JP2000121445A - Surface-temperature measuring method - Google Patents

Surface-temperature measuring method

Info

Publication number
JP2000121445A
JP2000121445A JP10297234A JP29723498A JP2000121445A JP 2000121445 A JP2000121445 A JP 2000121445A JP 10297234 A JP10297234 A JP 10297234A JP 29723498 A JP29723498 A JP 29723498A JP 2000121445 A JP2000121445 A JP 2000121445A
Authority
JP
Japan
Prior art keywords
region
surface temperature
temperature
area
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10297234A
Other languages
Japanese (ja)
Other versions
JP3975584B2 (en
Inventor
Chihiro Uematsu
千尋 植松
Tatsuro Honda
達朗 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29723498A priority Critical patent/JP3975584B2/en
Publication of JP2000121445A publication Critical patent/JP2000121445A/en
Application granted granted Critical
Publication of JP3975584B2 publication Critical patent/JP3975584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize a temperature measuring apparatus by a method wherein a surface temperature in a first region is calculated by using a heat capacity, by using a flow rate of a fluid coming into contact with a second region per unit time and a heat capacity and by using the difference in a surface temperature, between the first region and the second region, which is found by the function of the temperature of the fluid. SOLUTION: An infrared sensor 2 whose visual field is a first region and an infrared sensor 3 whose visual field is a second region are installed at the upper part of a steel sheet 1. Air which flows in a pipe 5 from a blower 4 is blown from a blowoff port 8. The air is set at a preset temperature by an air heater 6 and an air cooler 7, and the air is blown at a prescribed flow rate. Its temperature is detected by a temperature sensor 9, it is fed back to a surface-temperature computing unit 10a, and the temperature of the air in the pipe 5 is controlled. A quantity of radiation infrared light detected by the sensors 2, 3 and the temperature of the air are input sequentially to the computing unit 10a. The black-body radiance, the emissivity and the stray noise influence coefficient of the steel sheet 1 as well as the emissivity and the environmental temperature of a peripheral object are given to the computing unit 10a in advance. Then, the influence of a stray noise is removed on the basis of the difference in a surface temperature between the first region and the second region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温領域にある測
定対象物(例えば冷間圧延中の測定対象物)の表面温度
を測定する非接触式表面温度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type surface temperature measuring method for measuring the surface temperature of an object to be measured in a low temperature region (for example, an object to be measured during cold rolling).

【0002】[0002]

【従来の技術】ライン上を移動する測定対象物の表面温
度を測定する方法として測定対象物の表面からの放射赤
外線を利用した非接触式温度測定方法が知られている。
2. Description of the Related Art As a method for measuring the surface temperature of a measurement object moving on a line, a non-contact type temperature measurement method using infrared radiation from the surface of the measurement object is known.

【0003】特開平5−248957号公報に記載され
ている非接触式温度測定方法で使用する表面温度測定装
置は、放射温度計の赤外線センサが測定対象物を覗き見
る位置に覗筒を設け、覗筒の先端部には中央部に覗き開
孔を有する水冷遮蔽板が設けてある。また、水冷遮蔽板
の表面温度を測定するための熱電温度計の熱電対が水冷
遮蔽板の測定対象物対向面に、更に、周囲の温度(この
場合測定位置周辺部の空気)を測定するため熱電温度計
の熱電対が、迷光雑音(表面温度を測定する領域から放
射されるのではなくこの領域外にある物体から放射され
る赤外線がこの領域で反射されて検出される赤外線)が
最も入射しやすい位置に設けてある。
A surface temperature measuring device used in the non-contact type temperature measuring method described in Japanese Patent Application Laid-Open No. 5-248957 is provided with a viewing tube at a position where an infrared sensor of a radiation thermometer looks into a measuring object, A water-cooled shielding plate having a peeping opening at the center is provided at the tip of the viewing tube. In addition, a thermocouple of a thermoelectric thermometer for measuring the surface temperature of the water-cooling shielding plate is provided on the surface of the water-cooling shielding plate facing the object to be measured, and further, to measure an ambient temperature (in this case, air around the measuring position). The thermocouple of the thermocouple detects stray light noise (infrared rays emitted from objects outside this area instead of being emitted from the area where surface temperature is measured and reflected by this area and detected). It is provided in a position that is easy to do.

【0004】赤外線センサは、測定対象物から放射され
る赤外線を水冷遮蔽板の開孔部を通して検出することに
よって測定対象物の表面温度を測定する。また、測定対
象物の表面温度が測定されている間に上述した熱電温度
計は、水冷遮蔽板の表面温度及び周囲の温度を測定す
る。
[0004] The infrared sensor measures the surface temperature of the measurement object by detecting infrared rays radiated from the measurement object through the opening of the water-cooled shielding plate. Further, while the surface temperature of the measurement object is being measured, the above-described thermoelectric thermometer measures the surface temperature of the water-cooled shielding plate and the ambient temperature.

【0005】放射温度計及び2つの熱電温度計によって
検出される温度の検出値は、演算装置へ出力される。こ
こでは、水冷遮蔽板の測定対象物対向面から測定対象物
までの距離の関数により定まる水冷遮蔽板からの迷光雑
音影響関数及び周囲物体からの迷光雑音影響関数と、上
述した温度の検出値とに基づいて、放射温度計が検出し
た放射赤外線光量のうち水冷遮蔽板及び周囲物体からの
迷光雑音の影響分を演算し、この放射赤外線光量から迷
光雑音の影響分を除去することにより測定対象物の表面
温度の測定精度を向上させている。
[0005] The detected values of the temperature detected by the radiation thermometer and the two thermoelectric thermometers are output to an arithmetic unit. Here, the stray light noise influence function from the water cooling shield plate and the stray light noise influence function from the surrounding object determined by the function of the distance from the measurement object facing surface of the water cooling shield plate to the measurement object, and the above-described temperature detection value Calculates the influence of the stray light noise from the water-cooled shielding plate and surrounding objects in the amount of radiated infrared light detected by the radiation thermometer based on the Surface temperature measurement accuracy has been improved.

【0006】[0006]

【発明が解決しようとする課題】低温領域にある測定対
象物(例えば冷間圧延中の測定対象物)の表面から放射
される赤外線光量を検出して表面温度を測定する場合、
測定対象物からの放射赤外線光量は少ないために上述し
た非接触式温度測定方法では水冷遮蔽板及び周囲物体か
らの迷光雑音の影響が顕著になる。この迷光雑音の影響
を考慮に入れ、測定対象物の表面温度の測定精度を向上
させるためには、覗き開孔中心から水冷遮蔽板の測定対
象物対向面の外周までの距離を、水冷遮蔽板の測定対象
物対向面から測定対象物までの距離に対して大きくすれ
ばよいことが知られている。しかしながら、この様な水
冷遮蔽板を有する大型の放射温度計を備えた表面温度測
定装置は高価であり、また、設置スペースが限られてい
る場合には設置が困難である。
When measuring the surface temperature by detecting the amount of infrared light radiated from the surface of a measuring object (for example, a measuring object during cold rolling) in a low temperature region,
Since the amount of radiated infrared rays from the object to be measured is small, the influence of stray light noise from the water-cooled shielding plate and surrounding objects becomes significant in the above-mentioned non-contact type temperature measuring method. Taking into account the effect of this stray light noise, in order to improve the measurement accuracy of the surface temperature of the object to be measured, the distance from the center of the peephole to the outer periphery of the surface of the water-cooled shielding plate facing the object to be measured should be determined by the water-cooled shielding plate It is known that the distance may be increased with respect to the distance from the measurement object facing surface to the measurement object. However, a surface temperature measuring device provided with such a large radiation thermometer having such a water-cooled shielding plate is expensive and is difficult to install when the installation space is limited.

【0007】本発明は斯かる事情に鑑みてなされたもの
であり、測定対象物の表面温度測定領域及びこの領域の
近傍にある流体を接触させた参照領域からの放射赤外線
光量に基づいて放射赤外線光量のうちの迷光雑音による
影響分を演算により除去した結果と、表面温度測定領域
の熱容量、単位時間あたりに参照領域に接触する流体の
流量及び熱容量とに基づいて表面温度を算出することに
より、低温領域にある測定対象物の表面温度を測定する
ための表面温度測定装置を小型化することが可能な表面
温度測定方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and based on the amount of radiated infrared light from the surface temperature measurement area of a measurement object and a reference area in contact with a fluid near this area. By calculating the surface temperature based on the result of removing the influence of the stray light noise of the light amount by calculation and the heat capacity of the surface temperature measurement area, the flow rate and the heat capacity of the fluid contacting the reference area per unit time, An object of the present invention is to provide a surface temperature measuring method capable of miniaturizing a surface temperature measuring device for measuring a surface temperature of a measurement object in a low temperature region.

【0008】また、表面温度を算出する際に表面温度の
測定を通じて経験的に得られ比例定数を用いることによ
り、表面温度測定領域の熱容量、単位時間あたりに参照
領域に接触する流体の流量及び熱容量が不明であっても
表面温度を算出することが可能な表面温度測定方法を提
供することを他の目的とする。
Further, when calculating the surface temperature, the heat capacity of the surface temperature measurement area, the flow rate of the fluid in contact with the reference area per unit time, and the heat capacity can be obtained by using a proportional constant obtained empirically through the measurement of the surface temperature. Another object of the present invention is to provide a surface temperature measuring method capable of calculating the surface temperature even if the value is unknown.

【0009】更に、演算結果に基づいて表面温度を算出
する際に測定対象物の移動速度を考慮した演算を行うこ
とにより、上述した表面温度測定方法をより高精度に実
施することが可能な表面温度測定方法を提供することを
他の目的とする。
Further, by performing calculations taking into account the moving speed of the object to be measured when calculating the surface temperature based on the calculation results, the surface temperature measurement method described above can be performed with higher accuracy. It is another object to provide a temperature measurement method.

【0010】[0010]

【課題を解決するための手段】請求項1に係る表面温度
測定方法は、測定対象物の表面温度を測定する第1領域
の近傍に所定の温度に制御した流体を接触させて該流体
を接触させた第2領域の表面温度を変化させ、第1領域
からの放射赤外線光量及び第2領域からの放射赤外線光
量をそれぞれ検出し、両領域からの放射赤外線光量のう
ちの迷光雑音による影響分を、第1領域からの放射赤外
線光量から第2領域からの放射赤外線光量を減じること
により除去する演算をして第1領域の表面温度を求める
演算式を得、該演算式に基づいて第1領域の表面温度を
算出する表面温度測定方法において、第1領域の熱容
量、第2領域に単位時間あたりに接触する前記流体の流
量及び熱容量、並びに前記流体の温度の関数により求ま
る第1領域と第2領域との表面温度差を前記演算式に与
えて第1領域の表面温度を算出することを特徴とする。
According to a first aspect of the present invention, there is provided a method of measuring a surface temperature, comprising: bringing a fluid controlled at a predetermined temperature into contact with a first region for measuring the surface temperature of an object to be measured; By changing the surface temperature of the second region, the amount of radiated infrared light from the first region and the amount of radiated infrared light from the second region are respectively detected, and the influence of stray light noise on the amount of radiated infrared light from both regions is detected. A subtraction operation is performed by subtracting the amount of infrared radiation from the second region from the amount of infrared radiation emitted from the first region to obtain an arithmetic expression for obtaining the surface temperature of the first region. In the surface temperature measuring method for calculating the surface temperature of the first region and the second region, the heat capacity of the first region, the flow rate and the heat capacity of the fluid contacting the second region per unit time, and the temperature of the fluid are determined. Territory And calculating the surface temperature of the first region is given to the mathematical expression of the surface temperature difference between the.

【0011】請求項2に係る表面温度測定方法は、測定
対象物の表面温度を測定する第1領域の近傍に所定の温
度に制御した流体を接触させて該流体を接触させた第2
領域の表面温度を変化させ、第1領域からの放射赤外線
光量及び第2領域からの放射赤外線光量をそれぞれ検出
し、両領域からの放射赤外線光量のうちの迷光雑音によ
る影響分を、第1領域からの放射赤外線光量から第2領
域からの放射赤外線光量を減じることにより除去する演
算をして第1領域の表面温度を求める演算式を得、該演
算式に基づいて第1領域の表面温度を算出する表面温度
測定方法において、第1領域と第2領域との放射赤外線
光量差の絶対値が所定値以下になるときの放射赤外線光
量差及びこのときの前記流体の温度に基づいて第1領域
の表面温度を算出することを特徴とする。
According to a second aspect of the present invention, there is provided a method for measuring a surface temperature of a target object, comprising the steps of: bringing a fluid controlled at a predetermined temperature into contact with a first area for measuring a surface temperature of an object to be measured;
The surface temperature of the area is changed to detect the amount of radiated infrared light from the first area and the amount of radiated infrared light from the second area, respectively. An arithmetic expression for obtaining the surface temperature of the first region by performing an operation of subtracting the amount of infrared infrared radiation from the second region from the amount of infrared radiation emitted from the second region to obtain the surface temperature of the first region is obtained based on the arithmetic expression. In the surface temperature measuring method to be calculated, the first area is determined based on the difference between the amount of radiated infrared light and the temperature of the fluid when the absolute value of the difference between the amounts of radiated infrared light between the first area and the second area is equal to or less than a predetermined value. Is characterized in that the surface temperature is calculated.

【0012】請求項3に係る表面温度測定方法は、移動
する測定対象物の表面温度を測定する第1領域の近傍に
所定の温度に制御した流体を接触させて該流体を接触さ
せた第2領域の表面温度を変化させ、第1領域からの放
射赤外線光量及び第2領域からの放射赤外線光量をそれ
ぞれ検出し、両領域からの放射赤外線光量のうちの迷光
雑音による影響分を、第1領域からの放射赤外線光量か
ら第2領域からの放射赤外線光量を減じることにより除
去する演算をして第1領域の表面温度を求める演算式を
得、該演算式に基づいて第1領域の表面温度を算出する
表面温度測定方法において、前記測定対象物の移動速度
を検出し、該移動速度、第1領域の熱容量、第2領域に
単位時間あたりに接触する前記流体の流量及び熱容量、
並びに前記流体の温度の関数により求まる第1領域と第
2領域との表面温度差を前記演算式に与えて第1領域の
表面温度を算出することを特徴とする。
According to a third aspect of the present invention, there is provided a method for measuring a surface temperature of a moving object to be measured, the method comprising: bringing a fluid controlled at a predetermined temperature into contact with a first region for measuring the surface temperature of a moving measuring object; The surface temperature of the area is changed to detect the amount of radiated infrared light from the first area and the amount of radiated infrared light from the second area, respectively. An arithmetic expression for obtaining the surface temperature of the first region by performing an operation of subtracting the amount of infrared infrared radiation from the second region from the amount of infrared radiation emitted from the second region to obtain the surface temperature of the first region is obtained based on the arithmetic expression. In the calculated surface temperature measuring method, the moving speed of the measurement object is detected, and the moving speed, the heat capacity of the first area, the flow rate and the heat capacity of the fluid that contacts the second area per unit time,
In addition, a surface temperature difference between the first region and the second region obtained by a function of the temperature of the fluid is given to the arithmetic expression to calculate a surface temperature of the first region.

【0013】測定対象物の表面温度を測定する第1領域
の表面温度がTs(未知)である測定対象物の、この領
域からの放射赤外線光量及びこの領域外からの迷光雑音
による放射赤外線光量との和Lは下記(1)式で与えら
れる。
The amount of radiated infrared light from this area and the amount of radiated infrared light due to stray light noise from outside this area of the measurement object whose surface temperature is Ts (unknown) in the first area for measuring the surface temperature of the object to be measured. Is given by the following equation (1).

【0014】 L=εs・Lb(Ts)+α(1−εs)・εw・Lb(Tw) …(1) ここで、Lb(Ts)は温度Tsの物体の黒体放射輝
度、εsは測定対象物の放射率、αは迷光雑音影響係
数、εwは周辺物体の放射率(平均値)、Twは周辺の
環境温度をそれぞれ表す。
L = εs · Lb (Ts) + α (1−εs) · εw · Lb (Tw) (1) where Lb (Ts) is the blackbody radiance of the object at the temperature Ts, and εs is the object to be measured. E represents the emissivity of the object, α represents the stray light noise influence coefficient, εw represents the emissivity (average value) of the surrounding object, and Tw represents the surrounding environmental temperature.

【0015】(1)式において、右辺第1項は第1領域
からの放射赤外線光量を、また、右辺第2項はこの領域
以外からの迷光雑音による放射赤外線光量をそれぞれ表
す。第1領域の近傍にある第2領域(表面温度の参照領
域)に所定の温度に制御した流体を接触させたとき、こ
の領域の表面温度はΔtだけ変化し、このとき、第2領
域からの放射赤外線光量及びこの領域以外からの迷光雑
音による放射赤外線光量の和Ltは下記(2)式で表さ
れる。
In equation (1), the first term on the right-hand side represents the amount of radiated infrared light from the first region, and the second term on the right-hand side represents the amount of radiated infrared light from areas other than this region due to stray light noise. When a fluid controlled at a predetermined temperature is brought into contact with a second region (a reference region of the surface temperature) near the first region, the surface temperature of this region changes by Δt. The sum Lt of the amount of radiated infrared light and the amount of radiated infrared light due to stray light noise from areas other than this region is expressed by the following equation (2).

【0016】 Lt=εs・Lb(Ts+Δt)+α(1−εs)・εw・Lb(Tw) …(2)Lt = εs · Lb (Ts + Δt) + α (1−εs) · εw · Lb (Tw) (2)

【0017】(1)式における、第1領域以外からの迷
光雑音による放射赤外線光量及び(2)式における、第
2領域以外からの迷光雑音による放射赤外線光量は等し
いため、(1)式から、(2)式を減じることにより、
迷光雑音による放射赤外線光量を消去することが可能で
あり、下記(3)式を得る。
In equation (1), the amount of radiated infrared light due to stray light noise from regions other than the first region and the amount of radiated infrared light due to stray light noise from regions other than the second region in formula (2) are equal. By subtracting equation (2),
The amount of radiated infrared light due to stray light noise can be eliminated, and the following equation (3) is obtained.

【0018】 ΔL=L−Lt =εs・{Lb(Ts)−Lb(Ts+Δt)} …(3) ここで、ΔLは、第1領域と第2領域との放射赤外線光
量差である。
ΔL = L−Lt = εs · {Lb (Ts) −Lb (Ts + Δt)} (3) where ΔL is a difference between the amounts of radiated infrared rays between the first region and the second region.

【0019】第1領域と第2領域との間の表面温度差Δ
tは、第1領域の温度と熱容量、単位時間に第2領域に
接触する上述した流体の流量と熱容量、及びこの流体の
温度により定まり、これらを用いて表面温度を算出する
ことによって回帰的に求められた関数Fにより下記
(4)式に示す如く定まる。
The surface temperature difference Δ between the first region and the second region
t is determined by the temperature and heat capacity of the first region, the flow rate and heat capacity of the above-mentioned fluid that comes into contact with the second region per unit time, and the temperature of this fluid, and recursively calculated by using these to calculate the surface temperature. It is determined by the obtained function F as shown in the following equation (4).

【0020】 Δt=F(Ts,Cs,l,Ca,Ta,) …(4) ここで、Csは第1領域の熱容量、lは単位時間に第2
領域に接触する上述した流体の流量、Caはその熱容
量、Taはその温度をそれぞれ表す。
Δt = F (Ts, Cs, 1, Ca, Ta,) (4) where Cs is the heat capacity of the first region, and 1 is the second region per unit time.
The flow rate of the above-mentioned fluid in contact with the region, Ca represents its heat capacity, and Ta represents its temperature.

【0021】(3)式及び(4)式より、ΔLは下記
(5)式に示す如く表せる。
From equations (3) and (4), ΔL can be expressed as shown in equation (5) below.

【0022】 ΔL=εs・[Lb(Ts)−Lb{Ts +F(Ts,Cs,l,Ca,Ta,)}] …(5)ΔL = εs · [Lb (Ts) −Lb {Ts + F (Ts, Cs, 1, Ca, Ta,)}] (5)

【0023】上述の流体の温度をTaに制御し、上述し
た放射赤外線光量差ΔLを検出してこれらを(5)式に
与え、(5)式より第1領域の表面温度Tsを算出する
演算を行うことにより測定対象物の表面温度が算出され
る。以上が第1発明に係る表面温度測定方法である。
The above-mentioned fluid temperature is controlled to Ta, the above-mentioned difference in the amount of emitted infrared rays ΔL is detected and given to equation (5), and the surface temperature Ts of the first region is calculated from equation (5). Is performed, the surface temperature of the measurement object is calculated. The above is the surface temperature measuring method according to the first invention.

【0024】第2領域に接触する流体の温度が第1領域
の表面温度と略同温であり、第1領域及び第2領域の表
面温度差が微少になる場合には、第1領域と第2領域と
の放射赤外線光量差ΔLが微少になる。第2発明に係る
表面温度測定方法では、第1領域の熱容量、単位時間に
第2領域に接触する上述した流体の流量及び熱容量を用
いずに、上述した流体の温度を種々に制御し、放射赤外
線光量差ΔLの絶対値が所定値(微少量)以下になると
きの放射赤外線光量差ΔL及びこのときの流体の温度よ
り第1領域の表面温度を算出する。ここでは、上述の表
面温度差Δtを、第1領域の表面温度及び上述の流体の
温度の差と、表面温度測定を通じて経験的に得られた比
例定数との積により下記(6)式に示す如く定める。
If the temperature of the fluid in contact with the second region is substantially the same as the surface temperature of the first region and the difference between the surface temperatures of the first region and the second region is very small, the first region and the second region may be separated. The difference ΔL in the amount of radiated infrared light between the two regions becomes small. In the surface temperature measuring method according to the second invention, the temperature of the above-described fluid is variously controlled without using the heat capacity of the first area, the flow rate and the heat capacity of the above-mentioned fluid that comes into contact with the second area per unit time, and the radiation is controlled. The surface temperature of the first region is calculated from the radiated infrared light amount difference ΔL when the absolute value of the infrared light amount difference ΔL is equal to or less than a predetermined value (small amount) and the fluid temperature at this time. Here, the above-mentioned surface temperature difference Δt is expressed by the following equation (6) by the product of the difference between the surface temperature of the first region and the temperature of the above-mentioned fluid, and the proportionality constant empirically obtained through the surface temperature measurement. Determined as follows.

【0025】 Δt=−K(Ts−Ta) …(6) ここで、Kは、表面温度測定を通じて経験的に得られた
比例定数である。
Δt = −K (Ts−Ta) (6) where K is a proportional constant empirically obtained through surface temperature measurement.

【0026】これを(4)式の関数の代えて与えること
により、上述した放射赤外線光量差ΔLは下記(7)式
に示す如く表せる。
By giving this in place of the function of equation (4), the above-mentioned difference in radiated infrared light quantity ΔL can be expressed as shown in the following equation (7).

【0027】 ΔL=εs・[Lb(Ts)−Lb{Ts−K(Ts−Ta)}]…(7)ΔL = εs · [Lb (Ts) −Lb {Ts−K (Ts−Ta)}] (7)

【0028】上述した流体の温度Taを制御して放射赤
外線光量差ΔLの絶対値が所定値(第1領域の表面温度
を算出する際の誤差の許容範囲を考慮して決定される)
以下となる場合に(7)式より第1領域の表面温度Ts
を算出する演算を行うことによって測定対象物の表面温
度が算出される。以上が第2発明に係る表面温度測定方
法である。
By controlling the temperature Ta of the fluid described above, the absolute value of the radiant infrared light quantity difference ΔL is a predetermined value (determined in consideration of an allowable range of error when calculating the surface temperature of the first area).
From the equation (7), the surface temperature Ts of the first region is obtained when
The surface temperature of the measurement object is calculated by performing the calculation of The above is the surface temperature measuring method according to the second invention.

【0029】測定対象物表面からの放射赤外線光量を検
出する際に、測定対象物表面から実際に放射される赤外
線光量と検出される赤外線光量とには相違があり、この
相違は、測定対象物が高速で移動する場合には大きくな
ることが知られている。この場合、検出される放射赤外
線光量に基づいて測定対象物の表面温度を算出する際に
測定対象物の移動速度を考慮しないと精度の高い測温精
度が得られない。
When detecting the amount of infrared radiation radiated from the surface of the object to be measured, there is a difference between the amount of infrared light actually radiated from the surface of the object to be measured and the amount of infrared light to be detected. Is known to increase when moving at high speed. In this case, high precision temperature measurement accuracy cannot be obtained unless the moving speed of the measurement target is taken into account when calculating the surface temperature of the measurement target based on the detected amount of radiation infrared radiation.

【0030】そこで、第3発明に係る表面温度測定方法
では、測定対象物が高速で移動する場合においても高い
測温精度が得られるように、第1領域と第2領域との表
面温度差Δtを定める関数の要素に測定対象物の移動速
度Vsを加えた下記(8)式を用いる。
Therefore, in the surface temperature measuring method according to the third invention, the surface temperature difference Δt between the first region and the second region is set so as to obtain high temperature measurement accuracy even when the measuring object moves at high speed. The following equation (8) is used in which the moving speed Vs of the measurement object is added to the element of the function that determines

【0031】 Δt=F(Ts,Cs,l,Ca,Ta,Vs) …・(8)Δt = F (Ts, Cs, 1, Ca, Ta, Vs) (8)

【0032】(8)式を(5)式の関数Fに代えて与え
ることによって下記(9)式を得る。
The following equation (9) is obtained by giving equation (8) instead of function F in equation (5).

【0033】 ΔL=εs・[Lb(Ts)−Lb{Ts +F(Ts,Cs,l,Ca,Ta,Vs)}] …(9)ΔL = εs · [Lb (Ts) −Lb {Ts + F (Ts, Cs, 1, Ca, Ta, Vs)}] (9)

【0034】上述した流体の温度をTaに制御し、上述
した放射赤外線光量差ΔL及び測定対象物の移動速度V
sを検出し、これらを(9)式に与えて第1領域の表面
温度Tsを算出する演算を行うことにより測定対象物の
表面温度が算出される。以上が第3発明に係る表面温度
測定方法である。
The temperature of the above-mentioned fluid is controlled to Ta, and the above-mentioned difference in the amount of radiated infrared rays ΔL and the moving speed V of the measuring object are obtained.
s is detected, and these are given to equation (9) to calculate the surface temperature Ts of the first region, thereby calculating the surface temperature of the measurement object. The above is the surface temperature measuring method according to the third invention.

【0035】[0035]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.

【0036】実施の形態1.図1は、本発明に係る表面
温度測定方法を冷間圧延中の鋼板に対して実施する際に
用いる装置を示した模式図である。図において1は測定
対象物である鋼板であり、鋼板1の上方には表面温度を
測定する第1領域を視野とする赤外線センサ2と、第1
領域の近傍にある第2領域(表面温度の参照領域)を視
野とする赤外線センサ3とが設けられている。第2領域
には、送風機4から送風され配管5を流れる空気が空気
吹き付け口8から吹き付けられる。この空気の温度は、
配管5を流れる間に空気加熱器6及び空気冷却器7によ
り予め設定した温度(鋼板1の冷却程度により決定され
る)に制御され、第2領域に単位時間あたりに吹き付け
られるこの空気の吹き付け量は、図示しない流量制御手
段により予め設定した流量に制御される。空気吹き付け
口8の近傍には、第2領域に吹き付けられる空気の温度
を検出するための温度センサ9が設けてある。
Embodiment 1 FIG. 1 is a schematic diagram showing an apparatus used when the surface temperature measuring method according to the present invention is performed on a steel sheet during cold rolling. In the figure, reference numeral 1 denotes a steel plate as an object to be measured. Above the steel plate 1, an infrared sensor 2 having a first area for measuring the surface temperature as a visual field,
An infrared sensor 3 having a field of view in a second area (a reference area for surface temperature) near the area is provided. Air blown from the blower 4 and flowing through the pipe 5 is blown from the air blowing port 8 to the second area. The temperature of this air is
While flowing through the pipe 5, the air heater 6 and the air cooler 7 control the temperature to a preset temperature (determined by the degree of cooling of the steel plate 1), and the amount of air blown per unit time to the second area Is controlled to a preset flow rate by flow rate control means (not shown). A temperature sensor 9 for detecting the temperature of the air blown to the second area is provided near the air blowing port 8.

【0037】温度センサ9が検出した空気温度は、表面
温度演算器10aへフイードバックされ、空気加熱器6
及び空気冷却器7により配管5を流れる空気温度が制御
される。また、赤外線センサ2、3によって検出される
放射赤外線光量及び温度センサ9により検出される空気
温度は表面温度演算器10aへ逐次入力される。本実施
の形態では、第2領域の表面温度を変化させるための流
体として空気を用いるが、これは、例えば水のような液
体であっても良い。
The air temperature detected by the temperature sensor 9 is fed back to the surface temperature calculator 10a, and the air heater 6
The temperature of the air flowing through the pipe 5 is controlled by the air cooler 7. Further, the amount of radiated infrared rays detected by the infrared sensors 2 and 3 and the air temperature detected by the temperature sensor 9 are sequentially input to the surface temperature calculator 10a. In the present embodiment, air is used as a fluid for changing the surface temperature of the second region. However, this may be a liquid such as water.

【0038】表面温度演算器10aには、鋼板1の黒体
放射輝度Lb、放射率εs及び迷光雑音影響係数α、鋼
板1の周辺にある物体の放射率εw(平均値)及び周辺
の環境温度Tw(表面温度を測定する環境を考慮した温
度)が予め与えてあり、下記に示す(1)式及び(2)
式、 L =εs・Lb(Ts) +α(1−εs)・εw・Lb(Tw) …(1) Lt=εs・Lb(Ts+Δt) +α(1−εs)・εw・Lb(Tw) …(2) が設定されている。(2)式中のΔtは、第1領域及び
第2領域の表面温度差であり、これは、第1領域の表面
温度Ts及び熱容量Cs、単位時間あたり第2領域に吹
き付けられる空気の流量l及び熱容量Ca並びにこの空
気温度Taの(4)式に示す関数により定義されてい
る。 Δt=F(Ts,Cs,l,Ca,Ta,) …(4)
The surface temperature calculator 10a stores the blackbody radiance Lb, the emissivity εs, and the stray light noise influence coefficient α of the steel plate 1, the emissivity εw (average value) of the object around the steel plate 1, and the surrounding environmental temperature. Tw (temperature in consideration of the environment for measuring the surface temperature) is given in advance, and the following expressions (1) and (2) are given.
L = εs · Lb (Ts) + α (1−εs) · εw · Lb (Tw) (1) Lt = εs · Lb (Ts + Δt) + α (1−εs) · εw · Lb (Tw) ( 2) is set. Δt in the equation (2) is the surface temperature difference between the first region and the second region, which is the surface temperature Ts and heat capacity Cs of the first region, and the flow rate l of air blown to the second region per unit time. And the heat capacity Ca and the air temperature Ta are defined by the function shown in the equation (4). Δt = F (Ts, Cs, 1, Ca, Ta,) (4)

【0039】表面温度演算器10aは、赤外線センサ
2、3によって検出された放射赤外線光量を(1)式の
L、(2)式のLtに与え、(1)式から(2)式を減
算し、第1領域、第2領域からの放射赤外線光量のうち
の迷光雑音の影響分が除去された第1領域の表面温度を
算出するための(5)式を得る。 ΔL=εs・[Lb(Ts)−Lb{Ts +F(Ts,Cs,l,Ca,Ta,)}] …(5) (5)式に温度センサ9により検出された空気温度Ta
を与えて第1領域の表面温度を算出する。算出された第
1領域の表面温度Tsは温度表示部11に出力されて表
示される。
The surface temperature calculator 10a gives the amount of radiated infrared rays detected by the infrared sensors 2 and 3 to L in equation (1) and Lt in equation (2), and subtracts equation (2) from equation (1). Then, an equation (5) for calculating the surface temperature of the first region in which the influence of the stray light noise in the amount of infrared radiation emitted from the first region and the second region is removed is obtained. ΔL = εs · [Lb (Ts) −Lb {Ts + F (Ts, Cs, 1, Ca, Ta,)}] (5) Air temperature Ta detected by the temperature sensor 9 according to the equation (5).
To calculate the surface temperature of the first region. The calculated surface temperature Ts of the first region is output to the temperature display unit 11 and displayed.

【0040】実施の形態2.図2は本発明に係る表面温
度測定方法を冷間圧延中の鋼板に対して実施する際に用
いる装置を示した模式図である。
Embodiment 2 FIG. 2 is a schematic diagram showing an apparatus used when the surface temperature measuring method according to the present invention is applied to a steel sheet during cold rolling.

【0041】本実施の形態で用いる表面温度演算器10
bでは、第1領域の表面温度Ts及び上述した空気温度
Taの差と、表面温度の測定を通じて経験的に求められ
た比例定数K=0.5との積により(6)式に示す如く
定まる関数により第1領域及び第2領域の表面温度差Δ
tが定義されている。 Δt=− 0.5(Ts−Ta) …(6)
Surface temperature calculator 10 used in this embodiment
In b, the product of the difference between the surface temperature Ts of the first region and the above-described air temperature Ta and the proportional constant K = 0.5 empirically obtained through the measurement of the surface temperature is determined as shown in Expression (6). The surface temperature difference Δ between the first region and the second region by the function
t is defined. Δt = −0.5 (Ts−Ta) (6)

【0042】表面温度演算器10bは、空気が吹き付け
られる前に上述の如く迷光雑音を除去して得た第1領域
の表面温度を算出するための(7)式、 ΔL=εs・[Lb(Ts)−Lb{Ts − 0.5(Ts−Ta)}] …(7) における放射赤外線光量差ΔL(L−Lt)が、正のと
きにはイネーブル信号を空気加熱器6に送信し、負のと
きにはイネーブル信号を空気冷却器7に送信する。空気
加熱器6又は空気冷却器7は、イネーブル信号が与えら
れている期間において配管5を流れる空気を加熱又は冷
却する。
The surface temperature calculator 10b calculates the surface temperature of the first region obtained by removing the stray light noise before the air is blown as described above, using the following equation (7): ΔL = εs · [Lb ( Ts) −Lb {Ts−0.5 (Ts−Ta)}] When the radiation infrared light quantity difference ΔL (L−Lt) in (7) is positive, an enable signal is transmitted to the air heater 6, and when negative, the enable signal is enabled. The signal is transmitted to the air cooler 7. The air heater 6 or the air cooler 7 heats or cools the air flowing through the pipe 5 during a period when the enable signal is given.

【0043】この期間において上述の如く放射赤外線光
量差ΔLが算出され、この絶対値が所定値(第1領域の
表面温度を算出する際の誤差の許容範囲を考慮して決定
される)以下である場合には、空気加熱器6又は空気冷
却器7へのイネーブル信号の送信が中止され、このとき
の放射赤外線光量差ΔL及び温度センサ9により検出さ
れた空気温度Taが(7)式に与えられて第1領域の表
面温度が算出される。こうして算出された第1領域の表
面温度は温度表示部11に出力されて表示される。
During this period, the radiation infrared light amount difference ΔL is calculated as described above, and the absolute value of the difference is equal to or less than a predetermined value (determined in consideration of an allowable range of error when calculating the surface temperature of the first region). In some cases, the transmission of the enable signal to the air heater 6 or the air cooler 7 is stopped, and the radiated infrared light amount difference ΔL and the air temperature Ta detected by the temperature sensor 9 at this time are given to the equation (7). Then, the surface temperature of the first region is calculated. The surface temperature of the first region thus calculated is output to the temperature display unit 11 and displayed.

【0044】また、算出された放射赤外線光量差ΔLの
絶対値が上述の値を超える場合には、空気加熱器6又は
空気冷却器7へのイネーブル信号の送信が継続される。
尚、その他は発明の実施の形態1と同一であるので説明
を省略する。
When the calculated absolute value of the infrared ray difference ΔL exceeds the above-mentioned value, the transmission of the enable signal to the air heater 6 or the air cooler 7 is continued.
The rest is the same as the first embodiment of the present invention, and the description is omitted.

【0045】実施の形態3.図3は本発明に係る表面温
度測定方法を長手方向に移動する冷間圧延中の鋼板に対
して実施する際に用いる装置を示した模式図である。
Embodiment 3 FIG. 3 is a schematic view showing an apparatus used when the surface temperature measuring method according to the present invention is performed on a steel sheet that is being cold-rolled and that moves in the longitudinal direction.

【0046】本実施の形態では、実施の形態1に用いる
表面温度演算器10aに代えて表面温度演算器10cを
設ける。また、ロータリーエンコーダーを用いた速度検
出器13をロール12に連結して設け、鋼板1を案内す
るロール12の回転速度から鋼板1の移動速度を検出す
る。
In the present embodiment, a surface temperature calculator 10c is provided instead of the surface temperature calculator 10a used in the first embodiment. In addition, a speed detector 13 using a rotary encoder is provided in connection with the roll 12, and detects the moving speed of the steel plate 1 from the rotation speed of the roll 12 that guides the steel plate 1.

【0047】表面温度演算器10cでは、鋼板1の移動
速度Vs、第1領域の表面温度Ts及び熱容量Cs、第
2領域に単位時間あたりに接触する空気の流量l及び熱
容量Ca、並びにこの空気の温度Taにより(8)式の
如く定まる関数により第1領域及び第2領域の表面温度
差Δtが定義されている。 Δt=F(Ts,Cs,l,Ca,Ta,Vs) …(8)
In the surface temperature calculator 10c, the moving speed Vs of the steel sheet 1, the surface temperature Ts and heat capacity Cs of the first area, the flow rate l and heat capacity Ca of air contacting the second area per unit time, and the The surface temperature difference Δt between the first region and the second region is defined by a function determined by the temperature Ta as shown in Expression (8). Δt = F (Ts, Cs, 1, Ca, Ta, Vs) (8)

【0048】表面温度演算器10cは、上述の如く迷光
雑音を除去する演算をし、第1領域の表面温度を求める
ための(9)式を得る。 ΔL=εs・[Lb(Ts)−Lb{Ts +F(Ts,Cs,l,Ca,Ta,Vs)}] …(9) (9)式より第1領域の表面温度を算出する際に速度検
出器13により検出された鋼板1の移動速度を与える。
こうして算出された第1領域の表面温度は温度表示部1
1に出力され表示される。尚、その他は発明の実施の形
態1と同一であるので説明を省略する。
The surface temperature calculator 10c performs an operation for removing stray light noise as described above, and obtains Expression (9) for obtaining the surface temperature of the first area. ΔL = εs · [Lb (Ts) −Lb {Ts + F (Ts, Cs, 1, Ca, Ta, Vs)}] (9) The speed at the time of calculating the surface temperature of the first region from equation (9) The moving speed of the steel plate 1 detected by the detector 13 is given.
The surface temperature of the first region calculated in this manner is indicated by the temperature display unit 1.
1 and displayed. The rest is the same as the first embodiment of the present invention, and the description is omitted.

【0049】[0049]

【発明の効果】以上詳述した如く本発明に係る表面温度
測定方法によれば、測定対象物の表面温度を測定する第
1領域及びこの領域の近傍にある流体を接触させた第2
領域からの放射赤外線光量に基づいて第1領域から検出
された放射赤外線光量のうちの迷光雑音による影響分を
演算により除去し、これと、第1領域の熱容量、単位時
間あたり第2領域に吹き付けられる空気の流量及び熱容
量並びにこの空気温度とに基づいて第1領域の表面温度
を算出することが可能になる。従って、低温領域にある
測定対象物の表面温度を算出するために測定対象物から
の放射赤外線光量を検出するための装置に迷光雑音を除
去するための水冷遮蔽板を設けなくてもよく、表面温度
測定装置を小型化することが可能になる。
As described above in detail, according to the surface temperature measuring method according to the present invention, the first area for measuring the surface temperature of the object to be measured and the second area in which the fluid near this area is brought into contact.
The influence of stray light noise in the amount of radiated infrared light detected from the first area is removed by calculation based on the amount of radiated infrared light from the area, and the heat capacity of the first area is sprayed onto the second area per unit time. The surface temperature of the first region can be calculated based on the flow rate and heat capacity of the supplied air and the air temperature. Therefore, it is not necessary to provide a water-cooling shielding plate for removing stray light noise in a device for detecting the amount of infrared radiation emitted from the measurement object in order to calculate the surface temperature of the measurement object in the low temperature region. The size of the temperature measuring device can be reduced.

【0050】また、第1領域の表面温度を算出する際に
表面温度の測定を通じて経験的に得られた比例定数を用
いることにより、第1領域の熱容量、単位時間あたり第
2領域に吹き付けられる空気の流量及び熱容量が不明で
あっても第1領域の表面温度を算出することが可能にな
る。
Further, when calculating the surface temperature of the first area, the proportional capacity empirically obtained through the measurement of the surface temperature is used, so that the heat capacity of the first area and the air blown to the second area per unit time are obtained. It is possible to calculate the surface temperature of the first region even when the flow rate and heat capacity of the first region are unknown.

【0051】更に、第1領域の表面温度を算出する際に
測定対象物の移動速度を考慮した演算を行うことによ
り、第1領域の表面温度をより高精度に算出することが
可能になる等、本発明は優れた効果を奏する。
Further, by calculating the surface temperature of the first area in consideration of the moving speed of the object to be measured, it becomes possible to calculate the surface temperature of the first area with higher accuracy. The present invention has excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る表面温度測定方法を冷間圧延中の
鋼板に対して実施する際に用いる装置を示した模式図で
ある。
FIG. 1 is a schematic diagram showing an apparatus used when a surface temperature measuring method according to the present invention is performed on a steel sheet during cold rolling.

【図2】本発明に係る表面温度測定方法を冷間圧延中の
鋼板に対して実施する際に用いる装置を示した模式図で
ある。
FIG. 2 is a schematic view showing an apparatus used when the surface temperature measuring method according to the present invention is performed on a steel sheet during cold rolling.

【図3】本発明に係る表面温度測定方法を長手方向に移
動する冷間圧延中の鋼板に対して実施する際に用いる装
置を示した模式図である。
FIG. 3 is a schematic view showing an apparatus used when the surface temperature measuring method according to the present invention is performed on a steel sheet that is being cold-rolled and moves in a longitudinal direction.

【符号の説明】[Explanation of symbols]

1 鋼板 2、3 赤外線センサ 4 送風機 5 配管 6 空気加熱器 7 空気冷却器 8 空気吹き付け口 9 温度センサ 10a、10b、10c 表面温度演算器 11 温度表示部 12 ロール 13 速度検出器 DESCRIPTION OF SYMBOLS 1 Steel plate 2, 3 Infrared sensor 4 Blower 5 Piping 6 Air heater 7 Air cooler 8 Air blowing port 9 Temperature sensor 10a, 10b, 10c Surface temperature calculator 11 Temperature display part 12 Roll 13 Speed detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物の表面温度を測定する第1領
域の近傍に所定の温度に制御した流体を接触させて該流
体を接触させた第2領域の表面温度を変化させ、第1領
域からの放射赤外線光量及び第2領域からの放射赤外線
光量をそれぞれ検出し、両領域からの放射赤外線光量の
うちの迷光雑音による影響分を、第1領域からの放射赤
外線光量から第2領域からの放射赤外線光量を減じるこ
とにより除去する演算をして第1領域の表面温度を求め
る演算式を得、該演算式に基づいて第1領域の表面温度
を算出する表面温度測定方法において、第1領域の熱容
量、第2領域に単位時間あたりに接触する前記流体の流
量及び熱容量、並びに前記流体の温度の関数により求ま
る第1領域と第2領域との表面温度差を前記演算式に与
えて第1領域の表面温度を算出することを特徴とする表
面温度測定方法。
1. A first region in which a fluid controlled at a predetermined temperature is brought into contact with a first region for measuring a surface temperature of an object to be measured, and a surface temperature of a second region contacted with the fluid is changed. The amount of radiated infrared light from the first region and the amount of radiated infrared light from the second region are detected, and the amount of the radiated infrared light from both regions is affected by stray light noise. In the method for measuring the surface temperature of the first area based on the arithmetic expression for calculating the surface temperature of the first area by performing the operation of removing the infrared ray by reducing the amount of the radiated infrared light, and calculating the surface temperature of the first area based on the arithmetic equation, The heat capacity of the fluid, the flow rate and heat capacity of the fluid that contacts the second area per unit time, and the surface temperature difference between the first area and the second area obtained by a function of the temperature of the fluid are given to the arithmetic expression to obtain the first equation. Area surface A method for measuring a surface temperature, comprising calculating a temperature.
【請求項2】 測定対象物の表面温度を測定する第1領
域の近傍に所定の温度に制御した流体を接触させて該流
体を接触させた第2領域の表面温度を変化させ、第1領
域からの放射赤外線光量及び第2領域からの放射赤外線
光量をそれぞれ検出し、両領域からの放射赤外線光量の
うちの迷光雑音による影響分を、第1領域からの放射赤
外線光量から第2領域からの放射赤外線光量を減じるこ
とにより除去する演算をして第1領域の表面温度を求め
る演算式を得、該演算式に基づいて第1領域の表面温度
を算出する表面温度測定方法において、第1領域と第2
領域との放射赤外線光量差の絶対値が所定値以下になる
ときの放射赤外線光量差及びこのときの前記流体の温度
に基づいて第1領域の表面温度を算出することを特徴と
する表面温度測定方法。
2. The method according to claim 1, further comprising: bringing a fluid controlled at a predetermined temperature into contact with the first area for measuring the surface temperature of the object to be measured, and changing the surface temperature of the second area contacted with the fluid, The amount of radiated infrared light from the first region and the amount of radiated infrared light from the second region are detected, and the amount of the radiated infrared light from both regions is affected by stray light noise. In the method for measuring the surface temperature of the first area based on the arithmetic expression for calculating the surface temperature of the first area by performing the operation of removing the infrared ray by reducing the amount of the radiated infrared light, and calculating the surface temperature of the first area based on the arithmetic equation, And the second
Measuring the surface temperature of the first area based on the difference between the amount of the emitted infrared light and the temperature of the fluid when the absolute value of the difference between the amounts of the emitted infrared light and the area is equal to or less than a predetermined value; Method.
【請求項3】 移動する測定対象物の表面温度を測定す
る第1領域の近傍に所定の温度に制御した流体を接触さ
せて該流体を接触させた第2領域の表面温度を変化さ
せ、第1領域からの放射赤外線光量及び第2領域からの
放射赤外線光量をそれぞれ検出し、両領域からの放射赤
外線光量のうちの迷光雑音による影響分を、第1領域か
らの放射赤外線光量から第2領域からの放射赤外線光量
を減じることにより除去する演算をして第1領域の表面
温度を求める演算式を得、該演算式に基づいて第1領域
の表面温度を算出する表面温度測定方法において、前記
測定対象物の移動速度を検出し、該移動速度、第1領域
の熱容量、第2領域に単位時間あたりに接触する前記流
体の流量及び熱容量、並びに前記流体の温度の関数によ
り求まる第1領域と第2領域との表面温度差を前記演算
式に与えて第1領域の表面温度を算出することを特徴と
する表面温度測定方法。
3. A method in which a fluid controlled at a predetermined temperature is brought into contact with a first area for measuring the surface temperature of a moving measuring object, and the surface temperature of a second area contacted with the fluid is changed. The amount of radiated infrared light from one region and the amount of radiated infrared light from the second region are detected, respectively, and the influence of stray light noise in the amount of radiated infrared light from both regions is determined from the amount of radiated infrared light from the first region to the second region. An arithmetic expression for calculating the surface temperature of the first region by performing an operation of removing by reducing the amount of radiated infrared light from the device, and calculating the surface temperature of the first region based on the arithmetic expression, Detecting the moving speed of the measurement object, the moving speed, the heat capacity of the first area, the flow rate and heat capacity of the fluid that contacts the second area per unit time, and the first area obtained by a function of the temperature of the fluid. No. A surface temperature measuring method, wherein a surface temperature difference between two regions is given to the arithmetic expression to calculate a surface temperature of the first region.
JP29723498A 1998-10-19 1998-10-19 Surface temperature measurement method Expired - Fee Related JP3975584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29723498A JP3975584B2 (en) 1998-10-19 1998-10-19 Surface temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29723498A JP3975584B2 (en) 1998-10-19 1998-10-19 Surface temperature measurement method

Publications (2)

Publication Number Publication Date
JP2000121445A true JP2000121445A (en) 2000-04-28
JP3975584B2 JP3975584B2 (en) 2007-09-12

Family

ID=17843913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29723498A Expired - Fee Related JP3975584B2 (en) 1998-10-19 1998-10-19 Surface temperature measurement method

Country Status (1)

Country Link
JP (1) JP3975584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175783B1 (en) * 2009-10-29 2012-08-21 현대제철 주식회사 temperature measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175783B1 (en) * 2009-10-29 2012-08-21 현대제철 주식회사 temperature measuring device

Also Published As

Publication number Publication date
JP3975584B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US4881823A (en) Radiation thermometry
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
JPH11264774A (en) Temperature measuring device and sensor unit of the same
JPH03148026A (en) Automatic calibration pair sensor non- contact temperature measuring method and apparatus
JP2769225B2 (en) Prediction method of heat streak occurrence and temperature sensor roll
JP2000121445A (en) Surface-temperature measuring method
GB2569644A (en) Measurement system for metal strip production line
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JP2938627B2 (en) Temperature sensor roll with excellent temperature measurement accuracy
JPH07301569A (en) Method and apparatus for processing infrared temperature image using two filters
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JP3135088B2 (en) Radiation temperature measurement device
JP2790721B2 (en) Temperature sensor roll with excellent temperature measurement accuracy
JPH028721A (en) Method and apparatus for measuring temperature of metallic running body
KR100940741B1 (en) An apparatus for measuring emissivity of stainless steel
JPS6129647B2 (en)
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
JPS6219947Y2 (en)
JPH06241906A (en) Radiation thermometric method and apparatus for matter in furnace
JPH0533330B2 (en)
JPH0643032A (en) Radiation thermometer
JPH01169328A (en) Temperature measuring apparatus of metal strip
JP2001181732A (en) Instrument for measuring meandering rate at carrying in furnace and device for detecting abnormality in carrying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees