JP2000119842A - Wear resistant material and sliding member - Google Patents

Wear resistant material and sliding member

Info

Publication number
JP2000119842A
JP2000119842A JP10295123A JP29512398A JP2000119842A JP 2000119842 A JP2000119842 A JP 2000119842A JP 10295123 A JP10295123 A JP 10295123A JP 29512398 A JP29512398 A JP 29512398A JP 2000119842 A JP2000119842 A JP 2000119842A
Authority
JP
Japan
Prior art keywords
thin film
resistant material
wear
sliding
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10295123A
Other languages
Japanese (ja)
Other versions
JP3205304B2 (en
Inventor
Tsunemori Yoshida
常盛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP29512398A priority Critical patent/JP3205304B2/en
Publication of JP2000119842A publication Critical patent/JP2000119842A/en
Application granted granted Critical
Publication of JP3205304B2 publication Critical patent/JP3205304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a member having excellent wear resistance of a sliding face by specifying each content of Ti, Cr and N. SOLUTION: By using an arc discharge type ion plating method, metallic titanium and metallic chromium are evaporated in a vacuum to be turned into an evaporated material, and this evaporated material is ionized by arc discharge, is simultaneously brought into reaction with gaseous nitrogen and is deposited on the sliding face of a base material 2 to form a TiCrN this film 20. At this time, by incorporating, by atom, 45 to 60% Ti, 14 to 32% Cr and 14 to 36% N, a three-dimensional amorphous wear resistant material thin film is obtd. Moreover, by incorporating 44 to 60% Ti, 0.4 to 5.0% Cr and 40 to 45% N, a three-dimensional crystalline wear resistant material thin film is obtd. In this way, each thin film is small in the coefficient of friction, is small in distortion in the material and exhibits durability to the sliding member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性に優れ、
特に、メカニカルシール、ガスシール等のシール部材や
軸受けなどの摺動部材の摺動面の形成に好適な耐摩耗性
材料、およびそれを用いた摺動部材に関する。
[0001] The present invention relates to an abrasion-resistant material,
In particular, the present invention relates to a wear-resistant material suitable for forming a sliding surface of a sliding member such as a seal member such as a mechanical seal or a gas seal or a bearing, and a sliding member using the same.

【0002】[0002]

【従来の技術】メカニカルシール、ガスシール等のシー
ル部材や軸受けなどの摺動部材を形成する材料として、
従来よりカーボン、炭化珪素、超硬合金等が、カーボン
対炭化珪素、カーボン対超硬合金などの組み合わせによ
り広く使用されている。
2. Description of the Related Art As materials for forming seal members such as mechanical seals and gas seals and sliding members such as bearings,
Conventionally, carbon, silicon carbide, cemented carbide and the like have been widely used in combinations of carbon to silicon carbide, carbon to cemented carbide and the like.

【0003】近年では、流体機械の高速、高圧化、大型
化のニーズに伴い、摺動部材の使用条件は益々厳しいも
のになっている。そのため摺動部材を形成する材料の、
固体間の滑り接触に伴う摩擦熱が繰り返し発生する熱衝
撃破壊や熱疲労による割れが問題視されている。また、
高速、高圧等の回転機器におけるシール部材として強度
の高い炭化珪素や超硬合金の成形品が用いられるが、こ
れらは脆性を備え、遠心力増大に伴う破損を防止するた
めにバンドなどの補強部材を必要とする。
In recent years, the use conditions of sliding members have become more and more severe with the need for high speed, high pressure, and large size of fluid machines. Therefore, of the material forming the sliding member,
The problem of cracking due to thermal shock destruction or thermal fatigue, which repeatedly generates frictional heat due to sliding contact between solids, has been regarded as a problem. Also,
High-strength, high-pressure, etc. rotating equipment uses high-strength silicon carbide or cemented carbide molded products as seal members, but these are brittle and have reinforcing members such as bands to prevent breakage due to increased centrifugal force. Need.

【0004】一方、破損の防止方法として、金属材料等
の高強度ではないが、摺動部材の母材を非脆性材料によ
り形成し、摺動面を硬質薄膜で被覆するなどの表面改質
により高強度化する方法も検討されている。しかし、炭
化処理、窒化処理などの表面改質では、処理時の加熱に
よる摺動部材(母材)の変形が大きく、ひずみによって
母材から硬質薄膜が剥離するなど強度の低下を引き起こ
す。イオン注入では注入深さが限定され、所望の強度が
得にくい。物理的蒸着法(PVD)や化学的蒸着法(C
VD)により摺動面に硬質薄膜を形成する方法は、改質
部を十分に形成することができるが、化学的蒸着法(C
VD)は、処理部を400〜1000℃程度に加熱する
必要があり、摺動部材(母材)の変形を生じる。物理的
蒸着法(PVD)においては、従来、高強度な被膜を得
るためには、基板温度を300〜500℃程度に加熱し
ており、この場合も摺動部材の変形による強度の低下を
生じていた。
[0004] On the other hand, as a method of preventing breakage, a base material of a sliding member, which is not high in strength such as a metal material, is formed of a non-brittle material and a sliding surface is coated with a hard thin film or the like. Methods for increasing the strength are also being studied. However, in surface modification such as carbonization and nitriding, deformation of the sliding member (base material) due to heating during the processing is large, and the strength is reduced such that a hard thin film is separated from the base material by strain. In ion implantation, the implantation depth is limited, and it is difficult to obtain a desired strength. Physical vapor deposition (PVD) or chemical vapor deposition (C
In the method of forming a hard thin film on the sliding surface by VD), a modified portion can be formed sufficiently, but the chemical vapor deposition method (C
In the case of VD), it is necessary to heat the processing section to about 400 to 1000 ° C., which causes deformation of the sliding member (base material). In the physical vapor deposition method (PVD), conventionally, in order to obtain a high-strength coating film, the substrate temperature is heated to about 300 to 500 ° C., and also in this case, the strength decreases due to deformation of the sliding member. I was

【0005】[0005]

【発明が解決しようとする課題】本発明は、摺動部材の
摺動面の形成に好適な耐摩耗性材料、特に摺動部材の変
形を生じることなく形成可能な耐摩耗性材料を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention provides a wear-resistant material suitable for forming a sliding surface of a sliding member, particularly a wear-resistant material that can be formed without causing deformation of the sliding member. The purpose is to:

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、主としてTi、Cr、Nの3種の元素か
らなる三元系材料であって、Tiを40〜60at%含
有する耐摩耗性材料、および摺動面が該耐摩耗性材料に
より形成されてなる摺動部材を提供するものである。
In order to solve the above-mentioned problems, the present invention is a ternary material mainly composed of three elements, Ti, Cr and N, which contains 40 to 60 at% of Ti. An object of the present invention is to provide a wear-resistant material and a sliding member having a sliding surface formed of the wear-resistant material.

【0007】本発明の耐摩耗性材料は、各元素の原子%
(at%)で、さらにCrを14〜32at%、Nを1
4〜36at%含有する、あるいはCrを0.4〜5.
0at%、Nを40〜45at%含有するのが好まし
い。
[0007] The wear-resistant material according to the present invention has an atomic percent of each element.
(At%), Cr is 14 to 32 at%, and N is 1
Contains 4 to 36 at%, or 0.4 to 5.
It is preferable to contain 0 at% and N at 40 to 45 at%.

【0008】後述するように、本発明の耐摩耗性材料
は、Tiを40〜60at%含有し、さらにCrを14
〜32at%、Nを14〜36at%含有することによ
り、非晶質となり、あるいはTiを40〜60at%含
有し、さらにCrを0.4〜5.0at%、Nを40〜
45at%含有することにより、結晶質となる。上記2
つの状態において、摩擦係数が低下し、耐摩耗性は著し
く向上する。
As will be described later, the wear-resistant material of the present invention contains 40 to 60 at% of Ti and further contains 14% of Cr.
-32 at% and N at 14-36 at% make it amorphous or contain Ti at 40-60 at%, and further contain 0.4-5.0 at% of Cr and 40 at% of N.
By containing 45 at%, it becomes crystalline. 2 above
In both cases, the coefficient of friction is reduced and the wear resistance is significantly improved.

【0009】また、本発明の耐摩耗性材料は、Ti、C
r、Nの各元素の比率(組成比)が、下記式(1)ある
いは(2)の関係を満たすのが好ましい。後述するよう
に、下記式(1)あるいは(2)の関係を満たす場合に
おいて、摩擦係数が低下し、耐摩耗性は著しく向上す
る。 y≧1.1x−0.18 式(1)[非晶質] y≦0.3x−0.04 式(2)[結晶質] (上記式(1)、(2)において、x=[Nの元素比
(at%)]/{[Tiの元素比(at%)]+[Cr
の元素比(at%)]}、y=[Crの元素比(at
%)]/[Tiの元素比(at%)]を示す。)
Further, the wear-resistant material of the present invention comprises Ti, C
It is preferable that the ratio (composition ratio) of each element of r and N satisfies the relationship of the following formula (1) or (2). As will be described later, when the relationship of the following formula (1) or (2) is satisfied, the friction coefficient is reduced and the wear resistance is significantly improved. y ≧ 1.1x−0.18 Formula (1) [amorphous] y ≦ 0.3x−0.04 Formula (2) [crystalline] (In the above formulas (1) and (2), x = [ N element ratio (at%)] / {[Ti element ratio (at%)] + [Cr
Element ratio (at%)]}, y = [Cr element ratio (at
%)] / [Element ratio of Ti (at%)]. )

【0010】上記の耐摩耗性材料により、摺動面を形成
することにより、摺動面の耐摩耗性に優れた摺動部材を
得ることができる。
[0010] By forming the sliding surface with the above-mentioned wear-resistant material, a sliding member excellent in wear resistance of the sliding surface can be obtained.

【0011】本発明の耐摩耗性材料は、上記条件を満た
すために、真空下で、金属チタン(Ti)および金属ク
ロム(Cr)を蒸発させて蒸発物とし、該蒸発物をアー
ク放電によりイオン化すると同時に、窒素ガス(N2
と反応せしめて、基材の摺動面に堆積させる、いわゆる
アーク放電型イオンプレーティング法を用いて薄膜形成
することにより得ることができる。アーク放電型イオン
プレーティング法を用いることにより、上記所望の状態
を満たし、膜内の歪みが小さい耐摩耗性材料を得ること
ができる。
In order to satisfy the above conditions, the wear-resistant material of the present invention evaporates metal titanium (Ti) and metal chromium (Cr) under vacuum to form an evaporant, and ionizes the evaporate by arc discharge. At the same time as nitrogen gas (N 2 )
And depositing it on the sliding surface of the base material, that is, by forming a thin film using a so-called arc discharge type ion plating method. By using the arc discharge ion plating method, it is possible to obtain a wear-resistant material that satisfies the above-described desired state and has small distortion in the film.

【0012】[0012]

【実施例】以下、図面を用いて本発明をさらに詳細に説
明する。図1は基材の摺動面に、本発明の耐摩耗性材料
からなるTiCrN薄膜を形成するためのイオンプレー
ティング装置の構成の一例を示す概略図である。TiC
rN薄膜を形成するための基材2は、回転軸3の先端の
ホルダ4に、回転軸3と同軸になるよう配置、固定され
る。ホルダ4は、図示しない温度調節装置を備え、基材
の温度を調整する。上記基材2に対向して蒸発源5a
(金属チタン)、5b(金属クロム)が配置され、蒸発
源5aからのチタン(Ti)蒸気および蒸発源5bから
のクロム(Cr)蒸気を基材2に向けて発する。該チタ
ン蒸気粒子およびクロム蒸気粒子(6)は、イオン化電
極8により発するアーク放電によりイオン化される。一
方、蒸発源5a,5b−基材2間には、窒素ガス9が導
入され、イオン化されたチタン蒸気粒子およびクロム蒸
気粒子(10)と窒素ガスが反応した反応生成物が、基
材2上に堆積し、摺動面にTiCrN薄膜が形成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic view showing an example of the configuration of an ion plating apparatus for forming a TiCrN thin film made of the wear-resistant material of the present invention on a sliding surface of a substrate. TiC
The substrate 2 for forming the rN thin film is arranged and fixed to the holder 4 at the tip of the rotating shaft 3 so as to be coaxial with the rotating shaft 3. The holder 4 includes a temperature control device (not shown), and controls the temperature of the base material. Evaporation source 5a facing the base material 2
(Metal titanium) and 5b (metal chromium) are arranged, and emit titanium (Ti) vapor from the evaporation source 5a and chromium (Cr) vapor from the evaporation source 5b toward the substrate 2. The titanium vapor particles and the chromium vapor particles (6) are ionized by arc discharge generated by the ionization electrode 8. On the other hand, a nitrogen gas 9 is introduced between the evaporation sources 5a, 5b and the substrate 2, and a reaction product of the ionized titanium vapor particles and chromium vapor particles (10) reacting with the nitrogen gas is deposited on the substrate 2. And a TiCrN thin film is formed on the sliding surface.

【0013】形成されるTiCrN薄膜の物性は、基材
の薄膜形成面の温度、基材へ印加するバイアス電圧、蒸
発源からの蒸発速度、窒素ガスの流速(導入速度)、蒸
発源の蒸発方法、作業圧力、蒸発物のイオン化条件等に
関係するが、これらは特に限定されず、所望のTiCr
N薄膜の物性に応じて適宜設定すればよい。好ましく
は、薄膜形成面(摺動面)における基材温度が100℃
以下、バイアス電圧が50V以下、成膜速度を4Å/s
以下とするのがよい。また、図5、図6、図11に示さ
れるように、窒素ガスの流速により、薄膜水平面方向の
面歪量あるいは摩擦係数を制御することもできる。
The physical properties of the formed TiCrN thin film include the temperature of the thin film forming surface of the substrate, the bias voltage applied to the substrate, the evaporation speed from the evaporation source, the flow rate (introduction speed) of nitrogen gas, and the evaporation method of the evaporation source. , Working pressure, ionization conditions of the evaporant, etc., but these are not particularly limited.
What is necessary is just to set suitably according to the physical property of an N thin film. Preferably, the substrate temperature on the thin film forming surface (sliding surface) is 100 ° C.
Hereinafter, the bias voltage is 50 V or less, and the deposition rate is 4 ° / s.
It is better to do the following. Further, as shown in FIGS. 5, 6, and 11, the amount of surface distortion or the coefficient of friction in the horizontal direction of the thin film can be controlled by the flow rate of the nitrogen gas.

【0014】次に、上記TiCrN薄膜を摺動面に形成
した本発明の摺動部材について説明する。図2は、本発
明の摺動部材の一例であるガスシールの回転環の構成を
示す断面図である。基材2として、マルテンサイト系ス
テンレス鋼(SUS420J2)を用い、所定の形状に
加工後、焼入れ(980℃、1時間)、焼戻し(980
℃、4時間)し、薄膜形成面を表面粗さがRa=0.0
5μm以下となる様ラッピング仕上げした。
Next, the sliding member of the present invention in which the above-described TiCrN thin film is formed on the sliding surface will be described. FIG. 2 is a cross-sectional view showing a configuration of a rotary ring of a gas seal which is an example of the sliding member of the present invention. As a base material 2, a martensitic stainless steel (SUS420J2) is used, processed into a predetermined shape, quenched (980 ° C., 1 hour), and tempered (980).
At 4 ° C. for 4 hours), and the surface on which the thin film is formed has a surface roughness Ra = 0.0.
Lapping was performed so as to be 5 μm or less.

【0015】前記基材2をイオンボンバード(クリーニ
ング条件:RF0.6kW、Ar流速100ml/mi
n、バイアス電圧1kV、15分 の高周波グロー放
電)により摺動面をクリーニングした後、図1の装置に
セットし、基材2を回転させながら、ラッピング仕上げ
した面に、種々の条件[基材の薄膜形成面の温度、基材
へ印加するバイアス電圧、窒素ガスの流速(導入速
度)、成膜速度など]で、膜厚3μmのTiCrN薄膜
20の成膜を行った。
The substrate 2 is ion bombarded (cleaning conditions: RF 0.6 kW, Ar flow rate 100 ml / mi).
n, bias voltage 1 kV, high-frequency glow discharge for 15 minutes), the sliding surface was cleaned, and then set in the apparatus of FIG. , A bias voltage applied to the substrate, a flow rate (introduction speed) of nitrogen gas, a film formation speed, etc.], and a 3 μm-thick TiCrN thin film 20 was formed.

【0016】図3は、上記回転環の摺動面(TiCrN
薄膜面)における、基材の薄膜形成面の温度(基板設定
温度)と薄膜水平面方向の面歪量との関係を、基材へ印
加するバイアス電圧値毎に示すもの、図4は、上記回転
環の摺動面(TiCrN薄膜面)における、基材へ印加
するバイアス電圧値と薄膜水平面方向の面歪量との関係
を基材の薄膜形成面の温度毎に示すものである。
FIG. 3 shows the sliding surface (TiCrN) of the rotating ring.
FIG. 4 shows the relationship between the temperature of the thin film forming surface of the base material (substrate set temperature) and the amount of surface strain in the horizontal direction of the thin film for each bias voltage value applied to the base material. The relationship between the bias voltage value applied to the base material and the amount of surface strain in the horizontal plane of the thin film on the sliding surface of the ring (TiCrN thin film surface) is shown for each temperature of the thin film forming surface of the base material.

【0017】面歪量の測定は、万能表面形状測定器(S
E−3FA (株)小坂研究所製により、回転環の摺動
面の一方の端部から他方の端部(外周側端部と内周側端
部)まで変形量をトレース(倍率 5000×10)
し、両端部間の変化量(傾き高さ)を面歪量(単位:μ
m)とした。
The amount of surface distortion is measured using a universal surface profiler (S
E-3FA Deformation amount traced from one end of the sliding surface of the rotating ring to the other end (outer end and inner end) by Kosaka Laboratory Co., Ltd. (magnification 5000 × 10 )
And the amount of change (tilt height) between both ends is calculated as the surface distortion (unit: μ).
m).

【0018】図3、図4より、摺動部材において重要な
薄膜水平面方向の面歪量には、基材の薄膜形成面の温
度、基材へ印加するバイアス電圧値が大きく影響し、低
面歪量化のためには、基材の薄膜形成面の温度および基
材へ印加するバイアス電圧値を極力抑えることが不可欠
であることがわかる。好ましくは、摺動面における基材
温度が100℃以下、バイアス電圧50V以下、成膜速
度4Å/s以下であるのがよい。
FIGS. 3 and 4 show that the temperature of the thin film forming surface of the base material and the bias voltage applied to the base material greatly affect the important surface strain in the horizontal direction of the thin film of the sliding member. It can be seen that it is indispensable to minimize the temperature of the thin film forming surface of the substrate and the bias voltage applied to the substrate to minimize the amount of distortion. Preferably, the substrate temperature on the sliding surface is 100 ° C. or less, the bias voltage is 50 V or less, and the film forming rate is 4 ° / s or less.

【0019】一方、図5、図6は、上記回転環の摺動面
(TiCrN薄膜面)における、成膜条件の変化に伴っ
て変化するTi、Cr、Nの組成比(図中Ti、Cr、
Nはそれぞれ各元素の元素比=at%を示す。)と、薄
膜水平面方向の面歪量との関係を、窒素ガスの流速(導
入速度)毎に示すものである。Ti、Cr、Nの組成比
は、各TiCrN薄膜について、EPMA(X線マイク
ロアナライザー 日本電子(株)製)によるX線元素分
析を行い、算出した。図5、図6より、Ti、Cr、N
の組成比と、薄膜水平面方向の面歪量に相関性はなく、
所望の組成の膜を得る場合でも、例えば窒素ガスの流速
等の成膜条件変化により、面歪量は制御できることがわ
かる。
On the other hand, FIGS. 5 and 6 show the composition ratios of Ti, Cr, and N (Ti, Cr in the figures) which change with the change of the film forming conditions on the sliding surface (TiCrN thin film surface) of the rotating ring. ,
N indicates the element ratio of each element = at%. ) And the amount of surface strain in the horizontal direction of the thin film are shown for each nitrogen gas flow rate (introduction rate). The composition ratio of Ti, Cr, and N was calculated by performing X-ray elemental analysis on each TiCrN thin film using EPMA (X-ray microanalyzer, manufactured by JEOL Ltd.). 5 and 6 show that Ti, Cr, N
There is no correlation between the composition ratio and the surface strain in the horizontal direction of the thin film.
It can be seen that even when a film having a desired composition is obtained, the amount of surface distortion can be controlled by changing film formation conditions such as the flow rate of nitrogen gas.

【0020】次に、図7は、上記回転環の摺動面(Ti
CrN薄膜面)における、成膜条件の変化に伴って変化
するTi、Cr、Nの組成比と、結晶性との相関性を示
す図であり、組成比[Nの元素比(at%)]/{[T
iの元素比(at%)]+[Crの元素比(at
%)]}と組成比[Crの元素比(at%)]/[Ti
の元素比(at%)]との関係を図示したものである。
Ti、Cr、Nの組成比は、上記と同様に、EPMAに
よるX線元素分析の測定値(元素比)より算出した。各
実施例の組成比の値を表1に、また比較例としてTiN
薄膜の組成比の値を表2に示す。なお、図8に、図7の
プロットと表1の実施例との対応関係、および後述の図
9に対応する結晶性のエリアを示す(図中丸数字は、表
1における実施例と、三角数字は表1における参考例と
対応する。)。
Next, FIG. 7 shows the sliding surface (Ti
FIG. 6 is a diagram showing the correlation between the composition ratio of Ti, Cr, and N, which changes with the change in film forming conditions, and the crystallinity on the CrN thin film surface), and the composition ratio [element ratio of N (at%)]. / {[T
i element ratio (at%)] + [Cr element ratio (at
%)] And the composition ratio [Cr element ratio (at%)] / [Ti
And the element ratio (at%).
The composition ratio of Ti, Cr, and N was calculated from the measured value (element ratio) of the X-ray elemental analysis by EPMA in the same manner as described above. Table 1 shows the value of the composition ratio of each example, and TiN was used as a comparative example.
Table 2 shows the values of the composition ratios of the thin films. FIG. 8 shows the correspondence between the plot of FIG. 7 and the example of Table 1 and the crystallinity area corresponding to FIG. 9 described later. Corresponds to the reference example in Table 1.)

【0021】結晶性は、X線回折装置(X−Ray D
iffractmeter RINT−2000 理学
電機工業(株)製 、測定条件:Cu−Kα線 50k
V×250mA)を用いて得られた回折図形より判定し
た。図9に、Ti、Cr、Nの組成比と結晶性との相関
性に対応する、非晶質膜[図9(a):図8中のエリア
Aに相当する。]、非晶質化膜[図9(b):図8中の
エリアBに相当する。]、結晶質膜[図9(c):図8
中のエリアCに相当する。]におけるTiCrNの代表
的なX線回折図形を示す。非晶質膜は、2つのピーク
(○で示される。●は基材のピークを示す。)間がブロ
ードになり、明瞭なピークが見られないが、結晶質膜で
は、2つのピークが明瞭に現れる。上記X線元素分析の
結果とX線回折図形より判定した、Ti、Cr、Nの元
素比(at%)の範囲と結晶性の相関性について、表3
に示す。
The crystallinity was measured using an X-ray diffractometer (X-Ray D).
iffractmeter RINT-2000 manufactured by Rigaku Denki Kogyo KK, measurement conditions: Cu-Kα ray 50k
(V × 250 mA). FIG. 9 shows an amorphous film corresponding to the correlation between the composition ratio of Ti, Cr, and N and the crystallinity [FIG. 9 (a): corresponding to area A in FIG. ], Amorphized film [FIG. 9 (b): corresponds to area B in FIG. ], Crystalline film [FIG. 9 (c): FIG.
It corresponds to the middle area C. 1] shows a typical X-ray diffraction pattern of TiCrN in [1]. The amorphous film has a broad region between the two peaks (indicated by。 and the solid circle indicates the peak of the base material), and no clear peak is observed, whereas the crystalline film has two clear peaks. Appears in Table 3 shows the correlation between the range of the element ratio (at%) of Ti, Cr, and N and the crystallinity determined from the result of the X-ray elemental analysis and the X-ray diffraction pattern.
Shown in

【0022】図7〜図9より、TiCrN薄膜における
非晶質膜、結晶質膜が現れる条件は、下記式(1)ある
いは(2)の関係を満たす場合であることがわかる。 y≧1.1x−0.18 式(1)[非晶質膜が現れる範囲] y≦0.3x−0.04 式(2)[結晶質膜が現れる範囲] (上記式(1)、(2)において、x=[Nの元素比
(at%)]/{[Tiの元素比(at%)]+[Cr
の元素比(at%)]}、y=[Crの元素比(at
%)]/[Tiの元素比(at%)]を示す。)なお、 y=1.1x−0.18 式(1’) は図7、8中で実線で示され、 y=0.3x−0.04 式(2’) は図7、8中で点線で示される。
FIGS. 7 to 9 show that the condition for the appearance of the amorphous film and the crystalline film in the TiCrN thin film is when the relationship of the following formula (1) or (2) is satisfied. y ≧ 1.1x−0.18 Equation (1) [Range where an amorphous film appears] y ≦ 0.3x−0.04 Equation (2) [Range where a crystalline film appears] (the above equation (1), In (2), x = [element ratio of N (at%)] / {[element ratio of Ti (at%)] + [Cr
Element ratio (at%)]}, y = [Cr element ratio (at
%)] / [Element ratio of Ti (at%)]. Y = 1.1x−0.18 Equation (1 ′) is shown by a solid line in FIGS. 7 and 8, and y = 0.3x−0.04 Equation (2 ′) is expressed in FIGS. Shown by dotted lines.

【0023】さらに、実施例、参考例、比較例の回転環
に対し、スラスト式摩擦摩耗試験機(EFM−III−
E 東洋ボールドウイン(株)製)を用い、相手材を、
摺動面が規定面粗さのリング状カーボン成形体(高負荷
メカニカルシール用カーボンP9867 ピュアカーボ
ン社製)からなる固定環とし、室温、空気中で、固定環
摺動面に加わる面圧が5kgf/cm2となるようスラ
スト荷重を調整して、周速度(すべり速度)2m/s、
走行距離7200mとして、固定環のカーボン摩耗量、
回転環のTiCrN薄膜の摩耗量、摩擦係数を測定し
た。なお、摩耗量は回転環、固定環の高さ寸法(1/1
000マイクロメーター)と表面トレース状態より計測
する。摩耗係数はロードセルより検出される摩擦トルク
より算出する。結果を表1、表2に示す。
Further, a thrust type friction and wear tester (EFM-III-) was used for the rotating rings of Examples, Reference Examples and Comparative Examples.
E Toyo Baldwin Co., Ltd.)
The sliding surface is a fixed ring made of a ring-shaped carbon molded body having a specified surface roughness (Carbon P9867 for high-load mechanical sealing, manufactured by Pure Carbon Co.), and the surface pressure applied to the fixed ring sliding surface at room temperature and air is 5 kgf. / Cm 2 by adjusting the thrust load, the peripheral speed (slip speed) 2m / s,
Assuming that the traveling distance is 7200 m, the carbon wear amount of the fixed ring,
The wear amount and friction coefficient of the TiCrN thin film of the rotating ring were measured. The amount of wear is determined by the height of the rotating ring and the fixed ring (1/1).
000 micrometers) and the surface trace state. The wear coefficient is calculated from the friction torque detected from the load cell. The results are shown in Tables 1 and 2.

【0024】また、表1より、TiCrN薄膜における
Ti、Cr、Nの組成比とドライ摺動性の相関性(組成
比([Nの元素比(at%)]/{[Tiの元素比(a
t%)]+[Crの元素比(at%)]}と組成比[T
iの元素比(at%)の元素比]/[Crの元素比(a
t%)]の関係)を図10に、TiCrN薄膜における
Ti、Cr、Nの組成比([Nの元素比(at%)]/
{[Tiの元素比(at%)]+[Crの元素比(at
%)]})と摩擦係数との窒素ガスの流速毎の関係を図
11に示す。
Further, from Table 1, the correlation between the composition ratio of Ti, Cr, and N in the TiCrN thin film and the dry sliding property (composition ratio ([element ratio of N (at%)] / {[element ratio of Ti ( a
t%)] + [element ratio of Cr (at%)]} and composition ratio [T
i: Element ratio of element ratio (at%)] / [Cr element ratio (a
FIG. 10 shows the composition ratio of Ti, Cr, and N in the TiCrN thin film ([element ratio of N (at%)] /
{[Element ratio of Ti (at%)] + [element ratio of Cr (at
%)] を) and the friction coefficient for each nitrogen gas flow rate are shown in FIG.

【0025】図7〜図11および表1の結果より、上記
TiCrN薄膜は、非晶質膜あるいは結晶質膜のいずれ
かにおいて、摩擦係数が小さく、良好な耐摩耗性を示す
ことがわかる。
From the results shown in FIGS. 7 to 11 and Table 1, it can be seen that the TiCrN thin film has a small friction coefficient and shows good wear resistance in either the amorphous film or the crystalline film.

【0026】従って、上記TiCrN薄膜においては、
Ti、Cr、Nの組成比が、非晶質あるいは結晶質とな
る上記式(1)あるいは(2)の関係を満たす場合に良
好な耐摩耗性を示すことがわかる。また、表3より、非
晶質あるいは結晶質となる、Ti、Cr、Nの元素比
が、Tiを40〜60at%含有し、さらにCrを14
〜32at%、Nを14〜36at%含有する場合(非
晶質化)、あるいはTiを40〜60at%含有し、さ
らにCrを0.4〜5.0at%、Nを40〜45at
%含有する場合(結晶質)に良好な耐摩耗性を示すこと
がわかる。
Therefore, in the above TiCrN thin film,
It can be seen that when the composition ratio of Ti, Cr, and N satisfies the relationship of the above formula (1) or (2), which becomes amorphous or crystalline, good wear resistance is exhibited. Further, from Table 3, the element ratio of Ti, Cr and N, which becomes amorphous or crystalline, contains 40 to 60 at% of Ti,
3232 at%, 14 to 36 at% of N (amorphization), or 40 to 60 at% of Ti, 0.4 to 5.0 at% of Cr and 40 to 45 at% of N
% (Crystalline) shows good wear resistance.

【0027】上記実施例においては、基材としてステン
レス鋼の切削加工品を用いたが、本発明はそれに限定さ
れず、所望の形態に応じて、本発明の作用を阻害しない
範囲で、例えば金属材料、セラミック等の素材から適宜
選択でき、また加工法も基材の素材や形状に応じて選択
できる。
In the above embodiment, a cut product of stainless steel was used as the base material. However, the present invention is not limited to this. Materials and materials such as ceramics can be appropriately selected, and the processing method can also be selected according to the material and shape of the base material.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】上記実施例では、摺動部材としてガスシー
ルの回転環を挙げたが、本発明はそれに限定されず、摺
動面を有し、摺動面を本発明の耐摩耗性材料により形成
可能な部材であればよい。例えば、ガスシールの固定環
の摺動面を本発明の耐摩耗性材料により形成してもよい
し、メカニカルシールや軸受けの、可動部材あるいは静
止部材の摺動面を本発明の耐摩耗性材料により形成して
もよい。また、図12に示されるような支承装置のすべ
り軸受けと対向してスライドするスライドプレートの摺
動面を本発明の耐摩耗性材料により構成しても良い(図
12中、22はソールプレート、23はスライドプレー
ト、24はピストン、25はシム、26はベアリング、
27はシールリング、28はエラストマ、29はベース
ポットを示す)。
In the above embodiment, the rotating ring of the gas seal is used as the sliding member. However, the present invention is not limited to this. The sliding member has a sliding surface, and the sliding surface is formed of the wear-resistant material of the present invention. Any member that can be used may be used. For example, the sliding surface of the stationary ring of the gas seal may be formed of the wear-resistant material of the present invention, or the sliding surface of the movable member or the stationary member of the mechanical seal or the bearing may be formed of the wear-resistant material of the present invention. May be formed. Further, the sliding surface of the slide plate that slides opposite to the slide bearing of the bearing device as shown in FIG. 12 may be made of the wear-resistant material of the present invention (in FIG. 12, reference numeral 22 denotes a sole plate, 23 is a slide plate, 24 is a piston, 25 is a shim, 26 is a bearing,
27 indicates a seal ring, 28 indicates an elastomer, and 29 indicates a baespot).

【0032】本発明の摺動部材は、タービン、ブロワ、
コンプレッサ、攪拌機などに好適に使用される。
The sliding member of the present invention comprises a turbine, a blower,
It is suitably used for compressors, stirrers and the like.

【0033】上記実施例では、本発明の摺動部材と組み
合わせる相手側部材の摺動面形成素材としてカーボンを
用いたが、相手側素材として本発明はそれに限定され
ず、通常一般に摺動面形成素材として使用される素材を
用いることができる。
In the above embodiment, carbon is used as the material for forming the sliding surface of the mating member to be combined with the sliding member of the present invention. A material used as a material can be used.

【0034】[0034]

【発明の効果】本発明の耐摩耗性材料は、Tiを40〜
60at%含有し、さらにCrを14〜32at%、N
を14〜36at%含有する、あるいはTiを40〜6
0at%含有し、さらにCrを0.4〜5.0at%、
Nを40〜45at%含有することにより、摩擦係数が
低下し、また、材料内の歪みが少なく、耐摩耗性が著し
く向上する。従って、本発明の耐摩耗性材料により摺動
面が形成されてなる摺動部材は、摺動時の耐久性に優れ
る。
The wear-resistant material of the present invention has a Ti content of 40 to 40%.
60 at%, Cr is 14 to 32 at%, N
14 to 36 at%, or 40 to 6 at.
0 at%, and 0.4 to 5.0 at% of Cr,
When N is contained at 40 to 45 at%, the coefficient of friction is reduced, the distortion in the material is small, and the wear resistance is significantly improved. Therefore, the sliding member having the sliding surface formed of the wear-resistant material of the present invention has excellent durability during sliding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は基材の摺動面に、本発明の耐摩耗性材料
からなるTiCrN薄膜を形成するためのイオンプレー
ティング装置の構成の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of the configuration of an ion plating apparatus for forming a TiCrN thin film made of the wear-resistant material of the present invention on a sliding surface of a substrate.

【図2】図2は、本発明の摺動部材の一例であるガスシ
ールの回転環の構成を示す断面図である。
FIG. 2 is a cross-sectional view showing a configuration of a rotary ring of a gas seal which is an example of the sliding member of the present invention.

【図3】図3は、図2の回転環の摺動面における、基材
の薄膜形成面の温度(設定温度)と薄膜水平面方向の面
歪量との関係を、基材へ印加するバイアス電圧値毎に示
す図である。
FIG. 3 is a diagram showing a relationship between the temperature (set temperature) of the thin film forming surface of the substrate and the amount of surface strain in the horizontal direction of the thin film on the sliding surface of the rotating ring in FIG. 2; It is a figure shown for every voltage value.

【図4】図4は、図2の回転環の摺動面における、基材
へ印加するバイアス電圧値と薄膜水平面方向の面歪量と
の関係を基材の薄膜形成面の温度毎に示す図である
FIG. 4 shows the relationship between the bias voltage value applied to the substrate and the amount of surface distortion in the horizontal plane of the thin film on the sliding surface of the rotating ring of FIG. 2 for each temperature of the thin film forming surface of the substrate. It is a figure

【図5】図5は、図2の回転環の摺動面における、T
i、Crの組成比([Crの元素比(at%)]/[T
iの元素比(at%)])と、薄膜水平面方向の面歪量
との関係を、窒素ガスの流速(導入速度)毎に示す図で
ある。
FIG. 5 is a diagram showing T on the sliding surface of the rotating ring shown in FIG. 2;
i, Cr composition ratio ([Cr element ratio (at%)] / [T
FIG. 4 is a diagram showing the relationship between the element ratio of i (at%)]) and the amount of surface strain in the horizontal direction of the thin film for each nitrogen gas flow rate (introduction rate).

【図6】図6は、図2の回転環の摺動面における、T
i、Cr、Nの組成比([Nの元素比(at%)]/
{[Tiの元素比(at%)]+[Crの元素比(at
%)]})と、薄膜水平面方向の面歪量との関係を、窒
素ガスの流速(導入速度)毎に示す図である。
FIG. 6 is a diagram illustrating a T ring on a sliding surface of the rotating ring of FIG. 2;
i, Cr, N composition ratio ([element ratio of N (at%)] /
{[Element ratio of Ti (at%)] + [element ratio of Cr (at
%)]}) And the relationship between the amount of surface strain in the horizontal plane direction of the thin film and the flow rate (introduction speed) of the nitrogen gas.

【図7】図7は、図2の回転環の摺動面における、成膜
条件の変化に伴って変化するTi、Cr、Nの組成比
と、結晶性との相関性を示す図である。
7 is a diagram showing a correlation between crystallinity and a composition ratio of Ti, Cr, and N, which changes with a change in film forming conditions, on a sliding surface of the rotating ring in FIG. 2; .

【図8】図8は、図7における、Ti、Cr、Nの組成
比と結晶性との相関性と実施例及び参考例との対応関係
を示す。
FIG. 8 shows the correlation between the composition ratio of Ti, Cr, and N and the crystallinity in FIG. 7 and the corresponding relationship between Examples and Reference Examples.

【図9】図9(a)は、TiCrN非晶質膜の代表的な
X線回折図形、図9(b)は、TiCrN非晶質化膜の
代表的なX線回折図形、図9(c)は、TiCrN結晶
質膜の代表的なX線回折図形を示す図である。
9A is a typical X-ray diffraction pattern of a TiCrN amorphous film, FIG. 9B is a typical X-ray diffraction pattern of a TiCrN amorphous film, and FIG. (c) is a diagram showing a typical X-ray diffraction pattern of the TiCrN crystalline film.

【図10】図10は、図2の回転環の摺動面における、
TiCrN薄膜におけるTi、Cr、Nの組成比とドラ
イ摺動性との相関性を示す図である。
FIG. 10 is a view showing a sliding surface of the rotating ring of FIG. 2;
It is a figure which shows the correlation between the composition ratio of Ti, Cr, and N in a TiCrN thin film, and dry sliding property.

【図11】図11は、図2の回転環の摺動面における、
TiCrN薄膜におけるTi、Cr、Nの組成比と摩擦
係数との関係を示す図である。
FIG. 11 is a diagram showing a sliding surface of the rotating ring of FIG. 2;
FIG. 4 is a diagram showing a relationship between a composition ratio of Ti, Cr, and N in a TiCrN thin film and a coefficient of friction.

【図12】図12は、本発明の本発明の摺動部材の一例
であるスライドプレートを適用した支承装置の要部構成
図である。
FIG. 12 is a main part configuration diagram of a bearing device to which a slide plate, which is an example of the sliding member of the present invention, is applied.

【符号の説明】 1 アーク放電型イオンプレーティング装置 2 基材 3 回転軸 4 ホルダ 5a 蒸発源(金属チタン) 5b 蒸発源(金属クロム) 6 蒸気粒子(Ti、Cr) 7 フィラメント 8 イオン化電極 9 反応ガス(N2) 10 イオン化された蒸気粒子(Ti、Cr) 11 直流電源 12 電源 13 EBガン 14 粗引バルブ 15 メインバルブ 16 クライオポンプ 17 油回転ポンプ 20 TiCrN薄膜 21 摺動面[Description of Signs] 1 Arc discharge ion plating apparatus 2 Substrate 3 Rotating shaft 4 Holder 5a Evaporation source (metal titanium) 5b Evaporation source (metal chromium) 6 Vapor particles (Ti, Cr) 7 Filament 8 Ionization electrode 9 Reaction Gas (N 2 ) 10 Ionized vapor particles (Ti, Cr) 11 DC power supply 12 Power supply 13 EB gun 14 Roughing valve 15 Main valve 16 Cryopump 17 Oil rotary pump 20 TiCrN thin film 21 Sliding surface

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月6日(1999.9.6)[Submission Date] September 6, 1999 (September 9, 1999)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 摺動部材[Title of the Invention] Sliding member

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は、メカニカルシー
ル、ガスシール等のシール部材や軸受けなどの摺動部材
に関する。
The present invention relates to a seal member such as a mechanical seal and a gas seal and a sliding member such as a bearing.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐摩耗性に
優れた摺動部材を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to abrasion resistance.
An object is to provide an excellent sliding member .

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1の摺動部材は、Tiを45〜60
at%、Crを14〜32at%、Nを14〜36at
%含有する三元系の非晶質耐摩耗性材料薄膜を形成して
なることを特徴としている。請求項2の摺動部材は、T
iを44〜60at%、Crを0.4〜5.0at%、
Nを40〜45at%含有する三元系の結晶質耐摩耗性
材料薄膜を形成してなることを特徴としている。
In order to solve the above-mentioned problems, the sliding member according to the first aspect of the present invention is characterized in that Ti is 45 to 60%.
at%, Cr 14-32at%, N 14-36at
% Ternary amorphous wear resistant material thin film
It is characterized by becoming. The sliding member according to claim 2 is T
i is 44 to 60 at%, Cr is 0.4 to 5.0 at%,
Ternary crystalline wear resistance containing 40 to 45 at% N
It is characterized by forming a material thin film.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】削除[Correction method] Deleted

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】削除[Correction method] Deleted

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】削除[Correction method] Deleted

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】従って、上記TiCrN薄膜においては、
Ti、Cr、Nの組成比が、非晶質あるいは結晶質とな
る上記式(1)あるいは(2)の関係を満たす場合に良
好な耐摩耗性を示すことがわかる。また、表3より、非
晶質あるいは結晶質となる、Ti、Cr、Nの元素比
が、Tiを45〜60at%含有し、さらにCrを14
〜32at%、Nを14〜36at%含有する場合(非
晶質)、あるいはTiを44〜60at%含有し、さら
にCrを0.4〜5.0at%、Nを40〜45at%
含有する場合(結晶質)に良好な耐摩耗性を示すことが
わかる。
Therefore, in the above TiCrN thin film,
It can be seen that when the composition ratio of Ti, Cr, and N satisfies the relationship of the above formula (1) or (2), which becomes amorphous or crystalline, good wear resistance is exhibited. Also, from Table 3, the element ratio of Ti, Cr, and N, which becomes amorphous or crystalline, contains 45 to 60 at% of Ti and 14
3232 at%, 14 to 36 at% N (amorphous), or 44 to 60 at% Ti, 0.4 to 5.0 at% Cr, 40 to 45 at% N
It can be seen that when contained (crystalline), good wear resistance is exhibited.

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】[0034]

【発明の効果】本発明の摺動部材は、Ti45〜60a
t%、Cr14〜32at%、N14〜36at%を含
有する三元系の非晶質耐摩耗性材料薄膜、あるいはTi
44〜60at%、Cr0.4〜5.0at%、N40
〜45at%を含有する三元系の結晶質耐摩耗性材料薄
膜を形成してなるもので、各薄膜は摩擦係数が小さく
また、材料内の歪みが少なく、耐摩耗性が著しく向上す
ので、摺動時の耐久性に優れる。
The sliding member according to the present invention is made of Ti45a-60a.
t%, Cr14-32at%, N14-36at%
Ternary amorphous wear-resistant material thin film or Ti
44-60 at%, Cr 0.4-5.0 at%, N40
Ternary crystalline wear-resistant material containing up to 45 at%
Each thin film has a small coefficient of friction,
Further, since the distortion in the material is small and the wear resistance is remarkably improved , the durability during sliding is excellent.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主としてTi、Cr、Nの3種の元素か
らなる三元系材料であって、Tiを40〜60at%含
有することを特徴とする耐摩耗性材料。
1. A wear-resistant material comprising a ternary material mainly composed of three elements, Ti, Cr, and N, characterized by containing 40 to 60 at% of Ti.
【請求項2】 Crを14〜32at%、Nを14〜3
6at%含有することを特徴とする請求項1記載の耐摩
耗性材料。
2. Cr is 14 to 32 at% and N is 14 to 3 at%.
The wear-resistant material according to claim 1, which contains 6 at%.
【請求項3】 Crを0.4〜5.0at%、Nを40
〜45at%含有することを特徴とする請求項1記載の
耐摩耗性材料。
3. A Cr content of 0.4 to 5.0 at% and a N content of 40 at%.
The wear-resistant material according to claim 1, wherein the content of the wear-resistant material is about 45 at%.
【請求項4】 摺動面が請求項1乃至3のいずれか一項
に記載の耐摩耗性材料により形成されてなることを特徴
とする摺動部材。
4. A sliding member, wherein the sliding surface is formed of the wear-resistant material according to claim 1.
【請求項5】 真空下で、金属チタン(Ti)および金
属クロム(Cr)を蒸発させて蒸発物とし、該蒸発物を
アーク放電によりイオン化すると同時に、窒素ガス(N
2)と反応せしめて、基材の摺動面に堆積させることに
より、摺動面に前記耐摩耗性材料薄膜を形成してなるこ
とを特徴とする請求項4記載の摺動部材。
5. Evaporation of metal titanium (Ti) and metal chromium (Cr) under vacuum to produce an evaporate, ionizing the evaporate by arc discharge and simultaneously using nitrogen gas (N
5. The sliding member according to claim 4, wherein the abrasion-resistant material thin film is formed on the sliding surface by reacting with 2 ) and depositing on the sliding surface of the base material.
【請求項6】 摺動面における基材温度が100℃以
下、バイアス電圧50V以下、成膜速度4Å/s以下の
条件で、摺動面に前記耐摩耗性材料薄膜を形成してなる
ことを特徴とする請求項5記載の摺動部材。
6. The method of forming a wear-resistant material thin film on a sliding surface under the conditions that a substrate temperature on the sliding surface is 100 ° C. or less, a bias voltage is 50 V or less, and a film forming speed is 4 ° / s or less. The sliding member according to claim 5, wherein:
JP29512398A 1998-10-16 1998-10-16 Sliding member Expired - Fee Related JP3205304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29512398A JP3205304B2 (en) 1998-10-16 1998-10-16 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29512398A JP3205304B2 (en) 1998-10-16 1998-10-16 Sliding member

Publications (2)

Publication Number Publication Date
JP2000119842A true JP2000119842A (en) 2000-04-25
JP3205304B2 JP3205304B2 (en) 2001-09-04

Family

ID=17816593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29512398A Expired - Fee Related JP3205304B2 (en) 1998-10-16 1998-10-16 Sliding member

Country Status (1)

Country Link
JP (1) JP3205304B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047557A (en) * 2000-05-25 2002-02-15 Ebara Corp Cr-CONTAINING TITANIUM NITRIDE FILM
US6558822B2 (en) * 2000-05-25 2003-05-06 Ebara Corporation Cr-containing titanium nitride film
JP2011137228A (en) * 2009-12-10 2011-07-14 Orbotech Lt Solar Llc Showerhead assembly for vacuum processing apparatus
WO2012014507A1 (en) * 2010-07-29 2012-02-02 株式会社田中 Titanium metal wear-resistant member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047557A (en) * 2000-05-25 2002-02-15 Ebara Corp Cr-CONTAINING TITANIUM NITRIDE FILM
US6558822B2 (en) * 2000-05-25 2003-05-06 Ebara Corporation Cr-containing titanium nitride film
JP2011137228A (en) * 2009-12-10 2011-07-14 Orbotech Lt Solar Llc Showerhead assembly for vacuum processing apparatus
WO2012014507A1 (en) * 2010-07-29 2012-02-02 株式会社田中 Titanium metal wear-resistant member
JP2012031459A (en) * 2010-07-29 2012-02-16 Tanaka:Kk Titanium metal wear-resistant member
US9376742B2 (en) 2010-07-29 2016-06-28 Tanaka Limited Wear-resistant member made of titanium metal

Also Published As

Publication number Publication date
JP3205304B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
Knotek et al. Industrial deposition of binary, ternary, and quaternary nitrides of titanium, zirconium, and aluminum
KR101930564B1 (en) Molybdenum monoxide layers, and production thereof using pvd
JP5920681B2 (en) Coated mold for plastic working excellent in sliding characteristics and manufacturing method thereof
JP6920698B2 (en) Sliding member and coating film
CN101469402B (en) Preparation of fullerene-like carbon film
US6558822B2 (en) Cr-containing titanium nitride film
JP2009155721A (en) Hard coating excellent in sliding property and method for forming same
Stueber et al. Multifunctional nanolaminated PVD coatings in the system Ti–Al–N–C by combination of metastable fcc phases and nanocomposite microstructures
US20240093344A1 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
JPH09506669A (en) Method for manufacturing hard material layer
GB2303640A (en) Sliding member with film containing chromium and chromium nitride
JP2739722B2 (en) piston ring
JP3225576B2 (en) Sliding machine parts coated with self-healing hard solid lubricant film
Ramalingam Tribological characteristics of thin films and applications of thin film technology for friction and wear reduction
JP2000119842A (en) Wear resistant material and sliding member
JPH10237627A (en) Hard carbon coating-coated member
CN106467959B (en) A kind of solid lubrication composite coating of matrix surface and preparation method thereof
Kao et al. Optimum MoS2–Cr coating for sliding against copper, steel and ceramic balls
WO2023066510A1 (en) Method for forming hard and ultra-smooth a-c by sputtering
Beresnev et al. Correlating deposition parameters with structure and properties of nanoscale multilayer (TiSi) N/CrN coatings
CN117062936A (en) Sliding member, method for producing same, and coating film
Baila et al. Thin films deposition on 304L stainless steel using e-gun technology for medical applications
JP4245827B2 (en) Cr-containing titanium nitride film
Lü et al. Effect of cathode composition on microstructure and tribological properties of TiBN nanocomposite multilayer coating synthesized by plasma immersion ion implantation and deposition
JP2006205297A (en) Surface-coated cutting tool and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees