, and it is possible to accurately check whether there is an abnormality in the height difference at each measurement position.

【0050】また、請求項4に係る発明の高低差測定方
法は、請求項1または請求項2に係る発明の高低差測定
装置における上記基準液槽に常時上記補給槽内の液体を
滴下させて補給しつつ、特定測定液槽内の液体の高さを
上記基準液槽側で測定し、所定時間が経過する毎に、全
測定液槽内の液体を上記貯液槽の液体で順次入れ換え
て、この液体が入れ換えられた測定液槽の液面の高さを
上記基準液槽側で順次測定するので、上記特定測定液槽
内の液体のみを入れ換えて短時間に測定位置の高低差を
測定しつつ、一定時間毎に各測定位置の高低差を正確に
チェックできる。
According to a fourth aspect of the present invention, there is provided a method for measuring a height difference according to the first or second aspect of the present invention , wherein the liquid in the replenishing tank is always filled in the reference liquid tank in the height difference measuring apparatus according to the first or second aspect of the invention.
While dropping and replenishing, the height of the liquid in the specific measurement liquid tank is measured on the reference liquid tank side, and every time a predetermined time has elapsed, the liquid in all the measurement liquid tanks is replaced with the liquid in the storage tank. The liquid level is sequentially measured, and the liquid level of the measuring liquid tank in which the liquid is replaced is sequentially measured on the reference liquid tank side. While measuring the difference, the height difference at each measurement position can be accurately checked at regular intervals.

【0051】[0051]

【0052】また、請求項5に係る発明の高低差測定方
法は、全測定液槽内の液面の高さを順次測定する際には
上記基準液槽に対する液体の常時補給を停止するので、
全測定液槽に係る液面の高さを測定するに際して上記基
準液層における液面の変動の影響をなくすことができ、
各測定位置の高低差をより正確に測定できる。
In the height difference measuring method according to the fifth aspect of the invention, the liquid supply to the reference liquid tank is constantly stopped when sequentially measuring the liquid level in all the measuring liquid tanks.
When measuring the height of the liquid level according to the entire measurement liquid tank, it is possible to eliminate the influence of the fluctuation of the liquid level in the reference liquid layer,
The height difference at each measurement position can be measured more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の高低差測定装置における動作系の構
成図である。
FIG. 1 is a configuration diagram of an operation system in a height difference measuring apparatus according to the present invention.

【図2】図1における基準水槽の部分断面図である。FIG. 2 is a partial sectional view of a reference water tank in FIG.

【図3】図1における測点水槽の詳細図である。FIG. 3 is a detailed view of a measuring point tank in FIG. 1;

【図4】図3に示す測点水槽の枕木に対する取り付け状
態を示す図である。
FIG. 4 is a view showing a state in which the measuring point water tank shown in FIG. 3 is attached to a sleeper.

【図5】図1に示す動作系を制御する制御系のブロック
図である。
FIG. 5 is a block diagram of a control system for controlling the operation system shown in FIG.

【図6】図5におけるマイコンの制御の下に実行される
水位測定処理動作のフローチャートである。
FIG. 6 is a flowchart of a water level measurement processing operation executed under the control of the microcomputer in FIG. 5;

【図7】図6に続く水位測定処理動作のフローチャート
である。
FIG. 7 is a flowchart of the water level measurement processing operation following FIG. 6;

【図8】図7に続く水位測定処理動作のフローチャート
である。
FIG. 8 is a flowchart of the water level measurement processing operation following FIG. 7;

【図9】従来の水盛式沈下計における測定原理の説明図
である。
FIG. 9 is an explanatory diagram of a measurement principle in a conventional water-filled subsidence meter.

【図10】従来の基準水槽側で水位を計測する高低差測
定装置における構成図である。
FIG. 10 is a configuration diagram of a conventional height difference measuring device that measures a water level on a reference water tank side.

【符号の説明】[Explanation of symbols]

11…測点水槽、 12…基準水槽、
13…親パイプ、 14…子パイプ、
15,16,20,39,56,58…電磁バルブ、17…
給水タンク、 18…電動ポンプ、19
…補給タンク、 26…浮き部材、28
…レーザ距離計、 29…液溜、30…第
2給水パイプ、 32…オーバーフロー孔、
38…枕木、 43…レール、4
5…パソコン、 48…カラーディス
プレイ、55…第1給水パイプ、 57…流
量計、59…ドレイン。
11: Measurement water tank, 12: Reference water tank,
13 ... parent pipe, 14 ... child pipe,
15, 16, 20, 39, 56, 58 ... Electromagnetic valve, 17 ...
Water tank, 18 ... Electric pump, 19
... supply tank, 26 ... floating member, 28
... Laser distance meter, 29 ... Liquid reservoir, 30 ... Second water supply pipe, 32 ... Overflow hole,
38 ... sleepers, 43 ... rails, 4
5 ... PC, 48 ... Color display, 55 ... First water supply pipe, 57 ... Flow meter, 59 ... Drain.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−307894(JP,A) 特開 昭64−35208(JP,A) 実開 昭54−57047(JP,U) 実開 昭63−54012(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01C 5/04 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-6-307894 (JP, A) JP-A-64-35208 (JP, A) JP-A-54-57047 (JP, U) JP-A-63 54012 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G01C 5/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 供給口を下方に有すると共に、液体がオ
ーバーフローするオーバーフロー口を上方に有して、測
定位置に設置される複数の測定液槽と、 各測定液槽の供給口に一端が接続されると共に、バルブ
が介設された複数の供給パイプと、 バルブを介設した1本の連通管によって上記各供給パイ
プ夫々の他端に連通される排液口を有して、上記測定液
槽の液面と同じ高さの液柱を形成する基準液槽と、 上記連通管における上記バルブと上記供給パイプへの最
初の分岐点との間を貯液槽に接続すると共に、バルブが
介設された第1給液パイプと、 補給槽と上記基準液槽とを連通すると共に、上記補給槽
内の液体を上記基準液槽に滴下補給するために補給量を
調節する調節手段が介設された第2給液パイプと、 上記基準液槽の液面の基準位置からの高さを計測する計
測計を備えたことを特徴とする高低差測定装置。
1. A plurality of measurement liquid tanks having a supply port at a lower side and an overflow port at which a liquid overflows at an upper side, and one end is connected to a supply port of each measurement liquid tank. A plurality of supply pipes provided with valves, and a drain port connected to the other end of each of the supply pipes by a single communication pipe provided with a valve. A reference liquid tank forming a liquid column having the same height as the liquid level of the tank, and a connection between the valve in the communication pipe and a first branch point to the supply pipe to the liquid storage tank, and a valve interposed therebetween. The first liquid supply pipe provided is connected to the supply tank and the reference liquid tank, and the supply tank is
A second liquid supply pipe provided with an adjusting means for adjusting a replenishing amount to replenish the liquid in the reference liquid tank to the reference liquid tank, and measuring a height of the liquid surface of the reference liquid tank from a reference position. An elevation difference measuring device comprising a measuring instrument.
【請求項2】 請求項1に記載の高低差測定装置におい
て、 上記連通管の先端を上記貯液槽に連通し、最終分岐点よ
りも下流側にバルブが介設された返送パイプを有すると
共に、 上記第1給液パイプにポンプを介設したことを特徴とす
る高低差測定装置。
2. The height difference measuring device according to claim 1, further comprising a return pipe communicating a leading end of the communication pipe with the storage tank and having a valve interposed downstream of a final branch point. A height difference measuring device, wherein a pump is interposed in the first liquid supply pipe.
【請求項3】 請求項1または請求項2に記載の高低差
測定装置を用いた高低差測定方法であって、 上記基準液槽に常時上記補給槽内の液体を滴下させて
給しつつ、上記複数の測定液槽のうち何れか一つの特定
測定液槽内の液体の高さを上記基準液槽側で測定し、 上記特定測定液槽の液面の高さが異常値を呈した際に
は、全測定液槽内の液体を上記第1給液パイプ及び連通
管を介して上記貯液槽の液体で順次入れ換えて、この液
体が入れ換えられた測定液槽の液面の高さを上記基準液
槽側で順次測定することを特徴とする高低差測定方法。
3. A height difference measuring method using the height difference measuring device according to claim 1 or 2, wherein a liquid in the replenishing tank is constantly dropped into the reference liquid tank to supplement the liquid. > While supplying, measure the height of the liquid in any one of the plurality of measurement liquid tanks on the reference liquid tank side, and the liquid level of the specific measurement liquid tank is abnormal. When the value is displayed, the liquid in all the measurement liquid tanks is sequentially replaced with the liquid in the storage tank via the first liquid supply pipe and the communication pipe, and the liquid in the measurement liquid tank in which the liquid has been replaced. A height difference measuring method, wherein the height of the surface is sequentially measured on the reference liquid tank side.
【請求項4】 請求項1または請求項2に記載の高低差
測定装置を用いた高低差測定方法であって、 上記基準液槽に常時上記補給槽内の液体を滴下させて
給しつつ、上記複数の測定液槽のうち何れか一つの特定
測定液槽内の液体の高さを上記基準液槽側で測定し、 所定時間が経過する毎に、全測定液槽内の液体を上記第
1給液パイプおよび連通管を介して上記貯液槽の液体で
順次入れ換えて、この液体が入れ換えられた測定液槽の
液面の高さを上記基準液槽側で順次測定することを特徴
とする高低差測定方法。
4. A height difference measuring method using the height difference measuring device according to claim 1 or 2, wherein a liquid in the replenishing tank is constantly dropped into the reference liquid tank to compensate. > While supplying the liquid, the height of the liquid in one of the plurality of measurement liquid tanks is measured on the reference liquid tank side, and every time a predetermined time has elapsed, all the measurement liquid tanks are measured. Is sequentially exchanged with the liquid in the storage tank via the first liquid supply pipe and the communication pipe, and the liquid level of the measurement liquid tank in which the liquid has been exchanged is sequentially measured on the reference liquid tank side. A height difference measuring method.
【請求項5】 請求項3または請求項4に記載の高低差
測定方法において、 全測定液槽内の液面の高さを順次測定する際には、上記
基準液槽に対する液体の常時補給を停止することを特徴
とする高低差測定方法。
5. The height difference measuring method according to claim 3, wherein the liquid level is constantly replenished to the reference liquid tank when the liquid levels in all the measuring liquid tanks are sequentially measured. A height difference measuring method characterized by stopping.
JP02985095A 1995-02-17 1995-02-17 Height difference measuring device and height difference measuring method Expired - Fee Related JP3298761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02985095A JP3298761B2 (en) 1995-02-17 1995-02-17 Height difference measuring device and height difference measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02985095A JP3298761B2 (en) 1995-02-17 1995-02-17 Height difference measuring device and height difference measuring method

Publications (2)

Publication Number Publication Date
JPH08219777A JPH08219777A (en) 1996-08-30
JP3298761B2 true JP3298761B2 (en) 2002-07-08

Family

ID=12287459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02985095A Expired - Fee Related JP3298761B2 (en) 1995-02-17 1995-02-17 Height difference measuring device and height difference measuring method

Country Status (1)

Country Link
JP (1) JP3298761B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014435A (en) * 2008-07-01 2010-01-21 Toyoko Elmes Co Ltd Settlement measuring device and method
CN102768033B (en) * 2012-06-27 2014-11-05 太原理工大学 Device for measuring elevation position variation at different levels of monitoring points and application method

Also Published As

Publication number Publication date
JPH08219777A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
CN102159792B (en) Down-hole liquid level control for hydrocarbon wells
RU2544939C2 (en) Face equipment with hose level laid thereat to define elevation of face equipment components
CN104812963A (en) Gravity-based foundation system for installation of offshore wind turbine and method for installing same
US6012020A (en) Apparatus and method for monitoring the condition of septic tanks
JP3298761B2 (en) Height difference measuring device and height difference measuring method
JP2000130068A (en) Natural ground settlement measuring device and method therefor
CN110984967A (en) Drilling depth and verticality measuring device and using method
CN209470695U (en) A kind of settlement monitoring device for landscape gallery
JP3406723B2 (en) Height difference measuring device and height difference measuring method
JP2021088855A (en) Caisson water injection control method and water injection control system
JP2013007725A (en) Ground infiltration test device and ground infiltration testing method
KR100421084B1 (en) How to Change Ship's Draft
JP6192756B2 (en) Caisson filling material input management method and input management device
US20220316873A1 (en) A settlement monitoring system and method
CN212254212U (en) Channel ultrasonic time difference method sensor structure
JPH07306040A (en) Displacement meter
KR102573047B1 (en) Mud density measuring device for drill ship
KR100496136B1 (en) Auto Ballast System and ballast control method for manufacturing large vessel in floating Dock
US5074715A (en) Oil storage system
JP2009287787A (en) Ice-water slurry supplying method and ice heat storage device
KR102606588B1 (en) Geodetic survey system for improving precision of surveying according to reference point survey method
RU2291293C1 (en) System for measuring volume, density and temperature of washing liquid in receiving and topping up vessels
JPH03105217A (en) Differential pressure type water level measuring apparatus
KR200268805Y1 (en) Vertical settlement measuring apparatus on soft land
US4960152A (en) Device for compensating by supplying a measured amount of fluid and its application for replenishing a hydraulic circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees