JP2000124139A - Plasma treating apparatus - Google Patents

Plasma treating apparatus

Info

Publication number
JP2000124139A
JP2000124139A JP10293305A JP29330598A JP2000124139A JP 2000124139 A JP2000124139 A JP 2000124139A JP 10293305 A JP10293305 A JP 10293305A JP 29330598 A JP29330598 A JP 29330598A JP 2000124139 A JP2000124139 A JP 2000124139A
Authority
JP
Japan
Prior art keywords
wafer
mounting surface
refrigerant
temperature
refrigerant path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10293305A
Other languages
Japanese (ja)
Inventor
Takeshi Miya
豪 宮
Masakazu Hoshino
正和 星野
Hidetsugu Setoyama
英嗣 瀬戸山
Koji Ishiguro
浩二 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10293305A priority Critical patent/JP2000124139A/en
Publication of JP2000124139A publication Critical patent/JP2000124139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the temperature uniformity of a work by making the distances between surfaces at the mounting surface sides of refrigerant path chambers and a mounting surface different, depending on the radius position, in a vacuum chuck for holding the work on the mounting surface. SOLUTION: In a vacuum chuck for mounting a wafer 5 as a work, tubular refrigerant path chambers 22 are approximately concentrically disposed. The distance between the top end of the outermost refrigerant path chambers 22 and a water 5 mounting surface is set to be less than the distance between the top end of the inner refrigerant path chambers 22 and the wafer 5 mounting surface. The radial width of a section of the outermost refrigerant pass chambers 22 is set to be less than the sectional area of other each inner chamber 22. This increases the sectional area of the refrigerant path chambers 22 to decrease the flow velocity of a refrigerant, thereby avoiding reducing the heat transfer from the chamber 22 surface to the refrigerant. Thus the temperature rise is reduced at the peripheral part of the wafer 5 to uniformize the temperature distribution over the wafer 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウェハなど被
処理体の温度管理を必要とする半導体プロセスにおい
て、処理過程中において、被処理体から熱を除去した
り、もしくは被処理体を加熱したりする吸着装置を備え
たプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing heat from a workpiece or heating the workpiece during a process in a semiconductor process requiring temperature control of the workpiece such as a semiconductor wafer. The present invention relates to a plasma processing apparatus provided with a suction device.

【0002】[0002]

【従来の技術】従来より半導体製造工程において半導体
ウェハ(以下「ウェハ」という)などの被処理体を処理
するために、反応性プラズマを利用したプラズマCVD
(Chemical Vapor Deposition)装置やプラズマエッチン
グ装置等が使用されている。
2. Description of the Related Art Conventionally, plasma CVD using reactive plasma has been used for processing an object to be processed such as a semiconductor wafer (hereinafter, referred to as "wafer") in a semiconductor manufacturing process.
(Chemical Vapor Deposition) apparatus, plasma etching apparatus and the like are used.

【0003】種々のプラズマ処理装置では静電吸着装置
が好適に用いられている。この静電吸着装置は、導電体
と導電体上の被処理体の吸着部分を被覆する絶縁膜とを
備え、導電体(電極)と被処理体との間に所定の直流電
圧を印加して、両者間に静電気力を生じさせ、被処理体
を導電体上に吸着,保持するものである。
[0003] In various plasma processing apparatuses, an electrostatic suction apparatus is suitably used. This electrostatic adsorption device includes a conductor and an insulating film covering an adsorption portion of the object to be processed on the conductor, and applies a predetermined DC voltage between the conductor (electrode) and the object to be processed. An electrostatic force is generated between the two, and the object to be processed is adsorbed and held on the conductor.

【0004】ウェハはプラズマ処理中に熱量を受ける
が、適切な処理のためには温度を制御することが必要で
ある。そのため静電吸着装置内には冷媒など流体を流
し、吸着装置の温度を調整することによりウェハを所望
の温度に制御している。
[0004] Wafers receive heat during plasma processing, but it is necessary to control the temperature for proper processing. Therefore, a fluid such as a refrigerant is caused to flow in the electrostatic suction device, and the temperature of the suction device is adjusted to control the wafer at a desired temperature.

【0005】プラズマ処理装置の静電吸着装置の半径は
ウェハ半径よりも1mm程度小さくなるように作製されて
いる。これは静電吸着装置の角部が直接プラズマにさら
されないようにして、この部分の表面をプラズマ照射か
ら保護するためである。
The radius of the electrostatic attraction device of the plasma processing apparatus is manufactured to be about 1 mm smaller than the wafer radius. This is to prevent the corners of the electrostatic chuck from being directly exposed to the plasma and to protect the surface of this portion from plasma irradiation.

【0006】以上のような理由でウェハが静電吸着装置
からはみ出しており、その部分は静電吸着装置表面もし
くは静電吸着装置表面を流れる伝熱ガスと接触していな
いために、ウェハ周辺部の温度がその他の領域よりも高
くなる傾向にある。
For the above reasons, the wafer protrudes from the electrostatic attraction device, and the portion does not come into contact with the surface of the electrostatic attraction device or the heat transfer gas flowing on the surface of the electrostatic attraction device. Tend to be higher than other regions.

【0007】[0007]

【発明が解決しようとする課題】以上のことからウェハ
の温度均一性を向上させるには静電吸着装置外周部の温
度をその他の領域よりも低くすればよい。そのためには
静電吸着装置内の冷媒通路室の濡れ縁面積(冷媒と静電
吸着装置との接触面積)を外周部で大きくすることが有
効であると考えられる。しかし特開平9−205133 号公報
に開示されているように、ウェハを静電吸着装置から脱
離させる際のウェハの変形を小さくするためには、プッ
シャーピンをウェハ半径の60〜80%の位置に置くこ
とが望ましく、その位置のプッシャーピンの存在によ
り、外周部に広い濡れ縁面積を持つ冷媒通路を設けるの
が困難である。
As described above, in order to improve the temperature uniformity of the wafer, the temperature of the outer peripheral portion of the electrostatic attraction device needs to be lower than that of other regions. For that purpose, it is considered effective to increase the wet edge area (the contact area between the refrigerant and the electrostatic adsorption device) of the refrigerant passage chamber in the electrostatic adsorption device at the outer peripheral portion. However, as disclosed in Japanese Patent Application Laid-Open No. 9-205133, in order to reduce the deformation of the wafer when the wafer is detached from the electrostatic chucking device, the pusher pin is required to be positioned at 60 to 80% of the wafer radius. It is difficult to provide a coolant passage having a large wetted edge area on the outer peripheral portion due to the presence of the pusher pin at that position.

【0008】最近は半導体の高集積化により超微細加工
技術が必要であり、従来よりも高度な基板の温度制御が
必要となっている。また、被処理基板が8インチから1
2インチへと大口径化が進むに伴い、広い領域でのプラ
ズマの均一性を保つことが困難となり、ウェハの面内温
度分布が大きくなる恐れがある。
Recently, ultra-fine processing technology is required due to the high integration of semiconductors, and a higher degree of substrate temperature control than in the past is required. In addition, the substrate to be processed is 8 inches to 1 inch.
As the diameter increases to 2 inches, it becomes difficult to maintain plasma uniformity over a wide area, and the temperature distribution within the wafer surface may increase.

【0009】[0009]

【課題を解決するための手段】載置面に被処理体を保持
可能であり、内部に流体を流す室を有した吸着装置を備
えたプラズマ処理装置において、前記室の前記載置面側
の面と前記載置面との距離が半径位置によって異なって
いることを特徴とするプラズマ処理装置を提供する。
In a plasma processing apparatus which can hold an object to be processed on a mounting surface and has a suction device having a chamber for flowing a fluid therein, the plasma processing apparatus has a chamber on the mounting surface side. A plasma processing apparatus is characterized in that the distance between the surface and the mounting surface is different depending on the radial position.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例を図にした
がって詳しく説明する。図1は本発明の第1実施例を説
明するものであり、有磁場マイクロ波プラズマCVD装
置に適用した例である。この図において符号4は静電吸
着装置であり、その側断面図を図2に、図3は図2を被
処理体載置面の法線方向から見た平断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 illustrates a first embodiment of the present invention, and is an example in which the present invention is applied to a magnetic field microwave plasma CVD apparatus. In this figure, reference numeral 4 denotes an electrostatic suction device, a side sectional view of which is shown in FIG. 2, and FIG. 3 is a plan sectional view of FIG.

【0011】大気空間1内に石英蓋2を設置し、これに
より構成される真空処理室3内に吸着装置4を用いてウ
ェハ5を固定する。続いて吸気系(ここには図示しな
い)からノズル6を通して真空処理室3内に処理ガス7
を導入する。処理ガス7は、導波管8を通って導入され
るマイクロ波9と放電管10の周りに取り付けられたコ
イル11との相互作用によりプラズマ12となってい
る。このプラズマ12にウェハ5がさらされることによ
り処理(ここでは成膜処理)が行われるが、特にイオン
の入射を制御して成膜状態を制御するのが高周波電源1
3である。直流電源14を電極に接続し、静電気力を発
生させることによりウェハ5を確実に吸着させている。
15は直流電源のオン・オフを制御するためのスイッチ
である。符号16は、余分な処理ガス、及び反応生成物
の排気口であり、真空ポンプに接続されている(ここに
は図示しない)。
A quartz lid 2 is set in an air space 1, and a wafer 5 is fixed in a vacuum processing chamber 3 formed by using a suction device 4. Subsequently, a processing gas 7 is introduced into the vacuum processing chamber 3 from a suction system (not shown) through the nozzle 6.
Is introduced. The processing gas 7 is turned into a plasma 12 by the interaction between the microwave 9 introduced through the waveguide 8 and the coil 11 attached around the discharge tube 10. The processing (here, the film formation processing) is performed by exposing the wafer 5 to the plasma 12, and in particular, the high frequency power supply 1 controls the film formation state by controlling the incidence of ions.
3. The DC power supply 14 is connected to the electrodes, and the wafer 5 is reliably attracted by generating an electrostatic force.
Reference numeral 15 denotes a switch for controlling on / off of the DC power supply. Reference numeral 16 denotes an exhaust port for excess processing gas and reaction products, which is connected to a vacuum pump (not shown).

【0012】図2は処理用ウェハ5が実際に吸着されて
いる様子を示している。処理中のウェハ5にはプラズマ
12からイオンやラジカルが入射し温度が上昇するの
で、適切な成膜処理の実現のために前述したように吸着
装置4を冷却しているが、ウェハ5の処理は真空中で行
われるために伝熱効率が低く、ウェハ5の冷却効率が悪
い。そこで、本実施例では下部ブロック17および上部
ブロック18にガス用孔19を設けておきウェハ5裏面
にヘリウム(He)などの伝熱用ガスを流し伝熱効率を
上げている。なお、ここには図示しないが載置面表面に
は凹凸状の形状が形成されており、ウェハ5の裏面にま
んべんなく伝熱用ガスが行き渡るようになっている。そ
のほか、符号20は上部ブロック18をプラズマ12か
ら保護するサセプタであり、符号21は処理中のウェハ
5の温度をモニタするための温度計である。
FIG. 2 shows how the processing wafer 5 is actually sucked. Since ions and radicals are incident on the wafer 5 during the processing from the plasma 12 and the temperature rises, the suction device 4 is cooled as described above to realize an appropriate film forming process. Is performed in a vacuum, the heat transfer efficiency is low, and the cooling efficiency of the wafer 5 is poor. Therefore, in the present embodiment, gas holes 19 are provided in the lower block 17 and the upper block 18, and a heat transfer gas such as helium (He) flows on the back surface of the wafer 5 to increase heat transfer efficiency. Although not shown here, an uneven shape is formed on the surface of the mounting surface, so that the heat transfer gas can be evenly distributed on the back surface of the wafer 5. In addition, reference numeral 20 denotes a susceptor for protecting the upper block 18 from the plasma 12, and reference numeral 21 denotes a thermometer for monitoring the temperature of the wafer 5 being processed.

【0013】上部ブロック18には管状の流体通路室2
2が設けられており、この図には示していないが外部に
接続された冷却装置によって供給口23から冷媒を供給
し、流体通路室22を通り、排出口24から排出し吸着
装置4の温度を制御することにより処理中のウェハ5の
温度制御を行っている。上部ブロック18と下部ブロッ
ク17はボルト25によって固定されている。
The upper block 18 has a tubular fluid passage chamber 2.
2, a cooling device (not shown) supplies a refrigerant from a supply port 23 by a cooling device connected to the outside, passes through a fluid passage chamber 22, discharges from a discharge port 24, and outputs a temperature of the adsorption device 4. Is controlled to control the temperature of the wafer 5 being processed. The upper block 18 and the lower block 17 are fixed by bolts 25.

【0014】符号26はプッシャーピンであり、処理後
のウェハ5を持ち上げ、搬送アーム(ここには図示しな
い)に受け渡す働きをする。
Reference numeral 26 denotes a pusher pin which lifts the processed wafer 5 and transfers it to a transfer arm (not shown).

【0015】本実施例では図2,図3に示すように管状
の流体通路室22を略同心円状に配置し、また最外周の
流体通路室の上端とウェハ5載置面との距離を、内側の
流体通路室に比べて小さくした。このとき最外周の流体
通路室断面の半径方向の幅は、他の各周の断面積よりも
小さくしてある。これはプッシャーピン26や吸着装置
4の外周部のボルト25の存在により半径方向に幅が大
きい流路を確保することが難しく、また、流体通路室断
面積の増大により流体の流速が小さくなり、流体通路室
22の表面から流体への熱伝達が小さくなることを防ぐ
ためである。ここで流体通路室22の上端とは、吸着装
置4を図2のような断面で切った時に、流体通路室22
の各周でウェハ5の載置面に最も近い部分を言う。
In this embodiment, as shown in FIGS. 2 and 3, the tubular fluid passage chambers 22 are arranged substantially concentrically, and the distance between the upper end of the outermost fluid passage chamber and the mounting surface of the wafer 5 is set as follows. It is smaller than the inner fluid passage chamber. At this time, the radial width of the cross section of the outermost fluid passage chamber is smaller than the cross sectional area of each of the other circumferences. This is because it is difficult to secure a flow path having a large width in the radial direction due to the presence of the pusher pin 26 and the bolt 25 on the outer peripheral portion of the suction device 4, and the flow velocity of the fluid decreases due to an increase in the cross-sectional area of the fluid passage chamber. This is to prevent heat transfer from the surface of the fluid passage chamber 22 to the fluid from being reduced. Here, the upper end of the fluid passage chamber 22 refers to the fluid passage chamber 22 when the suction device 4 is cut in a cross section as shown in FIG.
Means the portion closest to the mounting surface of the wafer 5 in each circumference.

【0016】なお、第1実施例で示したような管状の流
体通路室22の断面形状は円形や三角形など四角形以外
の形状であってもよい。
The cross-sectional shape of the tubular fluid passage chamber 22 as shown in the first embodiment may be a shape other than a square such as a circle or a triangle.

【0017】図4は従来および本発明の第1実施例によ
る12インチウェハ(直径300mm)で5000Wの入熱
時のウェハ温度分布である。従来の静電吸着装置および
本発明の実施例におけるウェハ面内温度差はそれぞれ1
6.2℃および5.8℃であった。従来の静電吸着装置に
おいてウェハの外周部で温度が上昇しているが、本発明
の実施例により外周部での温度上昇が小さくなり、温度
分布が従来例に比べて均一になっていることがわかる。
なおウェハの温度分布が波形なのは、静電吸着装置表面
の凹凸の形状の影響である。つまりウェハと静電吸着装
置表面との接触部ではウェハの温度が下がるからであ
る。
FIG. 4 shows a wafer temperature distribution when a 5000-W heat is input to a 12-inch wafer (diameter 300 mm) according to the conventional example and the first embodiment of the present invention. The temperature difference between the conventional electrostatic chuck and the embodiment of the present invention is 1 unit.
6.2 ° C and 5.8 ° C. In the conventional electrostatic attraction device, the temperature rises at the outer peripheral portion of the wafer. However, according to the embodiment of the present invention, the temperature rise at the outer peripheral portion is small, and the temperature distribution is more uniform than the conventional example. I understand.
The waveform of the temperature distribution of the wafer is affected by the shape of the irregularities on the surface of the electrostatic chuck. That is, the temperature of the wafer drops at the contact portion between the wafer and the surface of the electrostatic chuck.

【0018】図5および図6は本発明の第2実施例を示
す側断面図および平面図である。前記第1実施例では流
体通路室は管状のものであったが、本実施例では円盤状
の空間としている。このような場合でも外周部における
流体通路室の上端とウェハ載置面との距離を、内周部に
比べて小さくすることによって、ウェハの外周部におけ
る温度上昇を抑えることができ、ウェハの面内温度分布
をより均一にすることができる。また、前記実施例では
流体として冷媒を用いたが、静電吸着装置の温度を上げ
ることが要求される場合には流体として熱媒を使用して
よい。
FIGS. 5 and 6 are a side sectional view and a plan view showing a second embodiment of the present invention. In the first embodiment, the fluid passage chamber is tubular, but in this embodiment, it is a disk-shaped space. Even in such a case, by making the distance between the upper end of the fluid passage chamber and the wafer mounting surface in the outer peripheral portion smaller than that in the inner peripheral portion, it is possible to suppress the temperature rise in the outer peripheral portion of the wafer, The internal temperature distribution can be made more uniform. In the above embodiment, the refrigerant is used as the fluid. However, when it is required to raise the temperature of the electrostatic adsorption device, a heat medium may be used as the fluid.

【0019】なお、第1実施例および第2実施例におい
て流体通路室上端と被処理体載置面との距離を、静電吸
着装置外周部にてその他の領域よりも小さくしたが、距
離を変化させるのは外周部に限るものではない。例えば
プラズマの不均一により中心部でウェハ温度が高くなる
のならば、流体通路室上端と被処理体載置面との距離
を、静電吸着装置中心部でその他の領域よりも小さくす
れば、中心部でのウェハの温度上昇を抑えることが可能
となる。
In the first and second embodiments, the distance between the upper end of the fluid passage chamber and the mounting surface of the object to be processed is smaller than the other area in the outer peripheral portion of the electrostatic suction device. The change is not limited to the outer peripheral portion. For example, if the wafer temperature becomes high in the center due to non-uniformity of the plasma, if the distance between the upper end of the fluid passage chamber and the mounting surface of the processing object is made smaller than the other area in the center of the electrostatic chuck, The temperature rise of the wafer at the center can be suppressed.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、吸
着装置を用いたプラズマ処理装置において、半導体ウェ
ハなど被処理体の温度均一性を向上させることができ被
処理体に優れた処理を行うことを可能とするプラズマ処
理装置を提供することができる。
As described above, according to the present invention, in a plasma processing apparatus using an adsorption device, the temperature uniformity of an object to be processed such as a semiconductor wafer can be improved, and excellent processing can be performed on the object to be processed. It is possible to provide a plasma processing apparatus which can perform the plasma processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示すプラズマ処理装置の
側断面図である。
FIG. 1 is a side sectional view of a plasma processing apparatus according to a first embodiment of the present invention.

【図2】本発明の第1実施例を示すプラズマ処理装置に
使用されている静電吸着装置の側断面図である。
FIG. 2 is a side sectional view of an electrostatic attraction device used in the plasma processing apparatus according to the first embodiment of the present invention.

【図3】本発明の第1実施例を示すプラズマ処理装置に
使用されている静電吸着装置の平面図である。
FIG. 3 is a plan view of an electrostatic chuck used in the plasma processing apparatus according to the first embodiment of the present invention.

【図4】本発明の第1実施例のウェハの温度分布を示す
グラフである。
FIG. 4 is a graph showing a temperature distribution of a wafer according to the first embodiment of the present invention.

【図5】本発明の第2実施例を示すプラズマ処理装置に
使用されている静電吸着装置の側断面図である。
FIG. 5 is a side sectional view of an electrostatic chuck used in a plasma processing apparatus according to a second embodiment of the present invention.

【図6】本発明の第2実施例を示すプラズマ処理装置に
使用されている静電吸着装置の平面図である。
FIG. 6 is a plan view of an electrostatic chuck used in a plasma processing apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3…真空処理室、5…ウェハ、6…ノズル、7…処理ガ
ス、8…導波管、10…放電管、17…下部ブロック、
18…上部ブロック、19…ガス用孔、21…温度計、
22…流体通路室、23…供給口、24…排出口、25
…ボルト、26…プッシャーピン。
3 vacuum processing chamber, 5 wafer, 6 nozzle, 7 processing gas, 8 waveguide, 10 discharge tube, 17 lower block,
18: upper block, 19: gas hole, 21: thermometer,
22: fluid passage chamber, 23: supply port, 24: discharge port, 25
... bolts, 26 ... pusher pins.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸山 英嗣 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 石黒 浩二 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 Fターム(参考) 4K030 CA04 CA12 FA01 GA02 HA06 JA03 KA08 KA26 5F031 HA08 HA16 HA33 HA37 HA38 HA39 MA28 MA32 5F045 AA10 EH20 EJ03 EJ10 EK21 EK27 EM05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Eiji Setoyama, 1-1-1, Kokubuncho, Hitachi, Ibaraki Prefecture Inside Kokubu Plant, Hitachi, Ltd. (72) Koji Ishiguro, 1-1-1, Kokubuncho, Hitachi, Ibaraki No. 1 F-term in Kokubu Plant of Hitachi, Ltd. (reference) 4K030 CA04 CA12 FA01 GA02 HA06 JA03 KA08 KA26 5F031 HA08 HA16 HA33 HA37 HA38 HA39 MA28 MA32 5F045 AA10 EH20 EJ03 EJ10 EK21 EK27 EM05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】載置面に被処理体を保持可能であり、内部
に流体を流す室を有した吸着装置を備えたプラズマ処理
装置において、前記室の前記載置面側の面と前記載置面
との距離が半径位置によって異なっていることを特徴と
するプラズマ処理装置。
1. A plasma processing apparatus having an adsorption device capable of holding an object to be processed on a mounting surface and having a chamber for flowing a fluid therein, wherein the surface on the mounting surface side of the chamber and the surface of the plasma processing apparatus. A plasma processing apparatus, wherein the distance from the mounting surface varies depending on the radial position.
JP10293305A 1998-10-15 1998-10-15 Plasma treating apparatus Pending JP2000124139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293305A JP2000124139A (en) 1998-10-15 1998-10-15 Plasma treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293305A JP2000124139A (en) 1998-10-15 1998-10-15 Plasma treating apparatus

Publications (1)

Publication Number Publication Date
JP2000124139A true JP2000124139A (en) 2000-04-28

Family

ID=17793123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293305A Pending JP2000124139A (en) 1998-10-15 1998-10-15 Plasma treating apparatus

Country Status (1)

Country Link
JP (1) JP2000124139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053382A (en) * 2005-08-16 2007-03-01 Applied Materials Inc Active cooling for substrate support
KR20190138592A (en) * 2018-06-05 2019-12-13 도쿄엘렉트론가부시키가이샤 Substrate pedestal and substrate inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053382A (en) * 2005-08-16 2007-03-01 Applied Materials Inc Active cooling for substrate support
US8709162B2 (en) 2005-08-16 2014-04-29 Applied Materials, Inc. Active cooling substrate support
KR20190138592A (en) * 2018-06-05 2019-12-13 도쿄엘렉트론가부시키가이샤 Substrate pedestal and substrate inspection apparatus

Similar Documents

Publication Publication Date Title
JP2680338B2 (en) Electrostatic chuck device
KR100735937B1 (en) Substrate supporting member and substrate processing apparatus
KR100613198B1 (en) Plasma processing apparatus, focus ring, and susceptor
KR100234661B1 (en) Anisotropic etching apparatus
TWI480949B (en) Substrate handling device and sprinkler
JP5255936B2 (en) Focus ring, substrate mounting table, and plasma processing apparatus including the same
KR101898079B1 (en) Plasma processing apparatus
JP4283366B2 (en) Plasma processing equipment
JPH08191059A (en) Plasma treating device
TWI809007B (en) Focus ring for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
KR20210008725A (en) Unit for supporting substrate and system for treating substrate with the unit
US20210391151A1 (en) Edge ring and plasma processing apparatus
JP3236533B2 (en) Electrostatic attraction electrode device
US20240063000A1 (en) Method of cleaning plasma processing apparatus and plasma processing apparatus
JP2004014752A (en) Electrostatic chuck, work piece placement table, and plasma treating apparatus
JPH09289201A (en) Plasma treating apparatus
TWI789492B (en) Mounting apparatus for object to be processed and processing apparatus
KR20200051505A (en) Placing table and substrate processing apparatus
JP6085106B2 (en) Plasma processing apparatus and plasma processing method
JP4602528B2 (en) Plasma processing equipment
JP2000124139A (en) Plasma treating apparatus
JP3157551B2 (en) Workpiece mounting device and processing device using the same
JPH05234944A (en) Wafer temperature control method and equipment
KR20210039759A (en) System for treating substrate
KR101079224B1 (en) Top electrode assembly and plasma processing apparatus