JP3205304B2 - Sliding member - Google Patents

Sliding member

Info

Publication number
JP3205304B2
JP3205304B2 JP29512398A JP29512398A JP3205304B2 JP 3205304 B2 JP3205304 B2 JP 3205304B2 JP 29512398 A JP29512398 A JP 29512398A JP 29512398 A JP29512398 A JP 29512398A JP 3205304 B2 JP3205304 B2 JP 3205304B2
Authority
JP
Japan
Prior art keywords
thin film
sliding
substrate
sliding member
ticrn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29512398A
Other languages
Japanese (ja)
Other versions
JP2000119842A (en
Inventor
常盛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP29512398A priority Critical patent/JP3205304B2/en
Publication of JP2000119842A publication Critical patent/JP2000119842A/en
Application granted granted Critical
Publication of JP3205304B2 publication Critical patent/JP3205304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メカニカルシー
ル、ガスシール等のシール部材や軸受けなどの摺動部材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seal member such as a mechanical seal and a gas seal and a sliding member such as a bearing.

【0002】[0002]

【従来の技術】メカニカルシール、ガスシール等のシー
ル部材や軸受けなどの摺動部材を形成する材料として、
従来よりカーボン、炭化珪素、超硬合金等が、カーボン
対炭化珪素、カーボン対超硬合金などの組み合わせで広
く使用されている。
2. Description of the Related Art As materials for forming seal members such as mechanical seals and gas seals and sliding members such as bearings,
Conventionally, carbon, silicon carbide, cemented carbide and the like have been widely used in combinations of carbon to silicon carbide, carbon to cemented carbide and the like.

【0003】近年では、流体機械の高速、高圧化、大型
化のニーズに伴い、摺動部材の使用条件は益々厳しいも
のになっており、固体間の滑り接触に伴う摩擦熱が繰り
返し発生することに起因した熱衝撃破壊や熱疲労による
割れが問題視されている。また、高速、高圧等の回転機
器におけるシール部材として強度の高い炭化珪素や超硬
合金の成形品が用いられるが、これらは脆性を備え、遠
心力増大に伴う破損を防止するためにバンドなどの補強
部材を必要とする。
[0003] In recent years, with the need for high speed, high pressure, and large size of fluid machinery, the use conditions of sliding members have become increasingly severe, and frictional heat accompanying sliding contact between solids is repeatedly generated. There is a problem of thermal shock destruction caused by cracking and cracking caused by thermal fatigue. In addition, high strength silicon carbide or cemented carbide molded products are used as seal members for rotating equipment at high speeds, high pressures, etc., but these are brittle and have bands such as bands to prevent damage due to increased centrifugal force. Requires reinforcement members.

【0004】そこで破損の防止方法として、摺動部材の
母材を、高強度ではないが金属材料等の非脆性材料によ
り形成し、摺動面を硬質薄膜で被覆するなどの表面改質
により高強度化する方法が検討されている。しかし、炭
化処理、窒化処理などの表面改質では、処理時の加熱に
よる変形が大きく、ひずみによって母材から硬質薄膜が
剥離するなど強度の低下を引き起こす。イオン注入では
注入深さが限定され、所望の強度が得にくい。物理的蒸
着法(PVD)や化学的蒸着法(CVD)により摺動面
に硬質薄膜を形成する方法は、改質部を十分に形成する
ことができるが、CVDは処理部を400〜1000℃
程度に加熱する必要があり、摺動部材(母材)の変形を
生じる。PVDにおいては、従来、高強度な被膜を得る
ためには、基板温度を300〜500℃程度に加熱して
おり、この場合も摺動部材の変形による強度の低下を生
じていた。
Therefore, as a method of preventing breakage, the base material of the sliding member is formed of a non-brittle material such as a metal material, which is not high in strength, and the sliding surface is coated with a hard thin film. Methods for strengthening are being studied. However, in surface modification such as carbonization and nitriding, deformation due to heating during the treatment is large, and strength is reduced, such as peeling of the hard thin film from the base material due to strain. In ion implantation, the implantation depth is limited, and it is difficult to obtain a desired strength. A method of forming a hard thin film on a sliding surface by physical vapor deposition (PVD) or chemical vapor deposition (CVD) can sufficiently form a modified portion.
It is necessary to heat the sliding member (base material) to a certain degree. In the case of PVD, conventionally, in order to obtain a high-strength coating, the substrate temperature is heated to about 300 to 500 ° C., and also in this case, the strength is reduced due to deformation of the sliding member.

【0005】[0005]

【発明が解決しようとする課題】本発明は、耐摩耗性に
優れた摺動部材を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sliding member having excellent wear resistance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1の摺動部材は、Tiを45〜60at
%、Crを14〜32at%、Nを14〜36at%含有する
三元系の非晶質耐摩耗性材料薄膜を形成してなることを
特徴としている。
According to a first aspect of the present invention, there is provided a sliding member, comprising:
%, Cr is 14 to 32 at%, and N is 14 to 36 at%, and a ternary amorphous wear-resistant material thin film is formed.

【0007】請求項2の摺動部材は、Tiを44〜60at
%、Crを0.4〜5.0at%、Nを40〜45at%含有する
三元系の結晶質耐摩耗性材料薄膜を形成してなることを
特徴としている。
[0007] The sliding member according to the second aspect is characterized in that Ti is 44 to 60 at.
%, Cr is 0.4 to 5.0 at%, and N is 40 to 45 at%, and a ternary crystalline wear-resistant material thin film is formed.

【0008】上記のような薄膜を摺動面に形成すること
により、耐摩耗性に優れた摺動部材を得ることができ
る。なお、このような耐摩耗性材料薄膜は、真空下で、
金属チタン(Ti)および金属クロム(Cr)を蒸発させ、
蒸発物をアーク放電によりイオン化すると同時に、窒素
ガス(N2)と反応せしめて基材の摺動面に堆積させる、
いわゆるアーク放電型イオンプレーティング法により形
成することができる。このような方法により、上記所望
の条件を満たし、膜内の歪みが小さい耐摩耗性材料薄膜
を得ることができる。
By forming such a thin film on the sliding surface, a sliding member having excellent wear resistance can be obtained. In addition, such a wear-resistant material thin film, under vacuum,
Evaporate metal titanium (Ti) and metal chromium (Cr)
At the same time as ionizing the evaporant by arc discharge, it reacts with nitrogen gas (N 2 ) and deposits on the sliding surface of the substrate.
It can be formed by a so-called arc discharge type ion plating method. According to such a method, it is possible to obtain a wear-resistant material thin film that satisfies the above-described desired conditions and has small distortion in the film.

【0009】[0009]

【実施例】以下、図面を用いて本発明を詳細に説明す
る。図1は、基材の摺動面に、TiCrN薄膜を形成するた
めのイオンプレーティング装置の構成の一例を示す概略
図である。基材2は、回転軸3の先端のホルダ4に、回
転軸3と同軸になるように配置固定される。ホルダ4
は、図示しない温度調節装置を備え、基材の温度を調整
する。上記基材2に対向して蒸発源5a(金属チタン)
・5b(金属クロム)が配置され、蒸発源5aからのチ
タン蒸気および蒸発源5bからのクロム蒸気を基材2に
向けて発する。チタン蒸気粒子およびクロム蒸気粒子6
は、イオン化電極8により発するアーク放電によりイオ
ン化される。一方、蒸発源5a・5b〜基材2間に窒素
ガス9が導入され、イオン化されたチタン蒸気粒子およ
びクロム蒸気粒子10と窒素ガスが反応した反応生成物
が基材2上に堆積し、摺動面にTiCrN薄膜が形成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an example of the configuration of an ion plating apparatus for forming a TiCrN thin film on a sliding surface of a base material. The substrate 2 is disposed and fixed to a holder 4 at the tip of the rotating shaft 3 so as to be coaxial with the rotating shaft 3. Holder 4
Is equipped with a temperature control device (not shown) to control the temperature of the base material. Evaporation source 5a (metallic titanium) facing the substrate 2
5b (metal chromium) is arranged, and emits titanium vapor from the evaporation source 5a and chromium vapor from the evaporation source 5b toward the base material 2. Titanium vapor particles and chromium vapor particles 6
Are ionized by the arc discharge generated by the ionization electrode 8. On the other hand, a nitrogen gas 9 is introduced between the evaporation sources 5a and 5b and the substrate 2, and a reaction product of the ionized titanium vapor particles and chromium vapor particles 10 reacting with the nitrogen gas is deposited on the substrate 2, and the sliding is performed. A TiCrN thin film is formed on the moving surface.

【0010】形成されるTiCrN薄膜の物性は、基材の薄
膜形成面の温度、基材に印加するバイアス電圧、蒸発源
からの蒸発速度、窒素ガスの流速(導入速度)、蒸発源
の蒸発方法、作業圧力、蒸発物のイオン化条件等に関係
するが、これらは特に限定されず、所望のTiCrN薄膜の
物性に応じて適宜設定すればよい。好ましくは、薄膜形
成面(摺動面)における基材温度が100℃以下、バイ
アス電圧が50V以下、成膜速度を4Å/s以下とする
のがよい。また、後述する図5・図6・図11に示され
ているように、窒素ガスの流速により、薄膜水平面方向
の面歪量あるいは摩擦係数を制御することもできる。
The physical properties of the formed TiCrN thin film include the temperature of the thin film forming surface of the base material, the bias voltage applied to the base material, the evaporation speed from the evaporation source, the flow rate (introduction speed) of nitrogen gas, and the evaporation method of the evaporation source. Although it relates to the working pressure, the ionization condition of the evaporant, etc., these are not particularly limited, and may be appropriately set according to the desired physical properties of the TiCrN thin film. Preferably, the substrate temperature on the thin film forming surface (sliding surface) is 100 ° C. or less, the bias voltage is 50 V or less, and the film forming speed is 4 ° / s or less. In addition, as shown in FIGS. 5, 6, and 11, which will be described later, the surface strain amount or friction coefficient in the horizontal direction of the thin film can be controlled by the flow rate of the nitrogen gas.

【0011】次に、上記TiCrN薄膜を摺動面に形成した
本発明の摺動部材について説明する。図2は、本発明の
摺動部材の一例であるガスシールの回転環の構成を示す
断面図である。基材2としてマルテンサイト系ステンレ
ス鋼(SUS420J2)を用い、所定の形状に加工後、焼入れ
(980℃、1時間)、焼戻し(980℃、4時間)し、薄膜形
成面を表面粗さがRa=0.05μm以下となるようにラッ
ピング仕上げした。
Next, the sliding member of the present invention in which the above-mentioned TiCrN thin film is formed on the sliding surface will be described. FIG. 2 is a cross-sectional view showing a configuration of a rotary ring of a gas seal which is an example of the sliding member of the present invention. Using martensitic stainless steel (SUS420J2) as the base material 2, processing it into a predetermined shape, then quenching
(980 ° C., 1 hour) and tempering (980 ° C., 4 hours), and the thin film-formed surface was lapping-finished so that the surface roughness became Ra = 0.05 μm or less.

【0012】上記基材2をイオンボンバード(クリーニ
ング条件:RF0.6kW、Ar流速100ml/min、バイアス
電圧1kV、15分の高周波グロー放電)により摺動面を
クリーニングした後、図1の装置にセットし、基材2を
回転させながら、ラッピング仕上げした面に、種々の条
件(基材の薄膜形成面の温度、基材に印加するバイアス
電圧、窒素ガスの流速(導入速度)、成膜速度など)
で、膜厚3μmのTiCrN薄膜20の成膜を行った。
After cleaning the sliding surface of the substrate 2 by ion bombardment (cleaning conditions: RF 0.6 kW, Ar flow rate 100 ml / min, bias voltage 1 kV, high frequency glow discharge for 15 minutes), the substrate 2 is set in the apparatus of FIG. Then, while rotating the substrate 2, various conditions (temperature of the thin film forming surface of the substrate, bias voltage applied to the substrate, flow rate of nitrogen gas (introduction speed), film forming speed, etc.) )
Then, a 3 μm-thick TiCrN thin film 20 was formed.

【0013】図3は、基材の薄膜形成面の温度(基板設
定温度)と、上記回転環の摺動面(TiCrN薄膜面)にお
ける薄膜水平面方向の面歪量との関係を、基材に印加す
るバイアス電圧値毎に示すもの、図4は、基材に印加す
るバイアス電圧値と上記薄膜水平面方向の面歪量との関
係を基材の薄膜形成面の温度毎に示すものである。
FIG. 3 shows the relationship between the temperature of the thin film forming surface of the base material (set temperature of the substrate) and the surface strain in the thin film horizontal direction on the sliding surface of the rotating ring (TiCrN thin film surface). FIG. 4 shows the relationship between the bias voltage value applied to the base material and the surface strain in the horizontal direction of the thin film at each temperature of the thin film forming surface of the base material.

【0014】面歪量の測定は、万能表面形状測定器
((株)小坂研究所製SE-3FA)により、回転環の摺動面の
一方の端部から他方の端部(外周側端部と内周側端部)
まで変形量をトレース(倍率5000×10)し、両端部間の
変化量(傾き高さ)を面歪量(単位:μm)とした。
[0014] The measurement of the amount of surface distortion is performed by a universal surface shape measuring instrument.
(SE-3FA manufactured by Kosaka Laboratory Co., Ltd.) from one end to the other end of the sliding surface of the rotating ring (outer end and inner end)
The amount of deformation was traced (magnification 5000 × 10) until the end, and the amount of change between both ends (inclination height) was defined as the amount of surface distortion (unit: μm).

【0015】図3・図4より、摺動部材において重要な
薄膜水平面方向の面歪量には、基材の薄膜形成面の温
度、基材へ印加するバイアス電圧値が大きく影響し、低
面歪量化のためには、基材の薄膜形成面の温度および基
材へ印加するバイアス電圧値を極力抑えることが不可欠
であることがわかる。好ましくは、摺動面における基材
温度が100℃以下、バイアス電圧50V以下、成膜速
度4Å/s以下であるのがよい。
From FIGS. 3 and 4, it can be seen that the temperature of the thin film forming surface of the base material and the bias voltage applied to the base material greatly influence the important surface strain in the horizontal direction of the thin film of the sliding member. It can be seen that it is indispensable to minimize the temperature of the thin film forming surface of the substrate and the bias voltage applied to the substrate to minimize the amount of distortion. Preferably, the substrate temperature on the sliding surface is 100 ° C. or less, the bias voltage is 50 V or less, and the film forming rate is 4 ° / s or less.

【0016】一方、図5・図6は、成膜条件の変化に伴
って変化するTi、Cr、Nの組成比(各元素の含有率(at
%)から求められる比)と、上記回転環の摺動面(TiCr
N薄膜面)における薄膜水平面方向の面歪量との関係
を、窒素ガスの流速(導入速度)毎に示すものである。
組成比は、各TiCrN薄膜について、EPMA(日本電子
(株)製X線マイクロアナライザー)によるX線元素分
析を行って算出した。図5・図6より、組成比と薄膜水
平面方向の面歪量に相関性はなく、所望の組成の膜を得
る場合でも、例えば窒素ガスの流速等の成膜条件変化に
より、面歪量を制御できることがわかる。
On the other hand, FIGS. 5 and 6 show the composition ratios of Ti, Cr, and N (contents of each element (at
%) And the sliding surface of the rotating ring (TiCr
9 shows the relationship with the surface strain in the horizontal direction of the thin film on the N thin film surface) for each nitrogen gas flow rate (introduction speed).
The composition ratio was calculated for each TiCrN thin film by performing X-ray elemental analysis using EPMA (X-ray microanalyzer manufactured by JEOL Ltd.). 5 and 6, there is no correlation between the composition ratio and the surface strain amount in the horizontal direction of the thin film. Even when a film having a desired composition is obtained, the surface strain amount is changed by a change in film forming conditions such as a flow rate of nitrogen gas. It turns out that it can be controlled.

【0017】次に、図7は、成膜条件の変化に伴って変
化するTi、Cr、Nの組成比と、上記回転環の摺動面(Ti
CrN薄膜面)における結晶性との相関性を示す図で、横
軸は[Nの含有率(at%)]/{[Tiの含有率(at%)]+
[Crの含有率(at%)]}、縦軸は[Crの含有率(at%)]
/[Tiの含有率(at%)]である。Ti、Cr、Nの組成比
は、上記と同様に、EPMAによるX線元素分析の測定値よ
り算出した。各実施例の組成比の値を表1に、また比較
例としてTiN薄膜の組成比の値を表2に示す。なお、図
8に、図7のプロットと表1の実施例との対応関係、お
よび後述の図9に対応する結晶性のエリアを示す(図中
丸数字は、表1における実施例、三角数字は表1におけ
る参考例に対応する)。
Next, FIG. 7 shows the composition ratios of Ti, Cr, and N, which change with the change of the film forming conditions, and the sliding surface (Ti
This is a diagram showing the correlation with the crystallinity of the (CrN thin film surface), and the horizontal axis is [N content (at%)] / {[Ti content (at%)] +
[Cr content (at%)]}, the vertical axis is [Cr content (at%)]
/ [Ti content (at%)]. The composition ratio of Ti, Cr and N was calculated from the measured value of X-ray elemental analysis by EPMA in the same manner as described above. Table 1 shows the value of the composition ratio of each example, and Table 2 shows the value of the composition ratio of the TiN thin film as a comparative example. FIG. 8 shows the correspondence between the plot of FIG. 7 and the example of Table 1 and the crystallinity area corresponding to FIG. 9 described below (circled numbers are examples in Table 1 and triangular numbers are Corresponding to the reference example in Table 1).

【0018】結晶性は、X線回折装置(理学電機工業
(株)製X-Ray Diffractmeter RINT−2000、測定条件:
Cu-Kα線 50kV×250mA)を用いて得られた回折図形より
判定した。図9に、Ti、Cr、Nの組成比と結晶性との相
関性に対応する代表的なX線回折図形を示す。同図
(a)は非晶質膜(図8中のエリアAに相当)、同図
(b)は非晶質化膜(図8中のエリアBに相当)、同図
(c)は結晶質膜(図8中のエリアCに相当)のX線回
折図形で、非晶質膜は、○で示される2つのピーク(●
は基材のピークを示す)間がブロードになり、明瞭なピ
ークが見られない。結晶質膜では、2つのピークが明瞭
に現れる。上記X線元素分析の結果およびX線回折図形
より判定した、Ti、Cr、Nの含有率(at%)の範囲と結
晶性との相関性について、表3に示す。
The crystallinity was measured using an X-ray diffractometer (X-Ray Diffractmeter RINT-2000, manufactured by Rigaku Corporation) under the following measurement conditions:
It was determined from the diffraction pattern obtained using a Cu-Kα ray (50 kV × 250 mA). FIG. 9 shows a representative X-ray diffraction pattern corresponding to the correlation between the composition ratio of Ti, Cr, and N and the crystallinity. 8A shows an amorphous film (corresponding to area A in FIG. 8), FIG. 8B shows an amorphized film (corresponding to area B in FIG. 8), and FIG. In the X-ray diffraction pattern of the amorphous film (corresponding to area C in FIG. 8), the amorphous film has two peaks indicated by ○ (●).
Indicates a peak of the substrate), and a clear peak is not observed. In a crystalline film, two peaks appear clearly. Table 3 shows the correlation between the ranges of the contents (at%) of Ti, Cr, and N and the crystallinity determined from the results of the X-ray elemental analysis and the X-ray diffraction pattern.

【0019】さらに、図7〜図9より、TiCrN薄膜にお
ける非晶質膜、結晶質膜が現れる条件は、下記式(1)
あるいは(2)の関係を満たす場合であることがわか
る。 非晶質膜が現れる範囲:y≧1.1x−0.18 ……(1) 結晶質膜が現れる範囲:y≦0.3x−0.04 ……(2) 但し、x=[Nの含有率(at%)]/{[Tiの含有率(at
%)]+[Crの含有率(at%)]}、y=[Crの含有率(at
%)]/[Tiの含有率(at%)]である。なお、 y=1.1x−0.18 ……(1') は図7・図8中に実線で示され、 y=0.3x−0.04 ……(2') は図7・図8中に点線で示されている。
Further, from FIG. 7 to FIG. 9, the condition that the amorphous film and the crystalline film appear in the TiCrN thin film is expressed by the following equation (1).
Or, it can be seen that this is the case where the relationship of (2) is satisfied. Range where an amorphous film appears: y ≧ 1.1x−0.18 (1) Range where a crystalline film appears: y ≦ 0.3x−0.04 (2) where x = [N Content (at%)] / {[Ti content (at
%)] + [Cr content (at%)]}, y = [Cr content (at
%)] / [Ti content (at%)]. Note that y = 1.1x−0.18 (1 ′) is shown by a solid line in FIGS. 7 and 8, and y = 0.3x−0.04 (2 ′) is shown in FIG. 8 are indicated by dotted lines.

【0020】一方、実施例、参考例、比較例の各回転環
に対し、スラスト式摩擦摩耗試験機(東洋ボールドウイ
ン(株)製EFM-III-E)を用い、相手材を、摺動面が規定
面粗さのリング状カーボン成形体(ピュアカーボン社製
高負荷メカニカルシール用カーボンP9867)からなる固
定環とし、室温、空気中で、固定環摺動面に加わる面圧
が5kgf/cm2となるようにスラスト荷重を調整して、周
速度(すべり速度)2m/s、走行距離7200mとして、固
定環のカーボン摩耗量、回転環のTiCrN薄膜の摩耗量、
摩擦係数を測定した。なお、摩耗量は回転環、固定環の
高さ寸法(1/1000マイクロメーター)と表面トレース状
態より計測する。摩擦係数はロードセルによって検出さ
れる摩擦トルクより算出する。結果を表1、表2に示
す。
On the other hand, a thrust type friction and wear tester (EFM-III-E manufactured by Toyo Baldwin Co., Ltd.) was applied to each of the rotating rings of Examples, Reference Examples and Comparative Examples, and the mating material was changed to the sliding surface. Is a fixed ring made of a ring-shaped carbon molded body having a specified surface roughness (Carbon P9867 for high-load mechanical seal manufactured by Pure Carbon Co.), and the surface pressure applied to the sliding surface of the fixed ring in the air at room temperature is 5 kgf / cm 2. The thrust load was adjusted so that the peripheral speed (slip speed) was 2 m / s and the traveling distance was 7200 m, and the amount of carbon wear on the stationary ring, the amount of TiCrN thin film on the rotating ring,
The coefficient of friction was measured. The amount of wear is measured from the height of the rotating ring and the stationary ring (1/1000 micrometers) and the state of the surface trace. The friction coefficient is calculated from the friction torque detected by the load cell. The results are shown in Tables 1 and 2.

【0021】また、図10に、横軸を前記xで表される
組成比、縦軸を前記yで表される組成比としたグラフ中
にプロットされる各TiCrN薄膜についてのドライ摺動性
の評価結果を示し、図11に、横軸を前記xで表される
組成比としたグラフで、各TiCrN薄膜の組成比と摩擦係
数との関係を窒素ガスの流速毎に示している。
FIG. 10 shows the dry sliding property of each TiCrN thin film plotted in a graph in which the horizontal axis represents the composition ratio represented by x and the vertical axis represents the composition ratio represented by y. The evaluation results are shown in FIG. 11, and the relationship between the composition ratio of each TiCrN thin film and the coefficient of friction is shown for each nitrogen gas flow rate in a graph in which the horizontal axis represents the composition ratio represented by x.

【0022】図7〜図11および表1の結果より、上記
TiCrN薄膜は、非晶質膜あるいは結晶質膜のいずれかに
おいて、摩擦係数が小さく、良好な耐摩耗性を示すこと
がわかる。
From the results shown in FIGS.
It can be seen that the TiCrN thin film has a low friction coefficient and shows good wear resistance in either the amorphous film or the crystalline film.

【0023】従って、TiCrN薄膜においては、表3よ
り、Tiを45〜60at%、Crを14〜32at%、Nを1
4〜36at%含有し、あるいは、Tiを44〜60at%、
Crを0.4〜5.0at%、Nを40〜45at%含有し、さら
に、Ti、Cr、Nの組成比が、非晶質あるいは結晶質とな
る前記式(1)あるいは式(2)の関係を満たす場合に
良好な耐摩耗性を示すことがわかる。
Therefore, in the TiCrN thin film, from Table 3, Ti is 45 to 60 at%, Cr is 14 to 32 at%, and N is 1 to 32 at%.
Containing 4 to 36 at%, or 44 to 60 at% of Ti,
The composition contains 0.4 to 5.0 at% of Cr and 40 to 45 at% of N, and the composition ratio of Ti, Cr and N is amorphous or crystalline in the above formula (1) or (2). It can be seen that good abrasion resistance is exhibited when the relationship is satisfied.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】上記実施例においては、基材としてステン
レス鋼の切削加工品を用いたが、本発明はそれに限定さ
れず、所望の形態に応じて、本発明の作用を阻害しない
範囲で、例えば金属材料、セラミック等の素材から適宜
選択でき、また加工法も基材の素材や形状に応じて選択
できる。
In the above embodiment, a cut product of stainless steel was used as the base material. However, the present invention is not limited to this. Materials and materials such as ceramics can be appropriately selected, and the processing method can also be selected according to the material and shape of the base material.

【0028】また、上記実施例では、摺動部材としてガ
スシールの回転環を挙げたが、本発明はそれに限定され
ず、摺動面を有し、摺動面を本発明の耐摩耗性材料によ
り形成可能な部材であればよい。例えば、ガスシールの
固定環の摺動面を本発明の耐摩耗性材料により形成して
もよいし、メカニカルシールや軸受けの可動部材あるい
は静止部材の摺動面を本発明の耐摩耗性材料により形成
してもよい。また、図12に示されるような支承装置の
すべり軸受けと対向してスライドするスライドプレート
の摺動面を本発明の耐摩耗性材料により構成しても良い
(図12中、22はソールプレート、23はスライドプ
レート、24はピストン、25はシム、26はベアリン
グ、27はシールリング、28はエラストマ、29はベ
ースポットを示す)。
Further, in the above embodiment, the rotary ring of the gas seal is used as the sliding member. However, the present invention is not limited to this. The sliding member has a sliding surface, and the sliding surface is made of the wear-resistant material of the present invention. Any member can be used as long as the member can be formed by the above. For example, the sliding surface of the stationary ring of the gas seal may be formed of the wear-resistant material of the present invention, or the sliding surface of the movable member or the stationary member of the mechanical seal or the bearing may be formed of the wear-resistant material of the present invention. It may be formed. Further, the sliding surface of the slide plate that slides opposite to the slide bearing of the bearing device as shown in FIG. 12 may be made of the wear-resistant material of the present invention (in FIG. 12, reference numeral 22 denotes a sole plate, 23 is a slide plate, 24 is a piston, 25 is a shim, 26 is a bearing, 27 is a seal ring, 28 is an elastomer, and 29 is a baespot).

【0029】また、上記実施例では、本発明の摺動部材
と組み合わせる相手側部材の摺動面形成素材としてカー
ボンを用いたが、相手側素材として本発明はそれに限定
されず、通常一般に摺動面形成素材として使用される素
材を用いることができる。また、本発明の摺動部材は、
タービン、ブロワ、コンプレッサ、攪拌機などに好適に
使用できる。
Further, in the above embodiment, carbon was used as the material for forming the sliding surface of the mating member to be combined with the sliding member of the present invention. A material used as a surface forming material can be used. Further, the sliding member of the present invention,
It can be suitably used for turbines, blowers, compressors, stirrers and the like.

【0030】[0030]

【発明の効果】本発明の摺動部材は、Tiを45〜60at
%、Crを14〜32at%、Nを14〜36at%含有する
三元系の非晶質耐摩耗性材料薄膜、あるいはTiを44〜
60at%、Crを0.4〜5.0at%、Nを40〜45at%含
有する三元系結晶質耐摩耗性材料薄膜を形成してなるも
ので、各薄膜は摩擦係数が小さく、また、材料内の歪み
が少なく、耐摩耗性が著しく向上するので摺動時の耐久
性に優れる。
The sliding member of the present invention has a Ti content of 45 to 60 at.
% Ternary amorphous wear-resistant material thin film containing 14 to 32 at% of Cr and 14 to 36 at% of N, or 44 to 32 at% of Ti.
A ternary crystalline wear-resistant material thin film containing 60 at%, Cr at 0.4 to 5.0 at%, and N at 40 to 45 at% is formed. Each thin film has a small coefficient of friction. Since the distortion in the material is small and the wear resistance is remarkably improved, the durability during sliding is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るTiCrN薄膜を形成するためのイオ
ンプレーティング装置の構成の一例を示す概略図であ
る。
FIG. 1 is a schematic view showing an example of the configuration of an ion plating apparatus for forming a TiCrN thin film according to the present invention.

【図2】本発明の摺動部材の一例であるガスシールの回
転環を示す断面図である。
FIG. 2 is a sectional view showing a rotating ring of a gas seal which is an example of the sliding member of the present invention.

【図3】図2の回転環における基材の薄膜形成面の温度
(設定温度)と薄膜水平面方向の面歪量との関係を、基
材へ印加するバイアス電圧値毎に示すグラフである。
3 is a graph showing a relationship between a temperature (set temperature) of a thin film forming surface of a substrate and a surface strain amount in a horizontal direction of the thin film in the rotating ring of FIG. 2 for each bias voltage value applied to the substrate.

【図4】図2の回転環における基材へ印加するバイアス
電圧値と薄膜水平面方向の面歪量との関係を、基材の薄
膜形成面の温度毎に示すグラフである。
4 is a graph showing a relationship between a bias voltage value applied to a substrate and a surface strain in a horizontal direction of a thin film in the rotating ring of FIG. 2 for each temperature of a thin film forming surface of the substrate.

【図5】図2の回転環に形成された薄膜におけるTi、Cr
の組成比([Crの含有率(at%)]/[Tiの含有率(at
%)])と、薄膜水平面方向の面歪量との関係を、窒素ガ
スの流速(導入速度)毎に示すグラフである。
FIG. 5 shows Ti and Cr in a thin film formed on the rotating ring of FIG. 2;
Composition ratio ([Cr content (at%)] / [Ti content (at
%)]) And a graph showing the relationship between the surface strain amount in the horizontal direction of the thin film and the flow rate (introduction speed) of the nitrogen gas.

【図6】図2の回転環に形成された薄膜におけるTi、C
r、Nの組成比([Nの含有率(at%)]/{[Tiの含有率
(at%)]+[Crの含有率(at%)]})と、薄膜水平面方向
の面歪量との関係を、窒素ガスの流速(導入速度)毎に
示すグラフである。
FIG. 6 shows Ti and C in a thin film formed on the rotating ring of FIG.
r, composition ratio of N ([N content (at%)] / {[Ti content (at%)] + [Cr content (at%)]}) and surface distortion in the horizontal plane direction of the thin film 4 is a graph showing the relationship with the amount for each nitrogen gas flow rate (introduction rate).

【図7】図2の回転環に形成された薄膜の成膜条件の変
化に伴って変化するTi、Cr、Nの組成比と、結晶性との
相関性を示す図である。
7 is a diagram showing the correlation between the composition ratio of Ti, Cr, and N, which changes with the change in the film forming conditions of the thin film formed on the rotating ring of FIG. 2, and the crystallinity.

【図8】図7におけるTi、Cr、Nの組成比と結晶性との
相関性と実施例及び参考例との対応関係を示す図であ
る。
8 is a diagram showing the correlation between the composition ratio of Ti, Cr, and N and the crystallinity in FIG. 7 and the corresponding relationship between Examples and Reference Examples.

【図9】同図(a)はTiCrN非晶質膜の代表的なX線回
折図形、同図(b)はTiCrN非晶質化膜の代表的なX線
回折図形、同図(c)はTiCrN結晶質膜の代表的なX線
回折図形を示す図である。
9A is a typical X-ray diffraction pattern of a TiCrN amorphous film, and FIG. 9B is a typical X-ray diffraction pattern of a TiCrN amorphous film; FIG. FIG. 4 is a view showing a typical X-ray diffraction pattern of a TiCrN crystalline film.

【図10】図2の回転環に形成された薄膜におけるTi、
Cr、Nの組成比とドライ摺動性との相関性を示すグラフ
である。
FIG. 10 shows Ti and Ti in the thin film formed on the rotating ring of FIG.
4 is a graph showing the correlation between the composition ratio of Cr and N and dry sliding properties.

【図11】図2の回転環に形成された薄膜におけるTi、
Cr、Nの組成比と摩擦係数との関係を示すグラフであ
る。
FIG. 11 shows Ti and Ti in the thin film formed on the rotating ring of FIG.
5 is a graph showing the relationship between the composition ratio of Cr and N and the coefficient of friction.

【図12】本発明の摺動部材の一例であるスライドプレ
ートを適用した支承装置の要部構成図である。
FIG. 12 is a main part configuration diagram of a bearing device to which a slide plate as an example of the sliding member of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 アーク放電型イオンプレーティング装置 2 基材 3 回転軸 4 ホルダ 5a 蒸発源(金属チタン) 5b 蒸発源(金属クロム) 6 蒸気粒子(Ti、Cr) 7 フィラメント 8 イオン化電極 9 反応ガス(N2) 10 イオン化された蒸気粒子(Ti、Cr) 11 直流電源 12 電源 13 EBガン 14 粗引バルブ 15 メインバルブ 16 クライオポンプ 17 油回転ポンプ 20 TiCrN薄膜 21 摺動面 DESCRIPTION OF SYMBOLS 1 Arc discharge type ion plating apparatus 2 Substrate 3 Rotation axis 4 Holder 5a Evaporation source (metal titanium) 5b Evaporation source (metal chromium) 6 Vapor particles (Ti, Cr) 7 Filament 8 Ionization electrode 9 Reaction gas (N2) 10 Ionized vapor particles (Ti, Cr) 11 DC power supply 12 Power supply 13 EB gun 14 Roughing valve 15 Main valve 16 Cryopump 17 Oil rotary pump 20 TiCrN thin film 21 Sliding surface

フロントページの続き (56)参考文献 特開 平4−297568(JP,A) 特開 平7−243047(JP,A) 特開 平7−173608(JP,A) 特開 平6−330348(JP,A) 特開 平6−330347(JP,A) 特表 昭58−500172(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 16/34 F16C 33/12 C01G 37/00 CA(STN)Continuation of the front page (56) References JP-A-4-297568 (JP, A) JP-A-7-243047 (JP, A) JP-A-7-173608 (JP, A) JP-A-6-330348 (JP) , A) JP-A-6-330347 (JP, A) JP-T-58-500172 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 16/34 F16C 33/12 C01G 37/00 CA (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Tiを45〜60at%、Crを14〜3
2at%、Nを14〜36at%含有する三元系の非晶質耐
摩耗性材料薄膜を形成してなることを特徴とする摺動部
材。
1. Ti is 45 to 60 at% and Cr is 14 to 3%.
A sliding member comprising a ternary amorphous wear-resistant material thin film containing 2 at% and 14 to 36 at% of N.
【請求項2】 Tiを44〜60at%、Crを0.4〜
5.0at%、Nを40〜45at%含有する三元系の結晶質
耐摩耗性材料薄膜を形成してなることを特徴とする摺動
部材。
2. Ti content of 44-60 at% and Cr content of 0.4-at.
A sliding member comprising a ternary crystalline wear-resistant material thin film containing 5.0 at% and N of 40 to 45 at%.
JP29512398A 1998-10-16 1998-10-16 Sliding member Expired - Fee Related JP3205304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29512398A JP3205304B2 (en) 1998-10-16 1998-10-16 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29512398A JP3205304B2 (en) 1998-10-16 1998-10-16 Sliding member

Publications (2)

Publication Number Publication Date
JP2000119842A JP2000119842A (en) 2000-04-25
JP3205304B2 true JP3205304B2 (en) 2001-09-04

Family

ID=17816593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29512398A Expired - Fee Related JP3205304B2 (en) 1998-10-16 1998-10-16 Sliding member

Country Status (1)

Country Link
JP (1) JP3205304B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558822B2 (en) * 2000-05-25 2003-05-06 Ebara Corporation Cr-containing titanium nitride film
JP4245827B2 (en) * 2000-05-25 2009-04-02 株式会社荏原エリオット Cr-containing titanium nitride film
TWI485799B (en) * 2009-12-10 2015-05-21 Orbotech Lt Solar Llc Auto-sequencing inline processing
JP5657940B2 (en) * 2010-07-29 2015-01-21 株式会社田中 Titanium metal wear-resistant parts

Also Published As

Publication number Publication date
JP2000119842A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
Wänstrand et al. Mechanical and tribological evaluation of PVD WC/C coatings
Knotek et al. Industrial deposition of binary, ternary, and quaternary nitrides of titanium, zirconium, and aluminum
Hirvonen et al. Present progress in the development of low friction coatings
JP6920698B2 (en) Sliding member and coating film
JPH09133138A (en) Bearing device
JP2015142944A (en) Coated mold for plastic working excellent in sliding characteristic and method of manufacturing the same
Qian et al. Effect of heat treatment on structure and properties of molybdenum nitride and molybdenum carbonitride films prepared by magnetron sputtering
KR20140066967A (en) Molybdenum monoxide layers, and production thereof using pvd
US6558822B2 (en) Cr-containing titanium nitride film
GB2303640A (en) Sliding member with film containing chromium and chromium nitride
JP3205304B2 (en) Sliding member
JP3225576B2 (en) Sliding machine parts coated with self-healing hard solid lubricant film
Ramalingam Tribological characteristics of thin films and applications of thin film technology for friction and wear reduction
JP5592626B2 (en) Hard film forming method and hard film
CN106467959B (en) A kind of solid lubrication composite coating of matrix surface and preparation method thereof
Kao et al. Optimum MoS2–Cr coating for sliding against copper, steel and ceramic balls
JP3654918B2 (en) Sliding material
Beresnev et al. Correlating deposition parameters with structure and properties of nanoscale multilayer (TiSi) N/CrN coatings
CN117062936A (en) Sliding member, method for producing same, and coating film
JP4245827B2 (en) Cr-containing titanium nitride film
JP4398546B2 (en) Abrasion-resistant coating material and process for producing the same
Kiryukhantsev-Korneev et al. Influence of Physical and Mechanical Properties of the Substrate on the Behavior of Zr–Si–B Coatings under Sliding Friction and Cyclic Impact-Dynamic Loading
JP2624561B2 (en) Amorphous hard carbon film coated diamond tool
Lin et al. Analysis of the friction and wear mechanisms of structural ceramic coatings. Part 1: The effect of processing conditions
Yao et al. Effect of Ag/W addition on the wear performance of CrN coatings prepared by RF unbalanced magnetron sputtering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees