JP2000123996A - 原子状ラジカル測定方法及び装置 - Google Patents

原子状ラジカル測定方法及び装置

Info

Publication number
JP2000123996A
JP2000123996A JP10295504A JP29550498A JP2000123996A JP 2000123996 A JP2000123996 A JP 2000123996A JP 10295504 A JP10295504 A JP 10295504A JP 29550498 A JP29550498 A JP 29550498A JP 2000123996 A JP2000123996 A JP 2000123996A
Authority
JP
Japan
Prior art keywords
atomic
plasma
gas
light
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10295504A
Other languages
English (en)
Other versions
JP4127435B2 (ja
Inventor
Toshio Goto
後藤俊夫
Akihiro Kono
明廣 河野
Masaru Hori
勝 堀
Akifumi Ito
昌文 伊藤
Katsumi Yoneda
勝實 米田
Naritsuyo Takashima
成剛 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LASER DENSHI KK
Original Assignee
NIPPON LASER DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LASER DENSHI KK filed Critical NIPPON LASER DENSHI KK
Priority to JP29550498A priority Critical patent/JP4127435B2/ja
Publication of JP2000123996A publication Critical patent/JP2000123996A/ja
Application granted granted Critical
Publication of JP4127435B2 publication Critical patent/JP4127435B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】測定される反応性プラズマ中における機能ガス
原子ラジカル密度に基づいてプロセス処理を高い再現性
で、高精度及びリアルタイムに制御することができる原
子状ラジカル測定方法及びその装置の提供。 【解決手段】原料ガスをプラズマ化して被処理体に原料
ガス成分の薄膜を成膜したり、被処理体をエッチング処
理する際に、プラズマ化した原料ガスに対して原子光発
生装置から原子光を照射し、プラズマ透過前の基準原子
光の強度とプラズマを透過した原子光線の強度に基づい
てプラズマ中における原子状ラジカル密度を測定する。
原子光発生装置の容器内に、一部に所定の内径からなる
孔が形成された陰極板を設ける。容器内における少なく
とも上記ガス中の被測定原子を含むガス及び希釈ガスを
所定の圧力にする。陰電極及び先端部が陰電極の孔に近
接して設けられた陽電極に電圧を印加して陰電極の孔内
にて上記ガスをプラズマ化して発光させて所望の原子光
を得る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、原料ガスをプラ
ズマ化して被処理体に原料ガス成分の薄膜を成膜した
り、被処理体をエッチング処理する際に、プラズマ化し
た原料ガスに対して原子光発生装置から原子光を照射
し、プラズマ透過前の基準原子光の強度とプラズマを透
過した原子光線の強度に基づいてプラズマ中における原
子状ラジカル密度を測定する原子状ラジカル測定方法及
び装置に関する。
【0002】
【発明が解決しようとする課題】従来、シリコン等の原
子状ラジカル測定に用いられてきた原子光発生装置は、
陰極に数mm程度の内径を持つ孔があり、圧力数Tor
rという低圧下での放電現象により生ずる発光を利用し
ていた。プラズマ中の原子状ラジカル測定においてはレ
ンズ系により該発光を分光器のスリット上に結像させる
が、発光面積が大きいため、孔内で生じた発光を全て分
光器を入力することができなかった。このことは分光器
にて検出される発光強度信号が小さいことを意味し、プ
ラズマを透過した原子光強度の変化が小さいときには、
その変化を検出することが困難であった。
【0003】即ち、原子光の輝度が小さい場合は、ラジ
カル原子密度の検出限界の向上が困難であった。尚、こ
の欠点は放電パワー(電流)を大きくして該原子光発生
装置の原子光強度を大きくすることにより解決し得る
が、放電パワーを大きくすると、後述する自己吸収現象
を生じたり、電極の消耗が激しく、装置寿命が極端に短
くなる問題を有しているため、放電パワーを大きくする
ことは適切な方法ではない。
【0004】水素原子ラジカル測定に関して言えば、従
来は原子光発生装置に電子サイクロトロン共鳴(以下、
ECR)放電を用いたものがある(臼井、他:第45回
応用物理学関係連合講演会)。この手法も発光面が数m
m以上あり、前述した通り発光を有効利用することがで
きない。
【0005】又、放電圧力が数mTorrという低圧で
の放電であるため、後述する原料ガスからの解離性発光
による原子光スペクトルの拡がりが生じている。又、装
置的にも大がかりになって高コスト化している。
【0006】原料ガスからの解離性発光による原子光ス
ペクトルの拡がりを水素分子を例に説明すると、水素ガ
スをプラズマ化し、解離発光させる場合の反応を以下に
示す。
【0007】原子が高い速度のまま、 H+e→H(高速:発光)+H(高速)+e 発光すると、スペクトル幅が拡がる結果、原子状ラジカ
ル密度の検出限界が低下している。
【0008】又、原子状ラジカル密度を算出する際、原
子光のスペクトル形状を仮定する必要があるが、この解
離性発光による原子光スペクトルの形状近似は非常に困
難で、高精度な原子状ラジカル密度の測定が困難であっ
た。
【0009】更に、前述した原子光発生装置ではプラズ
マ化を支配する電子の密度が小さく(ECRプラズマの
場合、電子密度は1012[cm−3]程度であるが、
本発明による原子光発生手法では、1013[c
−3]以上)、原料ガスのプラズマ化が充分行われ
ず、所望の原子光強度が小さくなっていた。そして原料
ガスの解離が不充分なため、プラズマ内に原料ガス分子
等における被測定原子以外の粒子が多く残留し、所望の
原子光スペクトルに原料ガス分子等における被測定原子
以外の粒子のスペクトルが重畳することがある。このた
め、原子光強度が小さいことは原子状ラジカル密度の検
出限界の向上を困難にし、又原子光スペクトルと他スペ
クトルとの重畳は、分光器によりそれらスペクトルを分
離できないため、正確なプラズマ透過前の基準原子光の
強度を求めることが不可能であり、高精度な原子状ラジ
カル密度の測定が困難であった。
【0010】いずれにしても、現時点においてはプラズ
マ中における原子状ラジカルを高精度で高感度に測定す
る簡便な方法がなかった。
【0011】本発明は、上記した従来の欠点を解決する
ために発明されたものであり、その課題とする処は、プ
ラズマ中における原子状ラジカル密度を高精度及び高感
度で簡便に測定することができる原子状ラジカル測定方
法及びその装置を提供することにある。
【0012】
【問題点を解決するための手段】このため請求項1は、
原料ガスをプラズマ化して被処理体に原料ガス成分の薄
膜を成膜したり、被処理体をエッチング処理する際に、
プラズマ化した原料ガスに対して原子光発生装置から原
子光を照射し、プラズマ透過前の基準原子光の強度とプ
ラズマを透過した原子光線の強度に基づいてプラズマ中
における原子状ラジカル密度を測定する方法において、
原子光発生装置は容器内に、一部に所定の内径からなる
孔が形成された陰極板を設け、容器内における少なくと
も上記ガス中の被測定原子を含むガス及び希ガスを所定
の圧力にし、陰電極及び先端部が陰電極の孔に近接して
設けられた陽電極に電流を印加して陰電極の孔内にて上
記ガスをプラズマ化して発光させることにより生成され
る所望原子光を得ることを特徴とする。
【0013】請求項2は、原料ガスをプラズマ化して被
処理体に原料ガス成分の薄膜を成膜したり、被処理体を
エッチング処理する際に、プラズマ化した原料ガスに対
して原子光発生装置から原子光を照射し、プラズマ透過
前の基準原子光の強度とプラズマを透過した原子光線の
強度に基づいてプラズマ中における原子状ラジカル密度
を測定する方法において、原子光発生装置は、容器内に
少なくとも被測定原子を含有し、一部に所定の内径から
なる孔が形成された陰極板を設け、容器内における希ガ
スを所定の圧力にし、陰電極及び先端部が陰電極の孔に
近接して設けられた陽電極に電流を印加して陰電極の孔
内にて上記ガスをプラズマ化して陰電極孔内表面を荷電
粒子でスパッタ或いは反応性スバッタさせて該陰電極孔
内の原子を発光させることにより所望原子光を得ること
を特徴とする。
【0014】請求項3は、原料ガスをプラズマ化して被
処理体に原料ガス成分の薄膜を成膜したり、被処理体を
エッチング処理する際に、プラズマ化した原料ガスに対
して原子光発生装置から原子光を照射し、プラズマ透過
前の基準原子光の強度とプラズマを透過した原子光線の
強度に基づいてプラズマ中における原子状ラジカル密度
を測定する装置において、原子光発生装置は容器内に設
けられ、一部に所定の内径からなる孔が形成された陰極
板と、容器内にて先端が陰極板の孔に相対して設けられ
た陽電極とからなり、容器内における少なくとも上記ガ
ス中の被測定原子を含むガス及び希ガスを所定の圧力に
し、陰電極及び先端部が陰電極の孔に近接して設けられ
た陽電極に電流を印加して陰電極の孔内にて上記ガスを
プラズマ化して発光させることにより生成される所望原
子光を得ることを特徴とする。
【0015】請求項4は、原料ガスをプラズマ化して被
処理体に原料ガス成分の薄膜を成膜したり、被処理体を
エッチング処理する際に、プラズマ化した原料ガスに対
して原子光発生装置から原子光を照射し、プラズマ透過
前の基準原子光の強度とプラズマを透過した原子光線の
強度に基づいてプラズマ中における原子状ラジカル密度
を測定する装置において、原子光発生装置は、容器内に
設けられ、少なくとも被測定原子を含有し、一部に所定
の内径からなる孔が形成された陰極板と、容器内にて先
端が陰極板の孔に相対して設けられた陽電極とからな
り、容器内における希ガスを所定の圧力にし、陰電極及
び先端部が陰電極の孔に近接して設けられた陽電極に電
流を印加して陰電極の孔内にて上記ガスをプラズマ化し
て陰電極孔内表面を荷電粒子でスパッタ或いは反応性ス
バッタさせて該陰電極孔内の原子を発光させることによ
り所望の原子光を得ることを特徴とする。
【0016】
【発明の実施の形態】以下に、本発明に係る原子状ラジ
カル測定方法及びその装置を、水素を使用した実施形態
に基づいて説明する。 実施形態1 図1は水素原子光発生装置の概略を示す概略断面図であ
る。図2は原子光発生率と水素ガス濃度の関係を示すグ
ラフである。図3及び図4は原子光スペクトルの形状と
水素ガス濃度の関係を示す図である。図5は原子光の自
己吸収と陰極板と陽電極に印加する電流の関係を示すグ
ラフである。図6は原子状ラジカル測定方法及びその装
置を高周波を使用した誘導結合型プラズマ処理装置に用
いた場合の概略断面図である。図7はプラズマ処理装置
の制御概略を示す説明図である。図8はプラズマ中にお
ける水素原子ラジカル密度と高周波アンテナに印加され
る高周波電力との関係を示すグラフである。
【0017】水素原子光発生装置25を記述すると、水
素原子光発生装置25のケース33はステンレス等の金
属製で、真空容器3側の内部には光学的レンズ35が取
付けられ、該光学的レンズ35より外方に位置するケー
ス33内には陰極板37が隔壁状に設けられている。該
陰極板37は厚さが0.5mm程度の銅等の金属板から
なり、中心部には内径0.1mm程度の孔37aが形成
されている。該陰極板3の厚さ及び孔37aの内径は、
装置構成等により放電条件が異なるため、所望する原子
スペクトルが得られるように各サイズを設定すればよ
い。
【0018】尚、後述するように陰極板37の両側には
発光ガス排気口41及び発光ガス導入口43が夫々設け
られているため、陰極板37を中心とする左右室内にて
圧力差が生じて変形するおそれがある。このため、陰極
板37としては厚手状の金属板を使用するのが望ましい
が、この場合にあっては孔37a箇所をテーパ状に形成
して厚さ方向の中間部を薄手状化し、孔37aの軸線幅
を上記した所望する原子光スペクトルが得られるサイズ
にすればよい。
【0019】陰極板37より外側に位置するケース33
の中心部には陽電極39が、電気的絶縁状態で、かつそ
の先端が陰極板37の孔37a中心に近接して取付けら
れている。該陽電極39は直径が孔37aと同程度で、
タングステン(W)等の金属線ワイヤからなる。
【0020】陰極板37より陽電極39側のケース33
には発光ガス排気口41が、又陰極板37より光学的レ
ンズ35側のケース33には発光ガス導入口43が夫々
設けられ、発光ガス導入口43から水素ガス及びヘリウ
ムガスの混合ガスを導入しながら発光ガス排気口41か
らケース33内を排気してケース33内を所定の圧力に
設定する。ケース33内の圧力は、以下に示すような条
件により設定されるものであり、該圧力範囲で要求され
る水素原子光を得ることができる。
【0021】 水素原子発光寿命>水素原子平均衝突時間 水素原子ドップラー幅>水素原子ローレンツ幅
【0022】上段の式は、容器内圧力の下限を規定する
もので解離性発光による原子光スペクトルの拡がりが生
じない条件である。解離性発光による原子光スペクトル
の拡がりの原因は、高速な原子が発光するために生ずる
現象であり、高速な原子が発光するまでの時間(水素原
子発光寿命)よりも、高速な原子が他粒子と衝突し、減
速するまでの時間(水素原子平均衝突時間)が小さくな
るように容器内圧力を設定すればよいことを意味してい
る。
【0001】下段の式は、容器内圧力の上限を規定する
ものである。通常、プラズマ中の原子光スペクトルの拡
がりは該原子の熱運動による拡がり(ドップラー幅)を
持つが、前述した解離性発光の影響が生じない圧力にお
いては、高圧なために生ずる原子光スペクトルの拡がり
(ローレンツ幅)が生じてくる。従ってローレンツ幅が
ドップラー幅を超えない容器内圧力に設定すればよいこ
とを意味している。又、容器内の圧力設定方法として
は、所定のガスを導入しながら排気して陰電極を境界に
陽電極側と非陽電極側に以下に示す圧力差を設けて所定
の圧力に設定するのが望ましいが、 陽電極側圧力<非陽電極側圧力 該ガスを導入しながら排気して陰電極を境界に陽電極側
と非陽電極側とをほぼ等しい所定の圧力にして設定又は
所定の圧力に封じ切って上記圧力差を設けた場合と大差
のない所望するスペクトルが得られた。
【0023】混合ガスは水素ガスに希釈ガスとしてヘリ
ウムガス(He)を混入して水素ガス濃度を希釈する。
尚、希釈ガスとしては、ヘリウムのように質量が水素原
子と大差のないガスが望ましいが、これ以外にも例えば
アルゴン等の希ガスであってもよい。又、水素ガスの代
わりに水素原子を含有したガスであってもよい。
【0024】そして陰極板37及び陽電極39間に所定
電圧を印加すると、孔37a内の水素ガスをプラズマ化
して波長121.6mmの水素原子光を発光させる。
【0025】小さな容積の孔37a内でガスをプラズマ
化することは、従来の手法と比べ、プラズマ化を支配す
る電子が集中して電子密度が増え、ガスの解離が進む。
このため、ガス分子の発光が減少し、所望する原子光の
発光が増加する。これは入力した電子が所望する原子光
の発光に有効に使われ、従来の手法に比べ、原子光の発
光が増加することを意味する。又、上記した圧力範囲に
て孔37a内でプラズマ化を行うには、孔37aの内径
が微小であることが必要である。そして発光面が微小で
あり、所望する原子光の輝度が大きく、吸収分光用光源
としては最適である。これは、高感度な原子状ラジカル
密度測定を可能にすることを意味している。
【0026】図2は混合ガスの水素ガス濃度を変化させ
たときの水素原子光強度と重畳する水素分子の発光の比
率である。水素ガス濃度を約0.4%以下にすることで
水素分子発光の影響の少ない良好な水素原子光スペクト
ルが得られる。
【0027】図3及び図4は水素ガス濃度20%と0.
4%の場合の水素原子光スペクトルであるが、水素ガス
濃度を0.4%にすることで水素ガス濃度20%でみら
れる水素原子光スペクトルと水素分子光スペクトルとの
重畳をなくすことができ、測定に使用する原子光スペク
トルのみを得ることができた。これは高精度で高感度な
原子状ラジカル密度測定が可能であることを意味してい
る。
【0028】該原子光発生方法及び装置には、自己吸収
現象(所望する原子光スペクトルの形状を乱す現象)が
生ずることがあり、高精度で高感度な原子状ラジカル密
度測定を困難にする。原子光発生においては、水素ガス
濃度を低くしたり、例えばヘリウム等の希ガスで水素ガ
スを希釈したり、陰極板と陽電極に印加する電流を小さ
くすることで自己吸収現象を低減できる。水素濃度を低
くしたり、印加する電流を小さくすることで所望する原
子光の強度が小さくなるが、原子状ラジカル密度計測に
おいては充分な強度であった。
【0029】図5は陰極板と陽電極に印加する電流を小
さくすることで自己吸収現象を低減できたことを示して
いる。以下、原子状ラジカル測定方法及びその装置を高
周波を使用した誘導結合型プラズマ処理装置に用いた場
合について図6及び図7に基づいて説明する。尚、ここ
では、本発明をプラズマに用いた場合を示すが、プラズ
マに限らず、熱解離等で得られる原子状ラジカルが存在
する対象であってもよい。
【0030】成膜処理或いはエッチング処理に使用する
プロセス処理装置としてのプラズマ処理装置1を構成す
る真空容器3の上部には石英管製の放電室5が設けら
れ、該放電室5の周囲には高周波電源7に接続された高
周波アンテナ9が設けられている。この高周波アンテナ
9は高周波電源7から印加される高周波電力により放電
室5及び真空容器3内にプラズマを生成させる。
【0031】上記した高周波としてはRF帯域(13.
56MHz)、VHF帯域〔100MHz)或いはUHF
帯域(500MHz)の何れであってもよく、又本発明
はマイクロ波(2.45GHz)或いは直流電力或いは
熱によりプラズマを生成してもよい。
【0032】真空容器3の上部には混合ガスの導入口1
3が設けられている。導入される混合ガスとしては、被
処理体17をSiO/Si選択エッチングする場合に
はフルオロカーボンガスに水素を含有したガスを添加し
た混合ガス、又非結晶シリコン薄膜、微結晶シリコン薄
膜及び多結晶シリコン薄膜を成膜する場合にはシリコン
原子を含有したガスと水素原子を含有したガスの混合ガ
ス、更にダイヤモンド薄膜を成膜する場合には炭素原子
を含有したガスと水素を含有した混合ガスを使用する。
【0033】真空容器3内には電極としての載置台15
が設けられ、該載置台15上には半導体ウェハーやLC
D用ガラス基板等の被処理体17が、必要に応じて静電
チャック19等の保持部材を介して載置される。尚、載
置台15には液体窒素等の冷媒を循環させて冷却する冷
却手段或いは加熱ヒーター(何れも図示せず)が必要に
応じて設けられ、被処理体17を所望の温度に調整す
る。
【0034】載置台15にはバイアス電源21が接続さ
れ、該バイアス電源21は任意のパルス幅のバイアス電
圧を載置台15に印加してマイナスのバイアスを生じさ
せている。又、載置台15には真空排気装置(図示せ
ず)に拡径された排気管23が設けられ、導入口13か
ら原料ガスを導入しながら排気管23から真空容器3内
を排気して真空容器3及び放電室5内を所定のガス圧に
保っている。
【0035】真空容器3の側壁には、水素原子光発生装
置25及び水素原子光発生装置25から出射されて真空
容器3内のプラズマ中を通過した水素原子光を検出する
水素原子光検出装置27が相対して設けられている。水
素原子光検出装置27としては、真空紫外分光器を用い
てもよいし、所望する原子光のみを検出する検出器を用
いてもよい。
【0036】これら水素原子光発生装置25及び水素原
子光検出装置27と基準原子光検出装置29は水素原子
光発生装置25から出射される水素原子光強度とプラズ
マ中を透過して水素原子光検出装置27に受光される水
素原子光強度に基づいてプラズマ中における水素ラジカ
ル密度(濃度)を測定する。そして水素原子光検出装置
27により計測されたプラズマ中における水素ラジカル
密度に関する測定データを制御手段31へ転送し、制御
手段31はこの測定データに基づいて高周波アンテナ9
に印加される高周波電力等の放電パラメータ(他にガス
流量、容器内圧力等)、載置台15に印加されるバイア
ス電圧を夫々制御してプラズマ中における水素原子ラジ
カル密度を均一化させる。
【0037】尚、水素原子光発生装置25及び水素原子
光検出装置27の配置位置は水素原子光が被処理体17
の反応面直上、例えば10mm上方を通過する位置が好ま
しい。又、水素原子光発生装置25及び水素原子光検出
装置27は真空容器3の側壁に設けられた窓又はレンズ
を介して配置してもよい。この場合、水素原子光は真空
紫外領域であるため、材質としてはフッ化リチウム(L
iF)又はフッ化マグネシウム(MgF)が適してい
る。
【0038】一方、水素原子光発生装置25の前面には
チョッパー45及び半透鏡47が夫々設けられ、チョッ
パー45は水素原子光発生装置25から水素原子光検出
装置27に向かって出射される水素原子光をON−OF
Fさせる。この際、該原子光のON−OFFはチョッパ
ーを用いず、該原子光発生装置に印加する電圧をON−
OFFして該原子光をON−OFFしてもよい。又、半
透鏡47は水素原子光検出装置27から出射された水素
原子光の一部を、水素原子光発生装置25と真空容器3
に至る途中に設けられた基準原子光検出装置29へ入射
して水素原子光発生装置25から出射される水素原子光
の基準原子光強度を測定する。
【0039】水素原子光発生装置25に相対して設けら
れた水素原子光検出装置27の前面には光学的レンズ5
1が設けられ、該光学的レンズ51により水素原子光発
生装置25から出射されて放電室5と載置台15の間に
発生したプラズマ中を透過した水素原子光を分光器(図
示せず)のスリット幅に応じたスポット光に収束させ
る。そして水素原子光検出装置27は放電室5及び載置
台15間に発生するプラズマ中を透過した水素原子光強
度を検出する。尚、上記光学的レンズ35及び光学的レ
ンズ51としては水素原子光が真空紫外領域であるた
め、材質としてはフッ化リチウム(LiF)又はフッ化
マグネシウム(MgF)が適している。
【0040】次に、上記のように構成されたプラズマ処
理装置1による処理方法を説明する。先ず、被処理体1
7にシリコン薄膜を成膜するプロセス処理においては、
排気管23から真空容器3内の空気を排出しながら導入
口13からシリコン原子を含有したガス、例えばシラン
ガス(SiH)と水素ガスを混合した原料ガスを導入
して真空容器3内を所定の圧力にした状態で高周波アン
テナ9に高周波電力を印加して高周波電界により混合ガ
スを反応性プラズマ化させる。これにより該反応性プラ
ズマ中のシリコン原子を被処理体17上に堆積させてシ
リコン薄膜を成膜させる。又、被処理体17をエッチン
グするプロセス処理においては、導入口13からフルオ
ロカーボンガス等と水素ガスとを混合した原料ガスを導
入して上記と同様に反応性プラズマ化させた状態で載置
台15にバイアス電圧を印加すると、反応性プラズマ中
から陽イオンを飛び出させて被処理体17に衝突させる
ことにより被処理体17をエッチング処理する。尚、エ
ッチングにはラジカル種も関与する。
【0041】上記したようなエッチング処理及び成膜処
理時においては混合ガス中の水素ガスはプラズマ中にお
いてラジカル化してエッチング処理及び成膜処理に大き
く寄与している。このため、上記処理時においては、プ
ラズマ中における水素原子ラジカル密度を測定し、この
測定結果により高周波アンテナ9に印加される高周波電
力等の放電パラメータ(他にガス流量、容器内圧力等)
を制御したり、載置台15に印加されるバイアス電圧を
制御したり、更に原子ラジカル源(図示せず)により水
素原子ラジカルを真空容器3内に注入することにより反
応性プラズマ中の水素原子ラジカル密度を制御すること
により成膜される薄膜の厚さを調整したり、エッチング
の選択比、加工精度を調整することができる。
【0042】このため、本実施形態は水素原子光発生装
置25から水素原子光を、真空容器3内のプラズマ中に
透過し、プラズマ中における水素原子ラジカルによる水
素原子光の吸収量により水素原子ラジカル密度を測定す
る。
【0043】プラズマ中の水素原子ラジカル密度は以下
のように測定する。即ち、先ず、高周波アンテナ9に高
周波電力が印加されていない、従ってプラズマが発生し
ていない状態で、水素原子光発生装置25からの水素原
子光を半透鏡47により2つに分けて水素原子光検出装
置27及び基準原子光検出装置29に夫々入射させて強
度を測定し、その強度比I00/Ir0=aを求める。
次に、高周波アンテナ9に高周波電力を印加してプラズ
マを発生させた状態で、先ず、チョッパー45を閉じた
状態で該プラズマ中の水素原子が発光する水素原子光の
強度Iを水素原子光検出装置27により測定する。次
に、チョッパー45を開いてプラズマ中の水素原子が発
光する強度Iと水素原子光発生装置25から出射さ
れ、プラズマ中で一部が吸収された水素原子光の強度I
0’との和である強度Iを測定する。
【0044】そして強度I及びIを測定する間中、
常に基準原子光検出装置29により水素原子光発生装置
25から出射される水素原子光の強度Iを測定し、該
強度Iと上記の式I00/Ir0で求められた強度比
aとにより水素原子光発生装置25から出射され、プラ
ズマ中の水素原子ラジカルに吸収されない場合に水素原
子光検出装置27に入射される強度I、従ってI
a・Iを求め、この強度Iをプラズマ中の水素原子
ラジカルによる吸収量を測定する基準強度とする。そし
て上記の各強度から式(I−I)/I、従って式
0’/Iからプラズマ中の水素原子ラジカルによる
水素原子光の吸収量を測定して水素原子ラジカル密度を
測定する。
【0045】図8は前述の方法にて測定したプラズマ中
における水素原子光の吸収率から求めた水素ラジカル密
度と高周波アンテナに印加される高周波電力との関係を
示し、高周波電力を多くすることによりプラズマ中にお
ける水素原子ラジカルを高密度化することができる。
【0046】陰極板に水素を含有した水素吸蔵合金を使
用した場合も、高輝度で自己吸収のない所望する水素原
子光が得られた。該原子光発生装置を用いてプラズマ中
における水素原子光の吸収率から求めた水素ラジカル密
度と高周波アンテナに印加される高周波電力との関係
は、図8と同様の結果が得られた。
【0047】又、測定に使用する波長近辺では原料ガス
分子等の電離吸収が生じる可能性があるが、この場合、
該波長近辺でブロードな発光を持つ光源にて電離吸収率
を測定し、前述の水素原子光により測定した吸収率から
該吸収率を差し引けばよい。ここで、ブロードな発光を
持つ光源としては、水素原子光発光装置に希ガスをマイ
クロ波放電する等の手法で得られるが、それらの内、適
したものを用いればよい。
【0048】尚、高周波アンテナ9に印加される高周波
電力等の放電パラメータ(他にガス流量、容器内圧力
等)や載置台15に印加されるバイアス電圧をフィード
バック制御するため、水素原子ラジカル密度の基準値
は、被処理体の種類、プロセスの種類、プロセス条件等
によって大きく異なるため、これらの条件に応じてその
都度設定することが望ましい。
【0049】即ち、プラズマ中における水素原子ラジカ
ル密度をリアルタイムで計測し、その密度がほぼ一定と
なるように高周波電力等の放電パラメータ(他にガス流
量、容器内圧力等)やバイアス電圧を制御することによ
り成膜される薄膜の厚さをほぼ均一にさせたり、水素原
子ラジカルをほぼ一定にしてエッチング処理における選
択比、加工精度を良好にすることができ、プロセスの信
頼性を向上させることができる。
【0050】そこで上記測定方法にてプラズマ中の水素
原子ラジカル密度をリアルタイムで測定しつつ、高周波
電力を制御したところ、水素原子ラジカル密度を一定に
保つことができた。
【0051】このようにエッチングや薄膜形成に重要な
反応性プラズマ中の水素原子ラジカル密度を水素原子光
によりリアルタイムに測定し、その測定結果に基づいて
高周波アンテナ9に印加される高周波電力や載置台15
に印加されるバイアス電圧をフィードバック制御するこ
とによりプラズマ中の水素原子ラジカル密度を高精度に
制御して再現性に優れた高精度エッチング及び薄膜形成
を可能にしている。
【0052】尚、水素原子ラジカル密度を測定する方法
としては、高周波アンテナ9に印加される高周波電力を
所望のデューティにパルス変調し、該パルスがLOW
(オフ)で非プラズマ状態のとき、水素原子光発生装置
25から出射されて水素原子光検出装置27に入射され
る水素原子光強度を計測し、又該パルスがHIGH(オ
ン)でプラズマ状態のとき、水素原子光検出装置27に
入射される水素原子光強度を測定してプラズマ中の水素
原子ラジカルの水素原子光吸収量を演算する処理を繰り
返して測定すればよい。これにより水素原子光発生装置
25から出射される水素原子光の出射強度が不安定であ
っても、水素原子ラジカルによる水素原子光の吸収量を
高精度で、かつ安定的に測定することができる。
【0053】又、上記したオン、オフは、例えば周期1
00m秒においてオン50m秒、オフ50m秒程度でパ
ルス変調放電を行っている。この場合においても、水素
原子光発生装置25の前段にチョッパー45を設け、チ
ョッパー出力をトリガーにして信号を演算してもよい。
【0054】更に、水素原子光発生装置25から出射さ
れる水素原子光の発生直後の光をチョッパー45により
オン・オフ変調し、この変調した光を出射してプラズマ
中を透過した光をチョッパー45の周期に同期させて位
相検波或いはこれをトリガーとして演算してもよい。
【0055】実施形態2 本実施形態は、原子光発生装置を使用して実施形態1に
おけるプラズマ処理装置1に原料ガスとして窒素ガスを
導入してプロセス処理する際の窒素原子ラジカルを測定
する方法及び装置に関する。
【0056】この場合、原子光発生装置は、水素原子光
発生装置25と同種の原子光発生装置に窒素を含有した
ガスと希ガスの混合ガスを導入して窒素原子光を発生さ
せてプラズマ中の窒素原子ラジカルを測定する。
【0057】原子光発生装置に窒素ガスとネオンを水素
の場合と同様に導入しながら排気して陰極板を境界に陽
電極側と非陽電極側に圧力差を設けて所定の圧力に設定
し、陰極板と陽電極に電流を印加したところ、所望する
高輝度で自己吸収のない窒素原子光スペクトル(例えば
波長120nm)を得た。希ガスとしては、ネオンのよ
うに質量が窒素源と大差のないガスが望ましいが、これ
以外の希ガスであってもよい。容器内圧力の設定は、水
素原子の場合と同様に、所定のガスを導入しながら排気
して陰極板を境に陽電極側と非陽電極側とをほぼ等しい
圧力に設定或いは所定の圧力に封じ切っても上記圧力差
を設けた場合と大差のない所望するスペクトルが得られ
た。又、陰極板に窒素原子を含有した導電性材料を使用
してもよい。
【0058】原子光発生装置を用いることで窒化膜成膜
プラズマ(電子サイクロトロン共鳴SiH,N
合ガスプラズマ)中の窒素原子ラジカル密度を測定でき
た。
【0059】又、原子光発生装置を用いることで、例え
ばシリコン酸化膜成膜プラズマ(誘導結合型酸素プラズ
マ、基板はシリコンウェハ)中の酸素原子ラジカル密
度、アルミニウムエッチングプラズマ(誘導結合型塩素
プラズマ、基板はアルミニウム)中の塩素原子ラジカル
密度、シリコン系薄膜成膜プラズマ(誘導結合型シラ
ン、水素混合ガスプラズマ)中のケイ素原子ラジカル密
度及びダイヤモンド成膜プラズマ(誘導結合型メタン、
水素混合ガスプラズマ)中の炭素原子ラジカル密度の測
定が原理的に充分可能であることはいうまでもない。
【0060】その際、原子光発生装置に、酸素原子ラジ
カル密度の測定の場合は酸素を含有したガスと希ガス、
例えば酸素ガスとネオンの混合ガス、塩素原子ラジカル
密度の測定の場合には塩素を含有したガスと希ガス、例
えば塩素ガスとアルゴンの混合ガス、ケイ素原子ラジカ
ル密度の測定の場合にはケイ素を含有したガスと希ガ
ス、例えばシランガスとアルゴンの混合ガス及び炭素原
子ラジカル密度測定の場合には炭素を含有したガスと希
ガス、例えばメタンガスとネオンの混合ガスを導入し、
陰極板と陽電極に電流を印加することで、それぞれの原
子状ラジカルの測定に使用可能な所望する高輝度で自己
吸収のない原子光スペクトル、例えば酸素原子光は波長
130nm、塩素原子光は波長135nm、ケイ素原子
光は波長252nm及び炭素原子光は波長297nmが
得られる。又、陰極板に上記被測定原子を含有した導電
性材料を用いてもよい。
【0061】更に、巻思考発生装置にフッ素ガスを含有
したガスと稀ガス、例えばフルオロカーボンガスとネオ
ンの混合ガスを導入し、陰極板と陽電極に電流を印加す
ることで所望する高輝度で自己吸収のないフッ素原子光
(例えば、波長95nm)が得られた。又、陰極板にフ
ッ素原子をが有した導電性材料を用いてもよい。
【0062】尚、フッ素原子光(波長95nm)は前述
した原子光と異なり、光学的窓として透過可能な材質が
ない。この場合にあっては、光学的窓の代わりにキャピ
ラリプレート(SiO製、キャピラリー孔径10μ
m、開口率50%)を用い、更に原子光発生装置及び原
子光検出装置と真空容器を差動排気することによりこれ
らの間で様々な粒子の流入・流出を防止できる。
【0063】上記方法及び装置において、SiO/S
i選択エッチングプラズマ(誘導結合型フルオロカーボ
ン、水素混合ガスプラズマ)中のフッ素原子ラジカル密
度の測定が可能であった。
【0064】従って原子光発生装置に所望の被測定原子
を含有したガスと稀ガス若しくは所望する原子を含有す
る陰極板を使用することで、ほぼすべての原子状ラジカ
ルを測定することができる。
【0065】実施形態3 本実施形態は、実施形態1の原子光発生装置を使用して
プラズマ中の複数の原子状ラジカルを同時測定した例を
示す。
【0066】この場合、原子光発生装置は水素原子光発
生装置25と同種の原子光発生装置に複数の原子を含有
したガスと稀ガスを導入して同時に複数の所望する原子
光を得る。例えば原子光発生装置にNHガスとヘリウ
ムガスを導入して、例えば圧力660Torr、NH
濃度0.5%)、陰極板と陽電極との間に例えば10m
Aの電流を印加したところ、所望する高輝度で自己吸収
のない水素原子光スペクトル(例えば波長122nm)
及び窒素原子光スペクトル(例えば波長120nm)が
得られた。
【0067】複数の原子状ラジカル測定方法及び装置に
ついて高周波を使用した誘導結合型プラズマ処理装置に
用いた場合を図9に従って説明する。
【0068】基本構成及びプラズマの生成法等は図6に
示す例と同様である。原子光発生装置25から出射され
た2種の原子光(例えば窒素と水素)を、半透鏡470
・471により一部を基準原子光検出装置290・29
1に入射して原子光発生装置25から出射される2種の
原子光の一方(例えば窒素原子光)を基準原子光検出装
置290にて、又他方の原子光(水素原子光)を基準原
子光検出装置291にて測定する。
【0069】プラズマを透過した2種の原子光は、半透
鏡510により一部を原子光検出装置271に、半透鏡
510を透過した原子光は原子光検出装置270に入射
し、一方の原子光(例えば窒素原子光)を原子光検出装
置270にて、又他方の原子光(水素原子光)を原子光
検出装置271にてそれぞれ測定する。
【0070】尚、半透鏡470,471,510として
は原子光が真空紫外領域の場合には材質としてフッ化リ
チウム(LiF)又はフッ化マグネシウム(MgF
が適しており、紫外領域の場合にはSiOが適してい
る。
【0071】それぞれの原子光(例えば窒素と水素の吸
収量を測定することで、それぞれの原子ラジカル密度を
同時測定できるが、その方法は実施形態1と同様であ
る。尚、上記にて2種の原子ラジカルの同時測定を説明
したが、複数の原子状ラジカルを同時測定する場合に
は、該当するだけの半透鏡と原子光検出装置を使用すれ
ばよい。又、適宜、原子光検出装置にCCDアレイ等を
使用したマルチチャンネル型の分光器(複数の波長の強
度を同時測定可能)を用いてもよい。こり場合、装置構
成は図6と同様に1台の原子光検出装置及び基準原子光
検出装置で対応できる。
【0072】上記方法及び装置にてシリコン窒化膜成膜
プラズマ(電子サイクロトロン共鳴SiH,N混合
ガスプラズマ)中の窒素原子ラジカル及び水素原子ラジ
カル密度を同時測定することができた。
【0073】又、陰極板に複数の被測定原子を含有した
導電性材料を使用した例を説明する。
【0074】原子光発生装置に、水素化アモルファスシ
リコン製の陰極板を設置し、アルゴンを導入しながら所
定の圧力(例えば600Torr)に設定し、陰極板と
陽電極に電流(例えば10mA)を印加すると、陰極板
の孔内にプラズマが生じる。該陰極板孔内にて荷電粒子
(例えばアルゴンイオン)が孔内表面をスバッタし、水
素原子及びケイ素原子をプラズマ内に生じさせ、両原子
を発光させることで所望する両原子光スペクトルが得ら
れる。又、所望する複数の原子光スペクトルの強度比
(該原子光発生装置の場合は水素とケイ素の2つの原子
光スペクトル強度比)は、適宜、陰極板の材料の組成比
(該原子光発生装置の場合は水素化アモルファス中の水
素ととケイ素の組成比)を変化させることにより可変す
ることが可能であった。
【0075】上記原子光発生装置にて所望する高輝度で
自己吸収のない水素原子光(例えば波長122nm)及
びケイ素原子光(例えば波長252nm)が得られた。
該原子光発生装置を使用してシリコン系薄膜成膜プラズ
マ(誘導結合型シラン、水素混合ガスプラズマ)中の水
素原子ラジカル及びケイ素原子ラジカル密度の同時測定
が可能であった。
【0076】
【発明の効果】本発明は、測定される反応性プラズマ中
の原子ラジカル密度を高精度及び高感度で簡便に測定で
きる。
【図面の簡単な説明】
【図1】水素原子光発生装置の概略を示す概略断面図で
ある。
【図2】原子光発生率と水素ガス濃度の関係を示すグラ
フである。
【図3】原子光スペクトルの形状と水素ガス濃度の関係
を示す図である。
【図4】原子光スペクトルの形状と水素ガス濃度の関係
を示す図である。
【図5】原子光の自己吸収と陰極板と陽電極に印加する
電流の関係を示すグラフである。
【図6】原子状ラジカル測定方法及びその装置を高周波
を使用した誘導結合型プラズマ処理装置に用いた場合の
概略断面図である。
【図7】プラズマ処理装置の制御概略を示す説明図であ
る。
【図8】プラズマ中における水素原子ラジカル密度と高
周波アンテナに印加される高周波電力との関係を示すグ
ラフである。
【図9】原子状ラジカル測定方法及びその装置を高周波
を使用した誘導結合型プラズマ処理装置に用いた場合の
概略断面図である。
【符号の説明】
17−被処理体、25−水素原子光発生装置、29−基
準原子光検出装置、33−ケース、37−陰電極、37
a−孔、39−陽電極、41−発光ガス排気口、43−
発光ガス導入口
───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀 勝 愛知県日進市折戸町藤塚105−33 (72)発明者 伊藤 昌文 名古屋市天白区梅ヶ丘3−1802 ニューコ ーポ植田II305 (72)発明者 米田 勝實 名古屋市熱田区三本松町20番9号 日本レ ーザ電子株式会社内 (72)発明者 高島 成剛 名古屋市熱田区三本松町20番9号 日本レ ーザ電子株式会社内 Fターム(参考) 5F004 AA16 BA14 BA20 BB11 BB13 BB14 BB18 BB22 BB25 BB26 CB02 DA00 DA01 DA02 DA03 DA06 DA07 DA08 DA09 DA10 DA24 DB03 5F045 AA08 AA10 AB03 AB07 AB32 AB33 AC01 AC15 AC16 AC17 AF08 DP01 DP02 DP03 DQ10 EH02 EH09 EH11 EH17 EJ01 EJ02 EJ03 EJ09 EK01 EM05 GB08

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】原料ガスをプラズマ化して被処理体に原料
    ガス成分の薄膜を成膜したり、被処理体をエッチング処
    理する際に、プラズマ化した原料ガスに対して原子光発
    生装置から原子光を照射し、プラズマ透過前の基準原子
    光の強度とプラズマを透過した原子光線の強度に基づい
    てプラズマ中における原子状ラジカル密度を測定する方
    法において、原子光発生装置は容器内に、一部に所定の
    内径からなる孔が形成された陰極板を設け、容器内にお
    ける少なくとも上記ガス中の被測定原子を含むガス及び
    希ガスを所定の圧力にし、陰電極及び先端部が陰電極の
    孔に近接して設けられた陽電極に電流を印加して陰電極
    の孔内にて上記ガスをプラズマ化して発光させることに
    より生成される所望原子光を得ることを特徴とする原子
    状ラジカル測定方法。
  2. 【請求項2】原料ガスをプラズマ化して被処理体に原料
    ガス成分の薄膜を成膜したり、被処理体をエッチング処
    理する際に、プラズマ化した原料ガスに対して原子光発
    生装置から原子光を照射し、プラズマ透過前の基準原子
    光の強度とプラズマを透過した原子光線の強度に基づい
    てプラズマ中における原子状ラジカル密度を測定する方
    法において、原子光発生装置は、容器内に少なくとも被
    測定原子を含有し、一部に所定の内径からなる孔が形成
    された陰極板を設け、容器内における希ガスを所定の圧
    力にし、陰電極及び先端部が陰電極の孔に近接して設け
    られた陽電極に電流を印加して陰電極の孔内にて上記ガ
    スをプラズマ化して陰電極孔内表面を荷電粒子でスパッ
    タ或いは反応性スバッタさせて該陰電極孔内の原子を発
    光させることにより所望原子光を得ることを特徴とする
    原子状ラジカル測定方法。
  3. 【請求項3】原料ガスをプラズマ化して被処理体に原料
    ガス成分の薄膜を成膜したり、被処理体をエッチング処
    理する際に、プラズマ化した原料ガスに対して原子光発
    生装置から原子光を照射し、プラズマ透過前の基準原子
    光の強度とプラズマを透過した原子光線の強度に基づい
    てプラズマ中における原子状ラジカル密度を測定する装
    置において、原子光発生装置は容器内に設けられ、一部
    に所定の内径からなる孔が形成された陰極板と、容器内
    にて先端が陰極板の孔に相対して設けられた陽電極とか
    らなり、容器内における少なくとも上記ガス中の被測定
    原子を含むガス及び希ガスを所定の圧力にし、陰電極及
    び先端部が陰電極の孔に近接して設けられた陽電極に電
    流を印加して陰電極の孔内にて上記ガスをプラズマ化し
    て発光させることにより生成される所望原子光を得るこ
    とを特徴とする原子状ラジカル測定装置。
  4. 【請求項4】原料ガスをプラズマ化して被処理体に原料
    ガス成分の薄膜を成膜したり、被処理体をエッチング処
    理する際に、プラズマ化した原料ガスに対して原子光発
    生装置から原子光を照射し、プラズマ透過前の基準原子
    光の強度とプラズマを透過した原子光線の強度に基づい
    てプラズマ中における原子状ラジカル密度を測定する装
    置において、原子光発生装置は、容器内に設けられ、少
    なくとも被測定原子を含有し、一部に所定の内径からな
    る孔が形成された陰極板と、容器内にて先端が陰極板の
    孔に相対して設けられた陽電極とからなり、容器内にお
    ける希ガスを所定の圧力にし、陰電極及び先端部が陰電
    極の孔に近接して設けられた陽電極に電流を印加して陰
    電極の孔内にて上記ガスをプラズマ化して陰電極孔内表
    面を荷電粒子でスパッタ或いは反応性スバッタさせて該
    陰電極孔内の原子を発光させることにより所望の原子光
    を得ることを特徴とする原子状ラジカル測定装置。
  5. 【請求項5】請求項1〜4において、被測定原子は水
    素、窒素、酸素、塩素、フッ素、ケイ素、炭素のいずれ
    か若しくは複数の原子状ラジカル測定方法及び装置。
  6. 【請求項6】請求項1〜4において、希釈ガスは希ガス
    からなる原子状ラジカル測定方法及び装置。
JP29550498A 1998-10-16 1998-10-16 原子状ラジカル測定方法及び装置 Expired - Fee Related JP4127435B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29550498A JP4127435B2 (ja) 1998-10-16 1998-10-16 原子状ラジカル測定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29550498A JP4127435B2 (ja) 1998-10-16 1998-10-16 原子状ラジカル測定方法及び装置

Publications (2)

Publication Number Publication Date
JP2000123996A true JP2000123996A (ja) 2000-04-28
JP4127435B2 JP4127435B2 (ja) 2008-07-30

Family

ID=17821476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29550498A Expired - Fee Related JP4127435B2 (ja) 1998-10-16 1998-10-16 原子状ラジカル測定方法及び装置

Country Status (1)

Country Link
JP (1) JP4127435B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299241A (ja) * 2001-03-28 2002-10-11 Tadahiro Omi マイクロ波プラズマプロセス装置、プラズマ着火方法、プラズマ形成方法及びプラズマプロセス方法
WO2009154037A1 (ja) * 2008-06-20 2009-12-23 三菱電機株式会社 窒素原子測定方法、窒素原子測定装置、及びプラズマ処理装置
JP2017050285A (ja) * 2010-08-06 2017-03-09 ラム リサーチ コーポレーションLam Researc 分散型マルチゾーンプラズマ源システム、方法、および、装置
CN106959281A (zh) * 2017-04-15 2017-07-18 广东蓝新氢能源科技有限公司 一种自由基检测装置
JP2018107304A (ja) * 2016-12-27 2018-07-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JPWO2019003259A1 (ja) * 2017-06-26 2020-05-21 株式会社Fuji プラズマ処理機
JP2022114415A (ja) * 2021-01-26 2022-08-05 富蘭登科技股▲ふん▼有限公司 スペクトルにより物質の物理的状態を測定する装置及びスペクトルにより物質の物理的状態を測定する方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299241A (ja) * 2001-03-28 2002-10-11 Tadahiro Omi マイクロ波プラズマプロセス装置、プラズマ着火方法、プラズマ形成方法及びプラズマプロセス方法
WO2009154037A1 (ja) * 2008-06-20 2009-12-23 三菱電機株式会社 窒素原子測定方法、窒素原子測定装置、及びプラズマ処理装置
CN102066925A (zh) * 2008-06-20 2011-05-18 三菱电机株式会社 氮原子测定方法、氮原子测定装置和等离子体处理装置
JP5295237B2 (ja) * 2008-06-20 2013-09-18 三菱電機株式会社 窒素原子測定方法、窒素原子測定装置、プラズマ処理方法、及びプラズマ処理装置
JP2017050285A (ja) * 2010-08-06 2017-03-09 ラム リサーチ コーポレーションLam Researc 分散型マルチゾーンプラズマ源システム、方法、および、装置
JP2018107304A (ja) * 2016-12-27 2018-07-05 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
CN106959281A (zh) * 2017-04-15 2017-07-18 广东蓝新氢能源科技有限公司 一种自由基检测装置
JPWO2019003259A1 (ja) * 2017-06-26 2020-05-21 株式会社Fuji プラズマ処理機
JP2022114415A (ja) * 2021-01-26 2022-08-05 富蘭登科技股▲ふん▼有限公司 スペクトルにより物質の物理的状態を測定する装置及びスペクトルにより物質の物理的状態を測定する方法

Also Published As

Publication number Publication date
JP4127435B2 (ja) 2008-07-30

Similar Documents

Publication Publication Date Title
Britun et al. Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges: a review
US5683538A (en) Control of etch selectivity
Ullal et al. Effect of chamber wall conditions on Cl and Cl 2 concentrations in an inductively coupled plasma reactor
US4894132A (en) Sputtering method and apparatus
US20090301655A1 (en) Plasma Processing Apparatus
KR100704108B1 (ko) 무산소 플라즈마 공정에서의 종점 검출 방법
JP2001077092A (ja) プラズマ処理装置
TW201841189A (zh) 電漿處理裝置及電漿處理方法
TW201445629A (zh) 一種等離子體刻蝕工藝的處理裝置及方法
JP3951003B2 (ja) プラズマ処理装置および方法
JP2020517106A (ja) 遠隔プラズマモニタリングのための発光分光法(oes)
JP2005072347A (ja) 処理装置
JP4127435B2 (ja) 原子状ラジカル測定方法及び装置
KR100690144B1 (ko) 플라즈마를 이용한 가스분석장치
JPH09185999A (ja) ラジカルの制御方法
Sirse et al. Measurement of F−, O− and densities in 60 and 100 MHz asymmetric capacitively coupled plasma discharge produced in an Ar/O2/C4F8 gas mixture
JP3199306B2 (ja) プラズマ処理装置および方法
JP2007115765A (ja) プラズマ処理装置
JP4226392B2 (ja) 原子状ラジカル密度測定装置及び原子状ラジカル密度方法
Sasaki et al. Correlation between CF2 and CxFy densities in C4F8 plasmas
JP3897380B2 (ja) 処理方法及びその装置
JP4086979B2 (ja) プラズマ処理装置における炭素原子ラジカル測定用炭素原子光発生装置
KR100290750B1 (ko) 플라즈마처리의 종점검출 방법 및 장치
JP2002020865A (ja) スパッタ装置並びにスパッタ支援装置及びスパッタ制御方法
KR20070018404A (ko) 플라즈마 식각 장치

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060511

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees