JP2000128652A - Production of activated carbon fiber structure - Google Patents

Production of activated carbon fiber structure

Info

Publication number
JP2000128652A
JP2000128652A JP10296711A JP29671198A JP2000128652A JP 2000128652 A JP2000128652 A JP 2000128652A JP 10296711 A JP10296711 A JP 10296711A JP 29671198 A JP29671198 A JP 29671198A JP 2000128652 A JP2000128652 A JP 2000128652A
Authority
JP
Japan
Prior art keywords
resin
activated carbon
fiber
carbon fiber
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10296711A
Other languages
Japanese (ja)
Inventor
Yuji Miyashita
雄次 宮下
Yoshiaki Kurimoto
好章 栗本
Akiyuki Kojima
昭之 小島
Masaru Kimura
勝 木村
Yoshitaka Kakegawa
吉高 掛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP10296711A priority Critical patent/JP2000128652A/en
Publication of JP2000128652A publication Critical patent/JP2000128652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for an activated carbon fiber structure having a large specific surface area in an economically profitable manner. SOLUTION: This method for producing an activated carbon fiber structure comprises coating a thermosetting resin such as a phenolic resin on thermally infusible fibers such as novoloid fibers as the precursor of activated carbon fibers, thermally molding the coated thermally infusible fibers into an arbitrary shape by the use of a heat molding machine to obtain the fiber/thermosetting resin composite article, and subsequently sintering the composite article in the presence of a gas activating agent such as steam or carbon dioxide or a chemical activating agent in a reducing atmosphere such as nitrogen or an inert gas at 600-2,500 deg.C. The produced activated fiber structure has a specific surface area of 1,000-3,000 m2/g and rich profitability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明の利用用途は多岐にわた
り、脱臭剤、空気清浄、水道水及び河川、湖沼水の浄
化、溶剤回収、ガス分離、電池及びコンデンサーの電
極、触媒担持、分子フルイに用いうる活性炭繊維構造体
の製造方法に関するものである。
The present invention can be used in a wide variety of applications, including deodorants, air purification, purification of tap water and rivers, lake water, solvent recovery, gas separation, electrodes for batteries and capacitors, catalyst support, and molecular sieves. The present invention relates to a method for producing an activated carbon fiber structure that can be used.

【従来の技術】活性炭に関しては上記の利用分野、とり
わけ脱臭、水浄化の分野では、古くから椰子殻、木、
竹、及び石炭から得られる粉状あるいは粒状の活性炭が
用いられてきた。これらは安価であることから広く普及
したが、天然物であることから金属分等のコンタミネー
ションがあること、品質のバラツキが大きいこと、及び
活性炭の主たる特性である単位重量あたりの表面積、い
わゆる比表面積に限りがあることから工業的用途、ある
いは工業製品の部品には使用範囲が制限される。近年、
電子機器の普及や環境問題の解消から高性能の活性炭が
求められ、吸着速度が速く、大きな比表面積が得られる
活性炭繊維が用いられるようになった。しかしながら、
ニーズの多様化に伴い活性炭繊維の賦形が要求され、活
性炭繊維をポリビニルアルコール等の接着剤で結合する
ことで構造体を得ることはできたが、この方法では一旦
賦活により得た、吸着に必要な微細な空孔を埋めてしま
い活性炭繊維本来の性能が損なわれてしまう。これを解
消する方法としては、T.D.Burchell等によっ
て研究された“Carbon Vol.35, No.9
p1279−1294(1997)”に示される技術が
ある。この技術はピッチ系炭素繊維を用い、活性炭構造
体を得るものであるが、経済的にいえば、炭素繊維を焼
成する工程と構造物を賦活焼成する工程の2回の焼成工
程が必要であり、多大な時間とエネルギーが必要で経済
的方法とはいえない。このように、活性炭繊維のもつ性
能を維持し、かつ経済的に活性炭繊維構造体を得る方法
は発見されていなかった。
2. Description of the Related Art Activated carbon has been used for a long time in the above-mentioned fields of use, especially in the fields of deodorization and water purification.
Powdered or granular activated carbon obtained from bamboo and coal has been used. These are widely used because they are inexpensive, but because they are natural products, there is contamination such as metal content, the quality varies widely, and the surface area per unit weight, which is the main characteristic of activated carbon, the so-called ratio Due to the limited surface area, the range of use is limited for industrial applications or parts of industrial products. recent years,
With the spread of electronic devices and the elimination of environmental problems, high-performance activated carbon has been demanded, and activated carbon fibers having a high adsorption rate and a large specific surface area have been used. However,
With the diversification of needs, the shape of activated carbon fiber is required, and a structure could be obtained by bonding activated carbon fiber with an adhesive such as polyvinyl alcohol. The necessary fine pores are filled and the original performance of the activated carbon fiber is impaired. As a method for resolving this, “Carbon Vol. 35, No. 9” studied by TD Burchell et al.
pp. 1279-1294 (1997) ". This technique uses a pitch-based carbon fiber to obtain an activated carbon structure. In terms of economy, however, the step of firing the carbon fiber and the structure are simplified. The activation firing requires two firing steps, requiring a great deal of time and energy, and is not an economical method, thus maintaining the performance of the activated carbon fiber and economically activating the activated carbon fiber. No method for obtaining the structure has been found.

【発明が解決しようとする課題】活性炭繊維の特徴を維
持し、焼成工程を低減し経済的に活性炭繊維構造体を得
る、活性炭繊維構造体の製造方法を提供するものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an activated carbon fiber structure which maintains the characteristics of the activated carbon fiber, reduces the firing step, and economically obtains the activated carbon fiber structure.

【課題を解決する手段】発明者等は前述の活性炭繊維構
造体の従来の製造方法における特性上及び経済的欠点を
解消すべく活性炭繊維構造体の製造方法を鋭意研究した
結果、従来技術の問題点を解消できる方法を見出し本発
明に至った。前述参考文献にある方法では活性炭繊維の
性能は維持されるものの、この製造工程に2回の焼成工
程が必要であり、経済性に欠けていた。それは活性炭繊
維の前駆体繊維は熱可塑または熱溶融性であるので加熱
焼成の際にその繊維構造を失い、炭化してしまうため、
1度炭化し炭素繊維として賦活焼成に耐える処理を施さ
ねばならない必然的理由がある。本発明では賦活焼成工
程を1回で行い、コスト及びエネルギー消費を飛躍的に
低減できることを見出した。すなわち、焼成によって溶
融しない繊維を前駆体とすれば良いことを見出した。具
体的には通常炭素繊維を得る場合同目的で不融化処理を
行なって得た不融化繊維が適している。該不融化繊維も
不融化工程があるが、炭化焼成工程に比較すれば格段に
経済的であることは市場価格の上からも明らかである。
さらに、このような不融化処理さえも必要のないノボロ
イド繊維は本発明の目的に最適である。以上より、比表
面積が1000〜3000m2/gであり、かつ経済性
に富む活性炭繊維構造体の製造方法を見出した。本発明
は、活性炭繊維構造体の製造方法において、該前駆体繊
維に熱不溶融性の繊維をフェノール樹脂等の熱硬化性樹
脂で熱成型した後、賦活、焼成し、比表面積の大きい、
かつ経済性に富む活性炭繊維構造体の製造方法である。
以下本発明を詳細に説明する。使用する前駆体繊維は賦
活、焼成時の温度条件、600〜1200℃で不溶融性
で、繊維形状を失わないことが必須条件である。つま
り、繊維状活性炭の特徴である大きな比表面積が損なわ
れ、目的とする吸着速度及び吸着量が得られなくなるか
らである。然るに、本発明では、本質的に熱不溶融性の
ノボロイド繊維、及び不融化処理を施したアクリル系繊
維、ピッチ系繊維、レーヨン系繊維が適していることを
見出した。不融化処理を施したアクリル系繊維、ピッチ
系繊維、レーヨン系繊維を炭化焼成し得たアクリル系炭
素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維も本発
明の目的には適用できるが、2回の焼成工程が必要であ
るので経済的とはいえない。本発明では、経済的及び品
質的観点から、不融化処理も必要としない、つまり未処
理の繊維のまま使用できるノボロイド繊維が最も適して
いる。使用される繊維の太さ、長さは特に限定するもの
ではない。太さは直径5〜40μmの繊維を使用するの
が一般的で、大きな比表面積を得たい場合は細い繊維の
ほうが有利である。長さは短繊維から長繊維(ロービン
グ)まで使用でき、目的に応じて選択されるが、1次成
型工程を考慮すれば、0.1〜140mm、好ましくは
0.1〜10mmのものが適している。本発明は該前駆
体繊維を、繊維100重量部に対して固形分で0.5〜
10重量部のフェノール樹脂、メラミン樹脂、尿素樹
脂、レゾルシン樹脂、不飽和ポリエステル樹脂、ジアリ
ルフタレート樹脂、ビスマレイミド樹脂、ポリイミド樹
脂、ポリアミドイミド樹脂、ウレタン樹脂、エポキシ樹
脂から選ばれる熱硬化性樹脂あるいはこれらのうち2種
類以上の混合物を塗布し、熱成型機にて任意の形状に成
型し、繊維/熱硬化樹脂複合体の1次成型物を得る。焼
成時の残炭率、バインダーに使用されている樹脂も賦活
の際に活性炭になること及び本発明に最も適している前
駆体繊維のノボロイド繊維と同一物質であることからフ
ェノール樹脂が好ましい。バインダー量は0.5重量部
未満では結合力が乏しく、焼成前の複合体の成型が制限
され、逆に10重量部以上では、繊維が樹脂層に埋没し
てしまい繊維構造体としての特性が損なわれてしまう。
ここでいうフェノール樹脂とは公知の技術で得られるも
のであり、特に限定しない。つまり、公知の原料、触
媒、装置及び方法で得られる水溶性レゾール樹脂、アル
コール溶性レゾール樹脂、固形レゾール樹脂、及び該レ
ゾール樹脂を乳化剤にて乳化分散したエマルション、ノ
ボラック樹脂100重量部に対して硬化剤としてヘキサ
メチレンテトラミン5〜25重量部含有する組成物、ま
た該組成物を水、グリコール類、アルコール類、ケトン
類に溶解した溶液あるいは分散させたスラリー、及び乳
化剤にて乳化分散したエマルションをいう。また、該フ
ェノール樹脂の硬化、成型方法においては公知の条件で
行うもので、特別限定されるものではない。一方、繊維
/熱硬化性樹脂複合体を常温硬化(低温硬化も含む)で
得ることもできる。酸硬化フェノール樹脂及びフラン樹
脂、エステル硬化フェノール樹脂、二酸化炭素硬化フェ
ノール樹脂を用い成型する。成型品を得る方法としては
例示すれば、概ね次のとおりである。ノボロイド繊維1
00重量部に対して固形レゾール樹脂粉末0.5〜10
重量部を水によってスラリーにし、所定の型内に注入す
る。減圧スクリーンにて型内の水分を除去した後、成型
物を型からはずし60〜80℃にて、30〜60分で乾
燥する。その後、150〜200℃、60〜180分で
硬化成型し繊維/熱硬化性樹脂複合体を得る。このと
き、型からはずさず、型内で乾燥、硬化させることもで
きる。また、種々の方法で樹脂被覆繊維を作成し、熱プ
レス成型、押し出し成型、引きぬき成型、トランスファ
ー成型、射出成型で成型体を得ることも当然可能であ
り、その方法は得ようとする成型体の形状及び構造に依
存する。得られた複合体は公知の炭化賦活技術により活
性炭繊維構造体を得る。雰囲気ガス、賦活ガス及び焼成
賦活条件は特に限定されるものではないが、窒素及びヘ
リウム、ネオン、アルゴン、キセノン、クリプトンのよ
うな還元雰囲気中で、水蒸気、二酸化炭素を賦活ガスと
して、あるいは塩化亜鉛、硫酸、水酸化カリウム等の薬
剤を用いて、昇温速度0.5〜10℃/分で炭化賦活す
る。本発明で得られた活性炭繊維構造体の比表面積は1
000〜3000m/gを有し、脱臭剤、空気清浄、
水道水及び河川、湖沼水の浄化、溶剤回収、ガス分離、
電池及びコンデンサーの電極、触媒担持、分子フルイ等
利用用途は多岐にわたる。
Means for Solving the Problems The inventors of the present invention have intensively studied a method of manufacturing an activated carbon fiber structure in order to solve the above-mentioned characteristics and economic disadvantages of the conventional method of manufacturing an activated carbon fiber structure. The present inventors have found a method that can solve the problem, and have reached the present invention. Although the performance of the activated carbon fiber is maintained by the method described in the above-mentioned reference, this manufacturing process requires two firing steps, and is not economical. Because the precursor fiber of the activated carbon fiber is thermoplastic or hot-melt, it loses its fiber structure during heating and firing and carbonizes,
There is an inevitable reason that the carbonized fiber must be treated once so as to withstand activated firing. In the present invention, the activation firing step is performed once, and it has been found that cost and energy consumption can be drastically reduced. That is, it has been found that a fiber that does not melt by firing may be used as a precursor. Specifically, when carbon fibers are usually obtained, infusibilized fibers obtained by performing infusibilization treatment for the same purpose are suitable. Although the infusibilized fiber also has an infusibilizing step, it is clear from the market price that it is significantly more economical than the carbonizing and firing step.
In addition, novoloid fibers that do not even require such infusibilizing treatment are optimal for the purposes of the present invention. As described above, a method for producing an activated carbon fiber structure having a specific surface area of 1,000 to 3,000 m 2 / g and rich economic efficiency was found. The present invention relates to a method for producing an activated carbon fiber structure, wherein a thermo-infusible fiber is thermoformed with a thermosetting resin such as a phenol resin in the precursor fiber, activated, fired, and has a large specific surface area.
It is a method for producing an activated carbon fiber structure which is rich in economy.
Hereinafter, the present invention will be described in detail. It is an essential condition that the precursor fiber to be used is inactive at 600 to 1200 ° C. and does not lose the fiber shape, at the temperature conditions during activation and firing. That is, the large specific surface area, which is a characteristic of the fibrous activated carbon, is impaired, and the desired adsorption speed and adsorption amount cannot be obtained. However, in the present invention, it has been found that novoloid fibers, which are essentially heat-insoluble, and acrylic fibers, pitch fibers, and rayon fibers which have been subjected to infusibility treatment are suitable. Acrylic, pitch, and rayon carbon fibers obtained by carbonizing and firing an infusible acrylic fiber, pitch fiber, and rayon fiber can also be used for the purpose of the present invention. It is not economical because a baking step is required. In the present invention, from the viewpoints of economy and quality, novoloid fibers which do not require infusibilizing treatment, that is, can be used as untreated fibers, are most suitable. The thickness and length of the fibers used are not particularly limited. In general, fibers having a diameter of 5 to 40 μm are used. If a large specific surface area is desired, thin fibers are more advantageous. The length can be used from short fiber to long fiber (roving) and is selected according to the purpose. However, in consideration of the primary molding step, a length of 0.1 to 140 mm, preferably 0.1 to 10 mm is suitable. ing. The present invention, the precursor fiber, a solid content of 0.5 to 100 parts by weight of the fiber.
10 parts by weight of phenolic resin, melamine resin, urea resin, resorcinol resin, unsaturated polyester resin, diallyl phthalate resin, bismaleimide resin, polyimide resin, polyamideimide resin, urethane resin, thermosetting resin selected from epoxy resin or these , A mixture of two or more of them is applied and molded into an arbitrary shape by a thermoforming machine to obtain a primary molded product of a fiber / thermosetting resin composite. A phenol resin is preferred because the residual carbon ratio at the time of firing and the resin used for the binder also become activated carbon upon activation and are the same substance as the novoloid fiber of the precursor fiber most suitable for the present invention. If the amount of the binder is less than 0.5 part by weight, the bonding strength is poor, and the molding of the composite before firing is limited. On the other hand, if the amount of the binder is 10 parts by weight or more, the fibers are buried in the resin layer and the properties as a fiber structure are deteriorated. Will be spoiled.
Here, the phenol resin is obtained by a known technique, and is not particularly limited. That is, a known raw material, a catalyst, a water-soluble resol resin, an alcohol-soluble resol resin, a solid resol resin obtained by an apparatus and a method, and an emulsion obtained by emulsifying and dispersing the resol resin with an emulsifier, and curing to 100 parts by weight of a novolak resin. A composition containing 5 to 25 parts by weight of hexamethylenetetramine as an agent, a solution or dispersion of the composition in water, glycols, alcohols, and ketones, and an emulsion emulsified and dispersed with an emulsifier. . The method of curing and molding the phenol resin is performed under known conditions, and is not particularly limited. On the other hand, the fiber / thermosetting resin composite can be obtained by ordinary temperature curing (including low temperature curing). It is molded using an acid-cured phenol resin, a furan resin, an ester-cured phenol resin, and a carbon dioxide-cured phenol resin. The method of obtaining a molded product is generally as follows, for example. Novoloid fiber 1
Solid resole resin powder 0.5 to 10 parts by weight
A weight part is slurried with water and poured into a predetermined mold. After removing the moisture in the mold with a reduced pressure screen, the molded product is removed from the mold and dried at 60 to 80 ° C for 30 to 60 minutes. Thereafter, the mixture is cured and molded at 150 to 200 ° C. for 60 to 180 minutes to obtain a fiber / thermosetting resin composite. At this time, it can be dried and cured in the mold without removing it from the mold. In addition, it is naturally possible to produce a resin-coated fiber by various methods and obtain a molded body by hot press molding, extrusion molding, pull-out molding, transfer molding, or injection molding. Depends on the shape and structure of the The obtained composite is used to obtain an activated carbon fiber structure by a known carbonization activation technique. The atmosphere gas, the activation gas, and the firing activation conditions are not particularly limited. However, in a reducing atmosphere such as nitrogen and helium, neon, argon, xenon, and krypton, water vapor, carbon dioxide is used as an activation gas, or zinc chloride is used. Carbonization is activated using a chemical such as sulfuric acid, potassium hydroxide or the like at a rate of temperature increase of 0.5 to 10 ° C./min. The specific surface area of the activated carbon fiber structure obtained by the present invention is 1
000-3000 m 2 / g, deodorant, air freshener,
Tap water, river and lake water purification, solvent recovery, gas separation,
There are a wide variety of applications such as electrodes for batteries and capacitors, catalyst support, and molecular sieves.

【実施例】以下本発明の実施例について説明する。 [実施例1]繊維直径14μm、繊維長3mmのノボロ
イド繊維(群栄化学工業株式会社製、商品名「カイノー
ル」、KF−0203)100gと固形レゾール型フェ
ノール樹脂(群栄化学工業株式会社製、PG−412
1)5gを1lの水に投入し、充分攪拌してスラリーと
する。該スラリーをスクリーンのついた、100×10
0×10mmの金型内に注入し、減圧にて脱水する。さ
らに、型ごと80℃の熱風乾燥機中に60分間静置し乾
燥する。乾燥した仮成型体を静かに抜型し、180℃の
熱風乾燥機で120分間静置し、硬化させ複合体を得
る。該複合体を内径150mmφ石英管におき、密封
し、50lの窒素ガスを1l/分の流量で流し、炉内の
空気と完全に置換する。次いで、450ml/分の窒素
ガスを通気しながら昇温速度5℃/分加熱焼成する。炉
内温度が300℃に達したら、流量450ml/分の窒
素ガスを純水中に通気させたガスに切り替え、賦活す
る。 炉内温度が800℃に達したら、60分保持した
後、水蒸気を含んだガスの導入を止め、窒素ガスに切り
替え、通気したままさらに60分保持する。最後に、加
熱を止め、窒素ガスを通気したまま約8時間かけて室温
に戻し、活性炭繊維構造体を得た。得られた活性炭繊維
構造体の寸法90×92×8mm、重量27g、窒素に
よる等温吸着法により求めた比表面積1600m2/g
であった。 [実施例2]繊維直径22μm、繊維長10mmのノボ
ロイド繊維(群栄化学工業株式会社製、商品名「カイノ
ール」、KF−0510)を用い、実施例1と同様な手
順で、寸法91×89×9mm、重量25g、比表面積
1680のm2/gの活性炭繊維構造体を得た。 [実施例3]繊維直径10μm、繊維長10mmの市販
のピッチ系半焼成繊維を用い、実施例1と同様な手順
で、寸法93×91×9mm、重量31g、比表面積1
360m2/gの活性炭繊維構造体を得た。 [実施例4]フエノール500g、50%ホルマリン2
40g、蓚酸5gを100℃、3時間還流反応し、次い
で180℃、50torr減圧下で水、未反応フェノー
ルを除去した後、0.5gの塩化亜鉛を添加し、水銀法
軟化点91℃の塩化亜鉛含有ノボラック樹脂を得た。該
ノボラック樹脂を150℃にて溶融紡糸し、10重量部
のホルムアルデヒド、5%の塩化水素を含む水溶液中で
100℃、4時間処理し、繊維直径18μmの塩化亜鉛
含有ノボロイド長繊維を得た。該繊維を用い、実施例1
と同様の手順で、ただし賦活ガスである水蒸気は導入せ
ず焼成し、寸法92×90×8mm、重量24g、比表
面積1480m2/gの活性炭繊維構造体を得た。 [実施例5]実施例1の繊維/熱硬化性樹脂複合体を得
る工程において、繊維直径14μm、繊維長3mmのノ
ボロイド繊維100gに対してレゾール型フェノール樹
脂(群栄化学工業株式会社製、商品名 PL−263
8)10g、40重量部p−トルエンスルホン酸水溶液
3gを添加し、直ちに型に充填しそのまま3時間放置
し、抜型して複合体を得た。その後の工程は実施例1と
同様な手順で、寸法92×90×9mm、重量23g、
比表面積1520のm2/gの活性炭繊維構造体を得
た。 [実施例6]実施例1の繊維/熱硬化性樹脂複合体を得
る工程において、繊維直径14μm、繊維長3mmのノ
ボロイド繊維100gに対して、バインダーとして市販
のフェノールノボラック型エポキシ樹脂6g及び硬化剤
4gを用い、実施例1と同様な手順で、寸法90×92
×8mm、重量21g、比表面積1580m2/gの活
性炭繊維構造体を得た。 [実施例7]実施例1の賦活工程において、雰囲気温度
が300℃に到達した時点で、流量450ml/分で二
酸化炭素を導入し、実施例1と同様な手順で、寸法93
×92×9mm、重量26g、比表面積1620のm2
/gの活性炭繊維構造体を得た。 [実施例8]実施例1の炭化、賦活工程において、80
0℃で賦活ガスの導入を止めた後、さらに5℃/分で昇
温を継続し2000℃まで加熱する。他は実施例1と同
様な手順で、寸法87×88×8mm、重量20g、比
表面積1580m 2/gでX線回折2θ=26.5゜に
吸収をもつの黒鉛質活性炭構造体を得た。[実施例9]
実施例1に示すKF−0203 100重量部に対し
て、固形分で0.5重量部の水酸化カリウムを均一に塗
布し、実施例1と同様な手順で、寸法90×88×8m
m、重量23g、比表面積1560のm2/gの活性炭
繊維構造体を得た。 [比較例]繊維直径11μm、繊維長6mmの活性炭繊
維(日本カイノール株式会社製、カイノール活性炭 A
CF−1606−15、比表面積1580m2/g)1
00gを200gの重量平均分子量10000のポリビ
ニルアルコール1重量部水溶液でスラリーにし、実施例
1と同様の手順で成型し、寸法98×97×10mm、
重量101g、比表面積739m2/gの活性炭繊維構
造体を得た。 以上の結果を表1に示す。
Embodiments of the present invention will be described below. [Example 1] Noboro having a fiber diameter of 14 µm and a fiber length of 3 mm
Id fiber (manufactured by Gunei Chemical Industry Co., Ltd., trade name "Kaino
Le, KF-0203) 100g and solid resole type
Knol resin (Gunei Chemical Industry Co., Ltd., PG-412
1) Put 5 g into 1 liter of water, mix well and mix with slurry
I do. The slurry was screened, 100 × 10
Pour into a 0 × 10 mm mold and dehydrate under reduced pressure. Sa
In addition, the mold was placed in a hot air drier at 80 ° C for 60 minutes and dried.
Dry. Gently remove the dried temporary molded body, and
Leave for 120 minutes in a hot air dryer and cure to obtain a composite
You. Place the complex in a 150 mm inner diameter quartz tube and seal
Then, 50 l of nitrogen gas was flowed at a flow rate of 1 l / min.
Replace completely with air. Then nitrogen at 450 ml / min
Heating and sintering is performed at a heating rate of 5 ° C./min while passing gas. Furnace
When the internal temperature reaches 300 ° C, the nitrogen flow rate is 450ml / min.
Switch source gas to gas aerated in pure water to activate
You. When the temperature in the furnace reached 800 ° C., the temperature was maintained for 60 minutes.
After that, stop introducing gas containing water vapor and switch to nitrogen gas.
Replace and hold for an additional 60 minutes with aeration. Finally,
Turn off the heat and let the nitrogen gas pass for about 8 hours at room temperature
To obtain an activated carbon fiber structure. Activated carbon fiber obtained
Structure dimensions 90 × 92 × 8mm, weight 27g, nitrogen
Surface area 1600m obtained by isothermal adsorption methodTwo/ G
Met. Example 2 Novo with fiber diameter of 22 μm and fiber length of 10 mm
Lloyd fiber (manufactured by Gunei Chemical Co., Ltd., trade name "Kino
, KF-0510) and the same procedure as in Example 1.
In order, dimensions 91 x 89 x 9 mm, weight 25 g, specific surface area
1680 mTwo/ G of activated carbon fiber structure was obtained. Example 3 Commercially available fiber having a fiber diameter of 10 μm and a fiber length of 10 mm
Procedure similar to Example 1 using pitch-based semi-fired fiber
With dimensions 93 × 91 × 9 mm, weight 31 g, specific surface area 1
360mTwo/ G of activated carbon fiber structure was obtained. Example 4 500 g of phenol, 50% formalin 2
40 g and 5 g of oxalic acid were refluxed at 100 ° C. for 3 hours.
Water at 180 ° C under reduced pressure of 50 torr, unreacted phenol
0.5 g of zinc chloride was added and the mercury method
A novolak resin containing zinc chloride having a softening point of 91 ° C. was obtained. The
Novolak resin is melt spun at 150 ° C and 10 parts by weight
Formaldehyde in an aqueous solution containing 5% hydrogen chloride
Treated at 100 ° C for 4 hours, zinc chloride with fiber diameter of 18μm
The obtained novoloid long fiber was obtained. Example 1 using the fiber
The procedure is the same as that described above, except that the steam as the activation gas is introduced.
Calcined, size 92 × 90 × 8mm, weight 24g, ratio table
Area 1480mTwo/ G of activated carbon fiber structure was obtained. [Example 5] A fiber / thermosetting resin composite of Example 1 was obtained.
In the process, the fiber diameter is 14 μm and the fiber length is 3 mm.
Resole type phenol tree for 100g of void fiber
Fat (Gunei Chemical Industry Co., Ltd., trade name PL-263)
8) 10 g, 40 parts by weight p-toluenesulfonic acid aqueous solution
Add 3g, immediately fill the mold and leave it for 3 hours
Then, the resultant was removed from the mold to obtain a composite. Subsequent steps are the same as those of the first embodiment
By the same procedure, dimensions 92 × 90 × 9mm, weight 23g,
Specific surface area 1520 mTwo/ G of activated carbon fiber structure
Was. Example 6 A fiber / thermosetting resin composite of Example 1 was obtained.
In the process, the fiber diameter is 14 μm and the fiber length is 3 mm.
Commercially available as binder for 100 g of void fiber
6g of phenol novolak epoxy resin and hardener
Using the same procedure as in Example 1 using 4 g, dimensions 90 × 92
× 8mm, weight 21g, specific surface area 1580mTwo/ G activity
A charcoal fiber structure was obtained. [Embodiment 7] In the activation step of Embodiment 1, the ambient temperature
Reaches 300 ° C, the flow rate is 450 ml / min.
By introducing carbon oxide, the same procedure as in Example 1 was carried out to obtain a dimension 93
× 92 × 9mm, weight 26g, m of specific surface area 1620Two
/ G of activated carbon fiber structure was obtained. Example 8 In the carbonization and activation process of Example 1, 80
After stopping the introduction of the activation gas at 0 ° C., the temperature is further increased at 5 ° C./min.
Continue heating and heat to 2000 ° C. Others are the same as Example 1.
With the same procedure, dimensions 87 x 88 x 8 mm, weight 20 g, ratio
Surface area 1580m Two/ G X-ray diffraction 2θ = 26.5 °
A graphitic activated carbon structure with absorption was obtained. [Example 9]
To 100 parts by weight of KF-0203 shown in Example 1
And uniformly apply 0.5 parts by weight of potassium hydroxide on a solid basis.
Cloth, and in the same procedure as in Example 1, dimensions 90 × 88 × 8 m
m, weight 23 g, specific surface area 1560 mTwo/ G of activated carbon
A fiber structure was obtained. [Comparative Example] Activated carbon fiber with a fiber diameter of 11 μm and a fiber length of 6 mm
Wei (Kainor Activated Carbon A, manufactured by Nippon Kainol Co., Ltd.)
CF-1606-15, specific surface area 1580mTwo/ G) 1
200 g of polystyrene having a weight average molecular weight of 10,000
Example 1
Molded in the same procedure as 1 and dimensions 98 × 97 × 10 mm,
Weight 101g, specific surface area 739mTwo/ G activated carbon fiber structure
A structure was obtained. Table 1 shows the above results.

【表1】 [Table 1]

【発明の効果】本発明により、活性炭繊維構造体を、活
性炭繊維がもつ特性、すなわち高比表面積を損なわず、
かつ経済的な方法で得ることを可能にした。該活性炭繊
維構造体は広い産業分野の部材として応用される。
According to the present invention, the activated carbon fiber structure can be prepared without impairing the properties of the activated carbon fiber, that is, the high specific surface area.
And made it possible to obtain it in an economical way. The activated carbon fiber structure is applied as a member in a wide range of industrial fields.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 勝 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内 (72)発明者 掛川 吉高 群馬県高崎市宿大類町700番地 群栄化学 工業株式会社内 Fターム(参考) 4G032 AA13 AA14 AA52 AA58 BA00 BA05 GA12  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Masaru Kimura 700 Shukudaidaicho, Takasaki City, Gunma Prefecture Inside Gunei Chemical Industry Co., Ltd. In-house F-term (reference) 4G032 AA13 AA14 AA52 AA58 BA00 BA05 GA12

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】前駆体繊維としてノボロイド繊維100重
量部に対して、1次成型バインダーとして固形分0.5
〜10重量部の熱硬化性樹脂を均一に塗布し、任意の形
状に熱成型した後、水蒸気を賦活ガスに用いながら、窒
素雰囲気中で、焼成温度600〜1200℃で焼成して
なる活性炭繊維構造体の製造方法。
The present invention relates to 100 parts by weight of novoloid fiber as a precursor fiber and a solid content of 0.5 as a primary molding binder.
Activated carbon fiber obtained by uniformly applying 10 to 10 parts by weight of a thermosetting resin, thermoforming into an arbitrary shape, and firing at a firing temperature of 600 to 1200 ° C. in a nitrogen atmosphere while using steam as an activation gas. The method of manufacturing the structure.
【請求項2】請求項1にあって、前駆体繊維が不融化処
理を施したアクリル系繊維、ピッチ系繊維、レーヨン系
繊維を用いることを特徴とする請求項1に記載の活性炭
繊維構造体の製造方法。
2. The activated carbon fiber structure according to claim 1, wherein the precursor fiber is an infusibilized acrylic fiber, pitch fiber, or rayon fiber. Manufacturing method.
【請求項3】請求項1のノボロイド繊維にあって、ノボ
ロイド繊維100重量部に対して0.1〜10重量部の
塩化亜鉛を含有するノボロイド繊維を用いることを特徴
とする請求項1および2に記載の活性炭繊維構造体の製
造方法。
3. The novoloid fiber according to claim 1, wherein the novoloid fiber contains 0.1 to 10 parts by weight of zinc chloride per 100 parts by weight of the novoloid fiber. 3. The method for producing an activated carbon fiber structure according to item 1.
【請求項4】請求項1のノボロイド繊維にあって、繊維
長が0.1〜140mmの短繊維であることを特徴する
請求項1乃至3の活性炭繊維構造体の製造方法。
4. The method for producing an activated carbon fiber structure according to claim 1, wherein the novoloid fiber is a short fiber having a fiber length of 0.1 to 140 mm.
【請求項5】請求項1の1次成型バインダーにあって、
該1次成型バインダーが水溶性レゾール樹脂、アルコー
ル溶性レゾール樹脂、固形レゾール樹脂、及び該レゾー
ル樹脂を乳化剤にて乳化分散したエマルション、ノボラ
ック樹脂100重量部に対して硬化剤としてヘキサメチ
レンテトラミン5〜25重量部含有する組成物、また該
組成物を水、グリコール類、アルコール類、ケトン類に
溶解した溶液あるいは分散させたスラリー、及び乳化剤
にて乳化分散したエマルションを用い、熱硬化により成
型することを特徴とする請求項1乃至4の活性炭繊維構
造体の製造方法。
5. The primary molding binder according to claim 1, wherein
The primary molding binder is a water-soluble resole resin, an alcohol-soluble resole resin, a solid resole resin, an emulsion in which the resole resin is emulsified and dispersed with an emulsifier, and hexamethylenetetramine 5 to 25 as a curing agent for 100 parts by weight of a novolak resin. Using a composition containing parts by weight, or a solution or dispersion of the composition dissolved in water, glycols, alcohols, and ketones, and an emulsion emulsified and dispersed with an emulsifier, and molding by thermosetting. The method for producing an activated carbon fiber structure according to any one of claims 1 to 4, wherein
【請求項6】請求項1の1次成型バインダーにあって、
該1次成型バインダーが酸硬化フェノール樹脂及びフラ
ン樹脂、エステル硬化フェノール樹脂、二酸化炭素硬化
フェノール樹脂を用い、常温硬化により成型することを
特徴とする請求項1乃至5の活性炭繊維構造体の製造方
法。
6. The primary molding binder according to claim 1, wherein:
The method for producing an activated carbon fiber structure according to any one of claims 1 to 5, wherein the primary molding binder is formed by curing at room temperature using an acid-cured phenol resin and a furan resin, an ester-cured phenol resin, and a carbon dioxide-cured phenol resin. .
【請求項7】請求項1の1次成型バインダーにあって、
該バインダーがメラミン樹脂、尿素樹脂、レゾルシン樹
脂、不飽和ポリエステル樹脂、ジアクリルフタレート樹
脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリアミド
イミド樹脂、ウレタン樹脂、エポキシ樹脂であることを
特徴とする請求項1乃至6の活性炭繊維構造体の製造方
法。
7. The primary molding binder according to claim 1, wherein:
7. The binder according to claim 1, wherein the binder is a melamine resin, a urea resin, a resorcin resin, an unsaturated polyester resin, a diacryl phthalate resin, a bismaleimide resin, a polyimide resin, a polyamideimide resin, a urethane resin, or an epoxy resin. A method for producing an activated carbon fiber structure.
【請求項8】請求項1の1次成型バインダーにあって、
該バインダーが請求項5及び請求項7に記載のバインダ
ーのうち、2種類以上のバインダーの混合物であること
を特徴とする請求項1乃至7の活性炭繊維構造体の製造
方法。
8. The primary molding binder according to claim 1, wherein:
The method for producing an activated carbon fiber structure according to any one of claims 1 to 7, wherein the binder is a mixture of two or more binders among the binders according to claim 5 and claim 7.
【請求項9】請求項1の賦活ガスにあって、該賦活ガス
が二酸化炭素であることを特徴とする請求項1乃至8の
活性炭繊維構造体の製造方法。
9. The activated carbon fiber structure according to claim 1, wherein the activation gas is carbon dioxide.
【請求項10】請求項1の賦活方法にあって、該賦活方
法が塩化亜鉛、硫酸、水酸化カリウムを用いた薬剤賦活
であることを特徴とする請求項1乃至9の活性炭繊維構
造体の製造方法。
10. The activated carbon fiber structure according to claim 1, wherein the activation method is a chemical activation using zinc chloride, sulfuric acid and potassium hydroxide. Production method.
【請求項11】請求項1の雰囲気ガスにあって、該雰囲
気ガスがヘリウム、ネオン、アルゴン、キセノン、クリ
プトンであることを特徴とする請求項1乃至10の活性
炭繊維構造体の製造方法。
11. The method for producing an activated carbon fiber structure according to claim 1, wherein said atmosphere gas is helium, neon, argon, xenon, or krypton.
【請求項12】請求項1の焼成工程において、600〜
1200℃で賦活、焼成した後、賦活ガスの導入を止
め、さらに温度1200〜2500℃焼成することを特
徴とする請求項1乃至11の黒鉛質活性炭構造体の製造
方法。
12. The sintering step according to claim 1, wherein
The method for producing a graphitic activated carbon structure according to any one of claims 1 to 11, wherein after the activation and firing at 1200 ° C, the introduction of the activation gas is stopped and the firing is further performed at 1200 to 2500 ° C.
JP10296711A 1998-10-19 1998-10-19 Production of activated carbon fiber structure Pending JP2000128652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10296711A JP2000128652A (en) 1998-10-19 1998-10-19 Production of activated carbon fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10296711A JP2000128652A (en) 1998-10-19 1998-10-19 Production of activated carbon fiber structure

Publications (1)

Publication Number Publication Date
JP2000128652A true JP2000128652A (en) 2000-05-09

Family

ID=17837107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10296711A Pending JP2000128652A (en) 1998-10-19 1998-10-19 Production of activated carbon fiber structure

Country Status (1)

Country Link
JP (1) JP2000128652A (en)

Similar Documents

Publication Publication Date Title
EP2089925B1 (en) Electrode substrate for electrochemical cell from carbon and cross-linkable resin fibers
CN110155978A (en) Wooden base carbon foam and composite material and correlation technique
US3671385A (en) Fibrous carbonaceous composites and method for manufacturing same
JP4776530B2 (en) Method for producing activated carbon molded body with frame inserted
JP2000128652A (en) Production of activated carbon fiber structure
US4985316A (en) Corrosion resistant fuel cell substrates
JP2006188418A (en) Porous clay film and method of manufacturing the same
JP3482610B2 (en) Prepreg sheet for porous carbonaceous molded plate
JPS605011A (en) Preparation of porous material of carbon having high strength
US5026402A (en) Method of making a final cell electrode assembly substrate
GB2069988A (en) Method of producing filter pads
JPS59174510A (en) Manufacture of carbon molded body
JPH06206780A (en) Production of active porous carbonaceous structure
JPH0867513A (en) Molecular sieve carbon and its production
Sun et al. The effects of carbonization time on the properties and structure of PAN-based activated carbon hollow fiber
JPH03329B2 (en)
JPH01253164A (en) Fuel cell board resistant against corrosion and its manufacture
JP2008044822A (en) Method of manufacturing porous glassy carbon material and porous glassy carbon material
JPH044244B2 (en)
JPH11139871A (en) Porous carbon material and its production
JPH05132377A (en) Production of molded active carbon
JPH0454631B2 (en)
JPH0624865A (en) Production of porous active carbon molding
JP3131911B2 (en) Method for producing thick porous carbon material
JP4665227B2 (en) Manufacturing method of glassy carbon fine powder