JP2000119824A - Grain oriented silicon steel sheet low in core loss - Google Patents

Grain oriented silicon steel sheet low in core loss

Info

Publication number
JP2000119824A
JP2000119824A JP10287463A JP28746398A JP2000119824A JP 2000119824 A JP2000119824 A JP 2000119824A JP 10287463 A JP10287463 A JP 10287463A JP 28746398 A JP28746398 A JP 28746398A JP 2000119824 A JP2000119824 A JP 2000119824A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
contg
oxide film
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10287463A
Other languages
Japanese (ja)
Other versions
JP3846064B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28746398A priority Critical patent/JP3846064B2/en
Priority to US09/412,541 priority patent/US6309473B1/en
Priority to EP99119849A priority patent/EP1004680B1/en
Priority to DE69918037T priority patent/DE69918037T2/en
Priority to KR1019990043223A priority patent/KR100635848B1/en
Priority to CA002286495A priority patent/CA2286495C/en
Priority to CN99125435A priority patent/CN1109112C/en
Publication of JP2000119824A publication Critical patent/JP2000119824A/en
Priority to US09/800,050 priority patent/US6423157B2/en
Priority to US10/263,573 priority patent/USRE39482E1/en
Application granted granted Critical
Publication of JP3846064B2 publication Critical patent/JP3846064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively improve core loss in a steel sheet regardless of the steel sheet thickness and also without deteriorating the integration in the orientation of the secondarily recrystallized grains by providing the surface of a steel sheet contg. a specified amt. of Si with an oxide film consisting essentially of forsterite and limiting the contents of Al, B, Se and S on the whole. SOLUTION: The surface of a steel sheet using a stock of high purity contg. 1.0 to 8.0 wt.% Si is coated with a separation agent for annealing composed of MgO, and final finish annealing is executed. In this way, on the surface of the steel sheet, an oxide film consisting essentially of Mg2SiO4 (torsterite) is formed, and, moreover, secondarily recrystallized grains are formed to obtain a grain oriented silicon steel sheet. At this time, the contents of Al, B, Se and S on the whole of the steel sheet contg. the oxide film are respectively controlled to <=20 ppm. Moreover, as the stock for the steel sheet, a high purity material which does not use an inhibitor is preferably used, and, further, a phosphate tensile film contg. colloidal silica is preferably formed laminatingly onto the base film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として電力用変
圧器の鉄心材料としての用途に供して好適な方向性電磁
鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet which is suitable mainly for use as an iron core material of a power transformer.

【0002】[0002]

【従来の技術】方向性電磁鋼板の製造に際しては、イン
ヒビターと呼ばれる析出物を使用して最終仕上焼鈍中に
ゴス方位({110}<001>)の二次再結晶粒を生
じさせることが一般的な方法として利用されている。例
えば、代表的な技術として、特公昭40−15644 号公報に
はAlN, MnSを使用する方法が、また特公昭51−13469 号
公報にはMnS, MnSe を使用する方法がそれぞれ開示さ
れ、いずれも工業的に実用化されている。これらとは別
に、CuSeとBNを添加する技術が特公昭58−42244 号公
報に、またTi,Zr,V等の窒化物を使用する方法が特公
昭46−40855 号公報に提案されるなど、その他にも数多
くの技術が知られている。
2. Description of the Related Art In the production of grain-oriented electrical steel sheets, it is common to use precipitates called inhibitors to generate secondary recrystallized grains having a Goss orientation ({110} <001>) during final finish annealing. Is used as a traditional method. For example, as typical techniques, Japanese Patent Publication No. 40-15644 discloses a method using AlN and MnS, and Japanese Patent Publication No. 51-13469 discloses a method using MnS and MnSe. It is practically used industrially. Apart from these, a technique for adding CuSe and BN is proposed in Japanese Patent Publication No. 58-42244, and a method using nitrides such as Ti, Zr, V is proposed in Japanese Patent Publication No. 46-40855. Many other techniques are known.

【0003】これらのインヒビターを用いる方法は、安
定して二次再結晶粒を発達させるには有用な方法ではあ
るが、析出物を微細に分散させる必要があるので、熱延
前のスラブ加熱温度を1300℃以上の高温とする必要があ
る。しかしながら、スラブの高温加熱は、設備コストが
嵩むことの他、熱延時に生成するスケール量も増大する
ことから、歩留りが低下するだけでなく、設備のメンテ
ナンスが煩雑になるなど問題も多くなる。
[0003] The method using these inhibitors is a useful method for stably developing secondary recrystallized grains. However, since it is necessary to finely disperse the precipitates, the slab heating temperature before hot rolling is required. Must be set to a high temperature of 1300 ° C. or higher. However, high-temperature heating of the slab not only increases the equipment cost, but also increases the amount of scale generated at the time of hot rolling, so that not only the yield is reduced but also the maintenance of the equipment becomes complicated, which causes many problems.

【0004】もう一つのインヒビターを使用する技術の
問題点は、最終仕上焼鈍後にこれらの成分が残存すると
磁気特性の劣化を招くという点である。そのためインヒ
ビター成分である、Al,B,SeおよびS等を鋼中から除
去する目的で、二次再結晶完了に引き続いて1100℃以上
の水素雰囲気中で数時間にわたる純化焼鈍が必要とな
る。しかしながら、このような高温純化焼鈍のために、
鋼板の機械的強度が低下してコイルの下部が座屈し、製
品の歩留りが著しく低下するという問題がある。そこ
で、上記のようなインヒビターを使用しない技術がこう
した問題の解決手段となる。
[0004] Another problem with the technique using inhibitors is that if these components remain after the final finish annealing, the magnetic properties are degraded. Therefore, in order to remove Al, B, Se, S, and the like, which are inhibitor components, from the steel, it is necessary to purify the steel for several hours in a hydrogen atmosphere at 1100 ° C. or higher following the completion of the secondary recrystallization. However, due to such high temperature purification annealing,
There is a problem that the mechanical strength of the steel sheet is reduced, the lower part of the coil buckles, and the yield of the product is significantly reduced. Therefore, a technique that does not use an inhibitor as described above is a means for solving such a problem.

【0005】インヒビターを使用しないで方向性電磁鋼
板を製造する方法としては、例えば特開昭64−55339
号、特開平2−57635 号、特開平7−76732 号および特
開平7−197126号各公報に開示の技術が知られている。
これらの技術に共通していることは、表面エネルギーを
駆動力として{110}面を優先的に成長させることを
意図していることである。表面エネルギー差を有効に利
用するためには、表面の寄与を大きくするために板厚を
薄くすることが必然的に要求され、例えば特開昭64−55
339 号公報に開示の技術では板厚が0.2mm以下、また特
開平2−57635 号公報に開示の技術では板厚が0.15mm以
下に制限されている。この点、特開平7−76732 号公報
に開示の技術では板厚は特に制限されていないが、実施
例1によると、板厚が0.30mmの場合には磁束密度はB8
で 1.700T以下と方位集積度は極めて悪い。また、実施
例中で良好な磁束密度が得られる板厚は0.10mmに限られ
ている。同様に、特開平7−197126号公報に開示の技術
でも板厚は制限されていないが、この技術は50〜75%の
三次冷間圧延を施す技術であるので、板厚は必然的に薄
くなり、実施例では0.10mm厚である。現在使用されてい
る方向性電磁鋼板の板厚は0.20mm以上がほとんどである
ので、通常の製品を上記のような表面エネルギーを利用
する方法で得ることは困難である。
A method for producing a grain-oriented electrical steel sheet without using an inhibitor is disclosed, for example, in JP-A-64-55339.
The techniques disclosed in Japanese Patent Application Laid-Open Nos. Hei 2-57635, Hei 7-76732 and Hei 7-197126 are known.
What is common to these techniques is that the {110} plane is preferentially grown using surface energy as a driving force. In order to effectively utilize the surface energy difference, it is inevitably required to reduce the plate thickness in order to increase the contribution of the surface.
In the technology disclosed in Japanese Patent Publication No. 339, the thickness is limited to 0.2 mm or less, and in the technology disclosed in Japanese Patent Application Laid-Open No. 2-57635, the thickness is limited to 0.15 mm or less. In this regard, the thickness disclosed in Japanese Patent Application Laid-Open No. 7-76732 is not particularly limited. However, according to the first embodiment, when the thickness is 0.30 mm, the magnetic flux density is B 8.
At 1.700T or less, the degree of azimuth integration is extremely poor. Further, in the examples, the plate thickness at which a good magnetic flux density is obtained is limited to 0.10 mm. Similarly, the thickness disclosed in Japanese Patent Application Laid-Open No. 7-197126 is not limited, but since this technology is a technology of performing tertiary cold rolling of 50 to 75%, the thickness is necessarily thin. In the embodiment, the thickness is 0.10 mm. Since the thickness of the grain-oriented electrical steel sheet currently used is almost 0.20 mm or more, it is difficult to obtain a normal product by the method using surface energy as described above.

【0006】さらに表面エネルギーを利用するために
は、表面酸化物の生成を抑制した状態で高温の最終仕上
焼鈍を行わなければならない。例えば、特開昭64−5533
9 号公報に開示の技術では、1180℃以上の温度で、しか
も焼鈍雰囲気として、真空または不活性ガス、あるいは
水素ガスまたは水素ガスと窒素ガスの混合ガスを使用す
ることが記載されている。また、特開平2−57635 号公
報に開示の技術では、950 〜1100℃の温度で、不活性ガ
ス雰囲気あるいは水素ガスまたは水素ガスと不活性ガス
の混合雰囲気で、しかもこれらを減圧することが推奨さ
れている。さらに、特開平7−197126号公報に開示の技
術では、1000〜1300℃の温度で酸素分圧が0.5 Pa以下の
非酸化性雰囲気中または真空中で最終仕上焼鈍を行うこ
とが記載されている。
Further, in order to utilize surface energy, high-temperature final finish annealing must be performed in a state where formation of surface oxides is suppressed. For example, JP-A-64-5553
The technique disclosed in Japanese Patent Application Publication No. 9 describes that a vacuum or an inert gas, or a mixed gas of a hydrogen gas and a nitrogen gas is used as an annealing atmosphere at a temperature of 1180 ° C. or more. In the technique disclosed in Japanese Patent Application Laid-Open No. 2-57635, it is recommended to reduce the pressure in an inert gas atmosphere or a mixed gas of hydrogen gas and inert gas at a temperature of 950 to 1100 ° C. Have been. Further, in the technique disclosed in Japanese Patent Application Laid-Open No. 7-197126, it is described that the final finish annealing is performed in a non-oxidizing atmosphere or a vacuum at a temperature of 1000 to 1300 ° C. and an oxygen partial pressure of 0.5 Pa or less. .

【0007】このように、表面エネルギーを利用して良
好な磁気特性を得ようとすると、最終仕上焼鈍の雰囲気
は不活性ガスや水素が必要とされ、また推奨される条件
として真空とすることが要求されるけれども、高温と真
空の両立は設備的には極めて難しく、またコスト高とも
なる。
As described above, in order to obtain good magnetic properties by utilizing surface energy, the atmosphere of the final finish annealing requires an inert gas or hydrogen, and it is recommended that a vacuum be used as a recommended condition. Although required, compatibility between high temperature and vacuum is extremely difficult in terms of equipment, and costs are high.

【0008】さらに、表面エネルギーを利用した場合に
は、原理的には{110}面の選択のみが可能であるに
すぎず、圧延方向に<001>方向が揃ったゴス粒の成
長が選択されるわけではない。方向性電磁鋼板は、圧延
方向に磁化容易軸<001>を揃えてこそ磁気特性が向
上するので、{110}面の選択のみでは原理的に良好
な磁気特性は得られない。そのため、表面エネルギーを
利用する方法で良好な磁気特性を得ることができる圧延
条件や焼鈍条件は極めて限られたものとなり、その結
果、得られる磁気特性は不安定とならざるを得ない
Further, when the surface energy is used, only the {110} plane can be selected in principle, and the growth of goss grains having the <001> direction aligned with the rolling direction is selected. Not necessarily. Since the magnetic properties of a grain-oriented electrical steel sheet are improved only when the easy axis <001> is aligned in the rolling direction, good magnetic properties cannot be obtained in principle only by selecting the {110} plane. Therefore, rolling conditions and annealing conditions that can obtain good magnetic properties by a method utilizing surface energy are extremely limited, and as a result, the obtained magnetic properties must be unstable.

【0009】またさらに、表面エネルギーを利用する方
法では、表面酸化層の形成を抑制して最終仕上焼鈍を行
わねばならず、たとえばMgO のような焼鈍分離剤を塗布
焼鈍することができないので、最終仕上焼鈍後に通常の
方向性電磁鋼板と同様な酸化物被膜を形成することはで
きない。例えば、フォルステライト被膜は、焼鈍分離剤
としてMgO を主成分として塗布した時に形成される被膜
であるが、この被膜は鋼板表面に張力を与えるだけでな
く、フォルステライト被膜の上にさらに塗布焼き付ける
リン酸塩を主体とする絶縁張力コーティングの密着性を
確保する機能を担っている。従って、フォルステライト
被膜の無い場合には鉄損は大幅に劣化する。
Further, in the method utilizing surface energy, the final finish annealing must be performed while suppressing the formation of a surface oxide layer. For example, since an annealing separator such as MgO cannot be applied and annealed, After finish annealing, an oxide film similar to that of a normal grain-oriented electrical steel sheet cannot be formed. For example, a forsterite film is a film formed when MgO is mainly used as an annealing separator, and this film not only gives tension to the steel sheet surface, but also is applied to the forsterite film by further coating and baking. It has the function of ensuring the adhesion of an insulating tension coating mainly composed of an acid salt. Therefore, when there is no forsterite film, the iron loss is significantly deteriorated.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、インヒビターを使用しない場
合であっても、鋼板の板厚が制限されず、また二次再結
晶方位の集積が劣化することもなく、さらには表面酸化
被膜を積極的に形成して鉄損を効果的に改善することが
できる方向性電磁鋼板を提案することを目的とする。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems. Even when an inhibitor is not used, the thickness of a steel sheet is not limited, and the secondary recrystallization orientation is not restricted. An object of the present invention is to propose a grain-oriented electrical steel sheet capable of effectively improving iron loss by positively forming a surface oxide film without deteriorating accumulation.

【0011】[0011]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。さて、発明者らは、以前、ゴス方
位粒が二次再結晶する機構について鋭意研究を重ねた結
果、一次再結晶組織における方位差角が20〜45°である
粒界が重要な役割を果たしていることを発見し、Acta M
aterial 45巻(1997)85頁に報告した。図1は、方向性
電磁鋼板の一次再結晶組織における方位差角が20〜45°
である粒界の各方位粒に対する存在頻度(%)である
が、ゴス方位が最も高い頻度を持つ。そして、方位差角
が20〜45°の粒界は、C. G. Dunnらによる実験データ
(AIME Transaction 188巻(1949)368 頁)によれば、
高エネルギー粒界である。この高エネルギー粒界は粒界
内の自由空間が大きく乱雑な構造をしている。粒界拡散
は粒界を通じて原子が移動する過程であるので、粒界中
の自由空間の大きい、高エネルギー粒界の方が粒界拡散
は速い。二次再結晶は、インヒビターと呼ばれる析出物
の拡散律速による成長に伴って発現することが知られて
いる。高エネルギー粒界上の析出物は、仕上焼鈍中に優
先的に粗大化が進行するので、優先的にピン止めがはず
れて、粒界移動を開始しゴス粒が成長する機構を示し
た。
The details of the invention will be described below. By the way, the present inventors have previously conducted intensive studies on the mechanism of secondary recrystallization of Goss-oriented grains.As a result, the grain boundary in which the misorientation angle in the primary recrystallized structure is 20 to 45 ° plays an important role. Acta M
material 45 (1997) p. 85 FIG. 1 shows that the misorientation angle in the primary recrystallized structure of grain-oriented electrical steel sheet is 20 to 45 °.
Is the existence frequency (%) of each grain boundary in each direction grain, and the Goss orientation has the highest frequency. According to the experimental data by CG Dunn et al. (AIME Transaction vol. 188 (1949) p. 368), the grain boundary having a misorientation angle of 20 to 45 ° is
High energy grain boundaries. This high energy grain boundary has a large free space in the grain boundary and has a random structure. Since the grain boundary diffusion is a process in which atoms move through the grain boundary, the grain boundary diffusion is faster in a high energy grain boundary having a large free space in the grain boundary. It is known that secondary recrystallization develops with the growth of a precipitate called an inhibitor by diffusion control. Precipitates on the high energy grain boundaries were preferentially coarsened during finish annealing, so they were preferentially unpinned, and started to move to the grain boundaries, indicating a mechanism by which goss grains grow.

【0012】発明者らは、この研究をさらに発展させ
て、ゴス方位粒の二次再結晶の本質的要因は、一次再結
晶組織中の高エネルギー粒界の分布状態にあり、インヒ
ビターの役割は、高エネルギー粒界と他の粒界の移動速
度差を生じさせることにあることを見い出した。それ
故、この理論に従えば、インヒビターを用いなくとも、
粒界の移動速度差を生じさせることができれば、二次再
結晶させることが可能となる。
The present inventors have further developed this research, and the essential factor of secondary recrystallization of Goss-oriented grains is the distribution of high energy grain boundaries in the primary recrystallized structure, and the role of the inhibitor is It has been found that there is a difference in the moving speed between the high energy grain boundaries and other grain boundaries. Therefore, according to this theory, without using an inhibitor,
If a difference in the moving speed of the grain boundary can be generated, secondary recrystallization can be performed.

【0013】さて、鋼中に存在する不純物元素は、粒界
とくに高エネルギー粒界に偏析し易いため、不純物元素
を多く含む場合には、高エネルギー粒界と他の粒界の移
動速度に差がなくなっているものと考えられる。この
点、素材の高純度化によって、上記したような不純物元
素の影響を排除することができれば、高エネルギー粒界
の構造に依存する本来的な移動速度差が顕在化して、ゴ
ス方位粒の二次再結晶が可能になるものと考えられる。
[0013] Since impurity elements existing in steel are liable to segregate at grain boundaries, particularly at high energy grain boundaries, when a large amount of impurity elements is contained, there is a difference in the moving speed between the high energy grain boundaries and other grain boundaries. Is thought to be gone. In this regard, if the influence of the impurity element as described above can be eliminated by purifying the material, an inherent difference in the moving speed depending on the structure of the high-energy grain boundary becomes apparent, and the Goss-oriented grains are reduced. It is considered that the next recrystallization becomes possible.

【0014】発明者らは、上記の考えに立脚して鋭意研
究を進めた結果、インヒビター成分を含まない成分系に
おいて、素材の高純度化と微量窒素の働きによって、二
次再結晶が進行することを新たに知見し、この知見に基
づいて本発明を完成させるに至ったのである。この技術
は、結晶粒界における析出物や不純物を排除する点で従
来の二次再結晶手法と全く逆の思想であり、また表面エ
ネルギーを利用する技術とも異なるので、仮に鋼板表面
に酸化物が存在していても良好に二次再結晶させること
ができるのである。
The present inventors have conducted intensive studies based on the above-mentioned idea, and as a result, in a component system containing no inhibitor component, secondary recrystallization proceeds due to the high purity of the material and the action of trace nitrogen. The present inventors have newly found this fact, and have completed the present invention based on this finding. This technology is completely opposite to the conventional secondary recrystallization method in that it eliminates precipitates and impurities at the crystal grain boundaries, and is also different from the technology that uses surface energy. Even if present, secondary recrystallization can be performed well.

【0015】すなわち、本発明は、Si:1.0 〜8.0 wt%
を含む組成になり、鋼板表面にフォルステライト (Mg2S
iO4)を主体とした酸化物被膜を有し、かつ該酸化物被膜
を含む鋼板全体におけるAl,B,SeおよびSの含有量が
それぞれ20 ppm以下であることを特徴とする鉄損の低い
方向性電磁鋼板である。
That is, according to the present invention, Si: 1.0 to 8.0 wt%
Containing forsterite (Mg 2 S
Low iron loss characterized by having an oxide film mainly composed of iO 4 ), and the content of Al, B, Se and S in the whole steel sheet including the oxide film is 20 ppm or less, respectively. It is a grain-oriented electrical steel sheet.

【0016】[0016]

【発明の実施の形態】以下、本発明の成功を導くに至っ
た実験結果について説明する。さて、発明者らは、最終
仕上焼鈍後に鋼板に残存する微量成分の影響について検
討を進めた。成分としては、Cを0.07wt%、Siを3.3 wt
%、Mnを0.06wt%に固定して、種々のインヒビター成分
を含むスラブを用い、1400℃で30分間加熱したのち、熱
間圧延により2.3 mm厚の熱延板とした。ついで、1100
℃, 60秒間の熱延板焼鈍後、冷間圧延を行って0.35mmの
最終板厚に仕上げた。ついで、水素:50%、窒素:50%
で、露点:60℃の雰囲気中で 850℃で3分間の脱炭焼鈍
を施したのち、焼鈍分離剤として MgOを10g/m2 の割
合で塗布してから、水素雰囲気中において1200℃まで15
℃/hの速度で昇温する最終仕上焼鈍を施して、方向性
電磁鋼板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following describes experimental results that led to the success of the present invention. By the way, the inventors have studied the influence of trace components remaining on the steel sheet after the final finish annealing. As components, C is 0.07wt%, Si is 3.3wt%
%, Mn was fixed at 0.06 wt%, and a slab containing various inhibitor components was heated at 1400 ° C. for 30 minutes, and then hot-rolled into a 2.3 mm thick hot rolled sheet. Then 1100
After hot-rolled sheet annealing at 60 ° C for 60 seconds, cold rolling was performed to finish to a final sheet thickness of 0.35 mm. Then, hydrogen: 50%, nitrogen: 50%
After decarburizing annealing at 850 ° C. for 3 minutes in an atmosphere with a dew point of 60 ° C., MgO was applied as an annealing separator at a rate of 10 g / m 2 , and then heated up to 1200 ° C. in a hydrogen atmosphere to 15 ° C.
A final finish annealing in which the temperature was increased at a rate of ° C./h was performed to produce a grain-oriented electrical steel sheet.

【0017】かくして得られたフォルステライト被膜付
き電磁鋼板全体におけるAl,B,Se,Sの含有量と磁気
特性の関係について調査した。なお、フォルステライト
被膜を除去した地鉄中においては、各成分とも5ppm以
下に低減されていたが、フォルステライト被膜付き鋼板
全体の分析値は素材に含有されるインヒビター成分の種
類や量によって変化する。そこで、各元素の影響を独立
に調査するため、各インヒビターは単独で添加した。磁
束密度の同じ製品について、各成分の分析値と鉄損値と
の関係を図2にまとめて示す。なお、同図においては、
表示している成分以外は全て5ppm 以下まで低減してお
り、従って同図では各成分の影響が単独で示されてい
る。
The relationship between the contents of Al, B, Se, and S and the magnetic properties in the entire magnetic steel sheet with a forsterite coating thus obtained was investigated. In addition, in the base steel from which the forsterite film was removed, each component was reduced to 5 ppm or less, but the analysis value of the entire steel plate with the forsterite film varies depending on the type and amount of the inhibitor component contained in the material. . Then, in order to investigate the influence of each element independently, each inhibitor was added alone. FIG. 2 shows the relationship between the analysis value of each component and the iron loss value for products having the same magnetic flux density. In the figure,
Except for the components shown, all of them are reduced to 5 ppm or less, and therefore, the effect of each component is shown alone in FIG.

【0018】図2から明らかなように、Al,B,Seおよ
びSいずれについても、その含有量が 20ppmを超えると
鉄損が劣化しはじめ、特に 50ppmを超えると鉄損は著し
く劣化した。この調査結果は、鋼中から不純物を除去し
たとしても、酸化被膜中にAlやB,Se,S等が残存する
と鉄損が著しく劣化するということを如実に示してい
る。とはいえ、素材としてインヒビター成分を用いない
製造方法を用いれば、酸化被膜中におけるAl,B,Se,
S量を効果的に低減することができ、特にかかる元素の
含有量を各々 20ppm以下に低減してやれば、良好な鉄損
を得られることが新たに知見されたのである。
As is clear from FIG. 2, when the content of each of Al, B, Se and S exceeds 20 ppm, the iron loss starts to deteriorate. In particular, when the content exceeds 50 ppm, the iron loss remarkably deteriorates. The results of this investigation clearly show that even if impurities are removed from steel, iron loss is significantly degraded when Al, B, Se, S, etc. remain in the oxide film. However, if a manufacturing method using no inhibitor component is used, Al, B, Se,
It has been newly found that it is possible to effectively reduce the S content, and particularly to obtain a good iron loss by reducing the content of each of these elements to 20 ppm or less.

【0019】一般に、AlN, MnSe, MnSなどのインヒビタ
ーを使用する従来の技術では、フォルステライト被膜中
にAl,B,Se,Sが残留するが、被膜中に残留したSe,
S等についてはこれらを除去する目的で、例えば特開昭
58−144429号公報では最終仕上焼鈍後に酸洗を行う技術
が開示されている。しかしながら、酸洗は鋼板表面を荒
すほか、フォルステライト被膜を必然的に浸食するた
め、密着性が低下し、それに伴って鉄損は著しく劣化す
る。また酸洗では、表面から浸食されるため、地鉄の被
膜界面付近に存在する不純物の除去は実質的に不可能で
ある。
Generally, in the prior art using an inhibitor such as AlN, MnSe, MnS, Al, B, Se, S remains in the forsterite film, but Se,
For the purpose of removing S and the like, for example,
JP-A-58-144429 discloses a technique of performing pickling after final finish annealing. However, pickling not only roughens the surface of the steel sheet but also inevitably erodes the forsterite film, so that the adhesion is reduced and the iron loss is significantly deteriorated accordingly. In addition, in pickling, since erosion occurs from the surface, it is substantially impossible to remove impurities existing near the interface of the coating film of the base iron.

【0020】実際、特開昭58−144429号公報による技術
では、強酸洗を行った場合でも、SやSeの量は 20ppm以
下まで低滅されていない。それ故、フォルステライト被
膜中においてAl,B,Se,Sを 20ppm以下に低滅するた
めには、インヒビターを用いない高純度材を用いて二次
再結晶粒を発現させる製造方法がはるかに優れている。
In fact, according to the technique disclosed in Japanese Patent Application Laid-Open No. 58-144429, even when strong pickling is performed, the amounts of S and Se are not reduced to 20 ppm or less. Therefore, in order to reduce the content of Al, B, Se, and S in the forsterite coating to 20 ppm or less, a manufacturing method in which secondary recrystallized grains are developed using a high-purity material that does not use an inhibitor is much more excellent. I have.

【0021】上記の実験結果は、インヒビターを使用す
る従来の技術よりも、本発明によるインヒビターを使用
しない素材で二次再結晶させる方法の方が良好な鉄損が
得られることを示唆している。
The above experimental results suggest that a better iron loss can be obtained by the secondary recrystallization method using a material without using an inhibitor according to the present invention than the conventional technique using an inhibitor. .

【0022】なお、焼鈍分離剤としてMgO を塗布した場
合には、最終仕上焼鈍を終えた鋼板表面にはフォルステ
ライトを主体とした酸化物の下地被膜が形成され、かか
る被膜にも張力付与効果はあるけれども、一般にはかよ
うな下地被膜に重ねてコロイダルシリカを含むリン酸塩
系の張力被膜を被成することが鉄損を低減する上で一層
有利である。
When MgO is applied as an annealing separating agent, an oxide base coat mainly composed of forsterite is formed on the surface of the steel sheet after the final finish annealing. However, it is generally more advantageous to form a phosphate-based tension coating containing colloidal silica on such an undercoating in order to reduce iron loss.

【0023】[0023]

【作用】本発明によって、低鉄損が得られる理由につい
ては、必ずしも明確に解明されたわけではないが、発明
者らは次のように考えている。素材としてインヒビター
成分を用いる場合には、最終仕上焼鈍時に二次再結晶粒
を発現させるために、鋼中においてAlN, BN, MnSe, MnS
などの析出物によって一次再結晶粒の粒界移動を抑制す
ることが必要である。二次再結晶完了後には、このよう
な析出物は不要になり、逆に残存する場合には磁壁の移
動を抑制するために鉄損が劣化する。そのため、インヒ
ビター成分であるAl,B,Se,Sなどは、純化焼鈍とよ
ばれる1100℃以上の高温域における水素焼鈍により鋼中
より除去される技術が一般的に実施されている。
The reason why low iron loss can be obtained by the present invention has not always been clearly elucidated, but the inventors consider as follows. When an inhibitor component is used as a material, AlN, BN, MnSe, and MnS are used in steel to develop secondary recrystallized grains during final annealing.
It is necessary to suppress the grain boundary movement of the primary recrystallized grains by such precipitates. After the completion of the secondary recrystallization, such precipitates become unnecessary. On the other hand, when the precipitates remain, iron loss deteriorates to suppress the movement of the domain wall. For this reason, a technique of removing inhibitor components such as Al, B, Se, S, etc. from steel by hydrogen annealing in a high temperature region of 1100 ° C. or higher, which is called purification annealing, is generally implemented.

【0024】かような高温純化焼鈍によって、鋼中にお
けるAl,B,Se,S等の含有量をそれぞれ 20ppm以下ま
で低減することは可能である。しかしながら、鋼中から
除去されるAl,B,Se,S等の成分はフォルステライト
被膜中ではむしろ濃縮されている。そのため、被膜と地
鉄界面には、Al, BやSe,Sなどの単体もしくは化合物
が不可避的に残存する。このような物質の存在は磁壁の
移動を妨げて鉄損を増加させる原因となる。従って、酸
化被膜中においても、インヒビター成分であるAl,B,
Se,S等を低減することにより、電磁鋼板の鉄損が良好
になるものと考えられる。そして、フォルステライト被
膜中においてAl,B,Se,Sを低減するためには、イン
ヒビターを用いない高純度材を用いて二次再結晶粒を発
現させる製造方法が優れているのである。
By such high-temperature purification annealing, it is possible to reduce the contents of Al, B, Se, S and the like in the steel to 20 ppm or less, respectively. However, components such as Al, B, Se, and S that are removed from the steel are rather concentrated in the forsterite film. For this reason, simple substances or compounds such as Al, B, Se, and S inevitably remain at the interface between the coating and the base iron. The presence of such a substance hinders the movement of the domain wall and causes an increase in iron loss. Therefore, even in the oxide film, the inhibitor components Al, B,
It is considered that the iron loss of the electromagnetic steel sheet is improved by reducing Se, S, and the like. In order to reduce Al, B, Se, and S in the forsterite film, a manufacturing method that uses secondary materials that do not use an inhibitor to develop secondary recrystallized grains is excellent.

【0025】次に、本発明の構成用件の限定理由につい
て述べる。本発明の電磁鋼板の成分としては、Siを含有
させて、電気抵抗を増大させ鉄損を低減する必要があ
る。そのためには少なくとも 1.0wt%の添加が必要であ
るが、 8.0wt%を超えると磁束密度が低下するだけでな
く、製品の二次加工性が著しく劣化するので、Si含有量
は 1.0〜8.0 wt%の範囲に限定した。特に好適なSi量の
範囲は 2.0〜4.5 wt%である。
Next, the reasons for limiting the configuration requirements of the present invention will be described. It is necessary to contain Si as a component of the magnetic steel sheet of the present invention to increase electric resistance and reduce iron loss. For this purpose, at least 1.0 wt% must be added, but if it exceeds 8.0 wt%, not only does the magnetic flux density decrease, but also the secondary workability of the product deteriorates significantly. %. A particularly preferable range of the amount of Si is 2.0 to 4.5 wt%.

【0026】さらに、本発明では、鉄損を効果的に低減
するために、鋼板中の微量成分を極力低減する必要があ
る。すなわち、前掲図2に示したように、酸化物被膜を
含んだ鋼板全体において、Al,B,SeおよびSの各含有
量をそれぞれ 20ppm以下に抑制することが肝要であり、
これ以上の含有量では鉄損は劣化する。
Further, in the present invention, in order to effectively reduce iron loss, it is necessary to reduce trace components in the steel sheet as much as possible. That is, as shown in FIG. 2 above, it is important to suppress the respective contents of Al, B, Se and S to 20 ppm or less in the entire steel sheet including the oxide film.
If the content is more than this, the iron loss deteriorates.

【0027】次に、本発明の電磁鋼板を製造する際に好
適な成分範囲について述べる。Cは、組織改善により磁
気特性を向上させる有用元素であるが、含有量が0.12wt
%を超えると脱炭焼鈍で除去するのが困難になるので、
上限を0.12wt%程度とする。下限に関しては、Cを含ま
ない素材でも二次再結晶が可能であるので特に設けな
い。特にCを素材段階から30ppm 以下に低減しておくと
脱炭焼鈍の省略が可能であり、生産コストの面で有利と
なるので、低級品の製造の場合にはCを低減した素材を
用いることが有利である。
Next, a range of components suitable for producing the magnetic steel sheet of the present invention will be described. C is a useful element that improves magnetic properties by improving the structure, but has a content of 0.12 wt.
%, It becomes difficult to remove by decarburization annealing.
The upper limit is about 0.12 wt%. The lower limit is not particularly set, since secondary recrystallization is possible even with a material containing no C. In particular, if C is reduced to 30 ppm or less from the material stage, decarburization annealing can be omitted, which is advantageous in terms of production cost. Therefore, when manufacturing low-grade products, use a material with reduced C. Is advantageous.

【0028】その他の不純物元素については極力低滅す
る必要があるが、特に二次再結晶粒の発生に対して有害
なだけでなく、地鉄中に残存して鉄損を劣化させるAl,
B,S,Se,O等については以後の工程で除去が困難な
こともあるので、素材段階でB,S,Se,Oについては
30ppm 以下、Alについては70 ppm以下に低減しておくこ
とが好ましい。
It is necessary to reduce other impurity elements as much as possible. However, not only harmful to the generation of secondary recrystallized grains but also Al, which remains in the base iron and deteriorates iron loss,
Since it may be difficult to remove B, S, Se, O, etc. in the subsequent steps, B, S, Se, O,
It is preferable to reduce the content to 30 ppm or less and Al to 70 ppm or less.

【0029】なお、本発明では、磁気特性改善のために
Niを含有させることができる。すなわち、Niは、組織を
改善して磁気特性を向上させる有用元素であり、必要に
応じて添加することができる。しかしながら、含有量が
0.005 wt%に満たないと磁気特性の改善量が小さく、一
方1.50wt%を超えると二次再結晶が不安定になり磁気特
性が劣化するので、Niは 0.005〜1.50wt%の範囲で含有
させることが好ましい。
In the present invention, in order to improve magnetic characteristics,
Ni can be contained. That is, Ni is a useful element that improves the structure and improves the magnetic properties, and can be added as necessary. However, the content
If it is less than 0.005 wt%, the amount of improvement in magnetic properties is small, while if it exceeds 1.50 wt%, secondary recrystallization becomes unstable and magnetic properties deteriorate, so Ni should be contained in the range of 0.005 to 1.50 wt%. Is preferred.

【0030】次に、本発明鋼板の好適製造工程について
説明する。まず、上記の好適成分組成に調整した溶鋼か
ら、スラブを製造するが、かかるスラブは、通常の造塊
−分塊法、連続鋳造法で製造しても良いし、また 100mm
以下の厚さの薄鋳片を直接鋳造法で製造しても良い。ス
ラブは、通常、加熱して熱間圧延するが、鋳造後、加熱
せずに直ちに熱延しても良い。また、薄鋳片の場合に
は、熱間圧延を省略してそのまま以後の工程に供給して
も良い。なお、スラブ加熱温度については、素材中にイ
ンヒビター成分を含まないので、熱間圧延が可能な最低
限の1100℃程度で十分である。
Next, a preferred production process of the steel sheet of the present invention will be described. First, a slab is manufactured from molten steel adjusted to the above preferable component composition. Such a slab may be manufactured by a usual ingot-bulking method, a continuous casting method, or 100 mm.
A thin slab having the following thickness may be manufactured by a direct casting method. The slab is usually hot-rolled by heating, but may be hot-rolled immediately after casting without heating. In the case of a thin cast slab, the hot rolling may be omitted and supplied directly to the subsequent steps. As for the slab heating temperature, a minimum of about 1100 ° C., at which hot rolling is possible, is sufficient because no inhibitor component is contained in the material.

【0031】ついで、必要に応じて熱延板焼鈍を施した
のち、1回または中間焼鈍を挟む2回以上の冷間圧延を
施し、ついで必要に応じて脱炭焼鈍を施し、その後 MgO
を体とする焼鈍分離剤を塗布してから、最終仕上焼鈍を
施す。ここに、熱延板焼鈍を施すことによって、磁気特
性を向上させることが可能である。また、中間焼鈍を冷
間圧延の間に挟むことも磁気特性の安定化に有用であ
る。しかしながら、いずれも生産コストを上昇させるこ
とになるので、経済的観点から熱延板焼鈍や中間焼鈍の
取捨選択が決定される。なお、熱延板焼鈍および中間焼
鈍の好適温度範囲は 700℃以上、1200℃以下である。と
いうのは、焼鈍温度が 700℃に満たないと焼鈍時の再結
晶が進行しないため効果が薄く、一方1200℃を超えると
鋼板の機械強度が低下してライン通板が困難になるから
である。
Then, after hot-rolled sheet annealing is performed as necessary, cold rolling is performed once or twice or more with intermediate annealing, followed by decarburizing annealing as necessary, and then MgO
Is applied, and then a final finish annealing is performed. Here, the magnetic properties can be improved by performing hot-rolled sheet annealing. Further, sandwiching the intermediate annealing between the cold rolling is also useful for stabilizing the magnetic properties. However, since all of them increase production costs, it is determined from the economical point of view whether hot rolled sheet annealing or intermediate annealing is to be selected. The preferred temperature range for hot-rolled sheet annealing and intermediate annealing is 700 ° C or more and 1200 ° C or less. The reason is that if the annealing temperature is lower than 700 ° C, recrystallization during annealing does not proceed, so the effect is thin, while if it exceeds 1200 ° C, the mechanical strength of the steel sheet decreases and it becomes difficult to pass through the line .

【0032】脱炭焼鈍は、Cを含有しない素材を用いる
場合には特に必要ない。また、鋼板表面の酸化は最終仕
上焼鈍時に焼鈍分離剤中の酸化物、水酸化物によってな
されるので、必ずしも最終仕上げ焼鈍前の酸化が必要と
は限らない。さらに、最終仕上焼鈍に先立って浸珪法に
よって冷間圧延終了後にSi量を増加させる技術を併用し
てもよい。
[0032] Decarburization annealing is not particularly necessary when a material containing no C is used. In addition, since oxidation of the steel sheet surface is performed by oxides and hydroxides in the annealing separator at the time of final finish annealing, it is not always necessary to oxidize before the final finish annealing. Further, prior to the final finish annealing, a technique of increasing the amount of Si after cold rolling by a siliconizing method may be used in combination.

【0033】本発明では、良好な鉄損特性を得るため
に、鋼板表面にフォルステライト (Mg 2SiO4)を主体とし
た酸化物被膜を形成し、しかも酸化物被膜を含んだ鋼板
全体におけるAl,B,Se,Sの含有量を各々 20ppm以下
に低減する必要がある。ここに、酸化物被膜を含んだ鋼
板全体におけるAl,B,Se,Sの含有量をそれぞれ 20p
pm以下に低減するためには、前述したとおり、かような
元素を素材段階で十分に低減しておくことが重要である
が、焼鈍分離剤中にかような元素を含有させないことも
重要である。
In the present invention, in order to obtain good iron loss characteristics,
And forsterite (Mg TwoSiOFour)
Steel sheet with an oxide film formed
The content of Al, B, Se, S in the whole is 20ppm or less each
Needs to be reduced. Here, steel containing oxide film
The content of Al, B, Se, S in the whole plate
In order to reduce it to pm or less,
It is important to reduce elements sufficiently at the material stage
However, such elements may not be contained in the annealing separator.
is important.

【0034】なお、鉄損をさらに改善するためには、鋼
板表面に張力被膜を生成させることが有効である。この
目的のためには2種類以上の被膜からなる多層膜構造と
しても良い。また用途に応じて、樹脂等を混合させたコ
ーティングを施しても良い。さらに、良好な鉄損を得る
ために、磁区細分化技術を用いることができる。ここ
に、磁区細分化方法としては、特公昭57−2252号公報記
載のパルスレーザーを製品板に照射する方法、特開昭62
−96617 号公報記載の製品板にプラズマ炎を照射する方
法、特公平3−69968 号公報に開示の脱炭焼鈍前にエッ
チングにより溝を付与する方法等が有効である。
In order to further improve iron loss, it is effective to form a tension coating on the surface of the steel sheet. For this purpose, a multilayer structure composed of two or more kinds of films may be used. Further, depending on the application, a coating in which a resin or the like is mixed may be applied. Furthermore, a magnetic domain refinement technique can be used to obtain good iron loss. Here, as a method for refining magnetic domains, a method of irradiating a product plate with a pulse laser described in JP-B-57-2252,
The method of irradiating a product plate with a plasma flame described in Japanese Patent Application No. 9-96617 and the method of providing grooves by etching before decarburizing annealing disclosed in Japanese Patent Publication No. 3-69968 are effective.

【0035】[0035]

【実施例】実施例1 表1に示す成分組成になる鋼スラブを連続鋳造にて製造
したのち、各スラブを1250℃で20分加熱後、熱間圧延に
よって2.8 mm厚の熱延板とした。ついで、1000℃, 60秒
間の熱延板焼鈍を施したのち、冷間圧延によって0.29mm
の最終板厚に仕上げた。ついで、水素:75%、窒素:25
%で、露点:40℃の雰囲気中にて 850℃, 120秒の脱炭
焼鈍を施して鋼中Cを0.0020wt%まで低減したのち、表
2に示す成分を主成分とする焼鈍分離剤を塗布してか
ら、最終仕上焼鈍を施した。なお、最終仕上焼鈍は、窒
素:50%、水素:50%の混合雰囲気中において、20℃/
hの速度で1180℃まで昇温し、この温度にて水素雰囲気
中に5時間保持する方法で行った。かくして得られた各
製品板について磁束密度B8 および鉄損W17/50 を測定
した。また、最終仕上焼鈍後の鋼板を被膜付きのまま成
分分析し、Al,B,Se,S量について調査した。得られ
た結果を、表2に併記する。
EXAMPLES Example 1 After steel slabs having the composition shown in Table 1 were produced by continuous casting, each slab was heated at 1250 ° C. for 20 minutes and then hot-rolled into a hot-rolled sheet having a thickness of 2.8 mm. . Then, after hot-rolled sheet annealing at 1000 ℃, 60 seconds, 0.29mm by cold rolling
Finished to the final thickness. Then, hydrogen: 75%, nitrogen: 25
After decarburizing annealing at 850 ° C for 120 seconds in an atmosphere with a dew point of 40 ° C for 120 seconds to reduce C in steel to 0.0020wt%, an annealing separator mainly containing the components shown in Table 2 was added. After application, a final finish annealing was performed. The final finish annealing was performed at 20 ° C./50% in a mixed atmosphere of nitrogen: 50% and hydrogen: 50%.
The temperature was raised to 1180 ° C. at a speed of h, and the temperature was kept at this temperature in a hydrogen atmosphere for 5 hours. The magnetic flux density B 8 and the iron loss W 17/50 were measured for each of the product sheets thus obtained. In addition, the steel sheet after the final finish annealing was subjected to the component analysis with the coating, and the amounts of Al, B, Se and S were investigated. The results obtained are also shown in Table 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】同表から明らかなように、この発明に従
い、最終仕上焼鈍後の被膜付き電磁鋼板中におけるAl,
B,Se,S量をそれぞれ 20ppm以下に低減した場合に
は、良好な鉄損の製品が得られている。
As is clear from the table, according to the present invention, Al,
When the amounts of B, Se, and S were reduced to 20 ppm or less, a product having good iron loss was obtained.

【0039】実施例2 表3に示す成分組成になる鋼スラブを連続鋳造にて製造
したのち、各スラブを1100℃で20分加熱後、熱間圧延に
よって2.4 mm厚の熱延板とした。ついで、冷間圧延によ
り 1.8mmの中間厚としたのち、1100℃、30秒の中間焼鈍
を施してから、200 ℃の温間圧延によって0.22mmの最終
板厚に仕上げた。ついで、水素:75%、窒素:25%で、
露点:60℃の雰囲気中にて 880℃, 100秒の脱炭焼鈍を
施して鋼中Cを0.0020wt%まで低減したのち、MgO を主
成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を
施した。ここに、最終仕上焼鈍は、窒素:50%、水素:
50%の混合雰囲気中において、1100℃まで20℃/hの速
度で昇温する方法で行った。
Example 2 After steel slabs having the composition shown in Table 3 were produced by continuous casting, each slab was heated at 1100 ° C. for 20 minutes, and then hot-rolled into a hot-rolled sheet having a thickness of 2.4 mm. Next, after an intermediate thickness of 1.8 mm was obtained by cold rolling, intermediate annealing was performed at 1100 ° C. for 30 seconds, and a final thickness of 0.22 mm was obtained by warm rolling at 200 ° C. Then, hydrogen: 75%, nitrogen: 25%,
Dew point: After decarburizing annealing at 880 ° C for 100 seconds in an atmosphere of 60 ° C to reduce C in the steel to 0.0020wt%, apply an annealing separator mainly composed of MgO, and then finish Annealed. Here, the final finish annealing is as follows: nitrogen: 50%, hydrogen:
In a mixed atmosphere of 50%, the temperature was raised to 1100 ° C. at a rate of 20 ° C./h.

【0040】上記の最終仕上焼鈍後、コロイダルシリカ
を50%含有するリン酸マグネシウムを塗布し、 800℃で
2分間の平坦化焼鈍を兼ねて焼き付けた。ついで、焼付
後、圧延方向と直角方向に15mm間隔でパルスレーザーを
照射する磁区細分化処理を施した。かくして得られた各
製品板の磁束密度B8 と鉄損W17/50 を測定した。ま
た、最終仕上焼鈍後の鋼板を被膜付きのまま成分分析
し、Al,B,Se,S量について調査した。得られた結果
を、表3に併記する。
After the above-mentioned final finish annealing, a magnesium phosphate containing 50% of colloidal silica was applied and baked at 800 ° C. for 2 minutes for flattening annealing. Then, after baking, a magnetic domain refining treatment was performed by irradiating a pulse laser at intervals of 15 mm in a direction perpendicular to the rolling direction. Thus obtained was measured magnetic flux density B 8 and iron loss W 17/50 of the product sheet. In addition, the steel sheet after the final finish annealing was subjected to the component analysis with the coating, and the amounts of Al, B, Se and S were investigated. Table 3 shows the obtained results.

【0041】[0041]

【表3】 [Table 3]

【0042】同表に示したとおり、最終仕上焼鈍後に、
被膜付き電磁鋼板中におけるAl,B,Se,S量がそれぞ
れ 20ppm以下まで低減された場合には、良好な鉄損の製
品が得られている。
As shown in the table, after the final finish annealing,
When the content of Al, B, Se, and S in the coated magnetic steel sheet was reduced to 20 ppm or less, a product with good iron loss was obtained.

【0043】[0043]

【発明の効果】かくして、本発明に従い、表面の酸化物
被膜を含んだ鋼板全体における、Al,B,Se,Sの含有
量をそれぞれ 20ppm以下に抑制することによって、鉄損
の良好な方向性電磁鋼板を得ることができる。
As described above, according to the present invention, the content of Al, B, Se, and S in the entire steel sheet including the oxide film on the surface is suppressed to 20 ppm or less, respectively. An electromagnetic steel sheet can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上焼鈍前における方位差角が20〜45°である
粒界の各方位粒に対する存在頻度(%)を示す図であ
る。
FIG. 1 is a graph showing the frequency (%) of grain boundaries having a misorientation angle of 20 to 45 ° before finish annealing with respect to each orientation grain.

【図2】被膜付き電磁鋼板中における微量成分が鉄損に
及ぼす影響を示したグラフである。
FIG. 2 is a graph showing the effect of trace components on iron loss in a coated electromagnetic steel sheet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si:1.0 〜8.0 wt%を含む組成になり、
鋼板表面にフォルステライト (Mg2SiO4)を主体とした酸
化物被膜を有し、かつ該酸化物被膜を含む鋼板全体にお
けるAl,B,SeおよびSの含有量がそれぞれ20 ppm以下
であることを特徴とする鉄損の低い方向性電磁鋼板。
1. A composition containing Si: 1.0 to 8.0 wt%,
The steel sheet surface has an oxide coating mainly composed of forsterite (Mg 2 SiO 4 ), and the total content of Al, B, Se and S in the entire steel sheet including the oxide coating is 20 ppm or less. A grain-oriented electrical steel sheet with low iron loss.
JP28746398A 1998-10-09 1998-10-09 Oriented electrical steel sheet Expired - Fee Related JP3846064B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP28746398A JP3846064B2 (en) 1998-10-09 1998-10-09 Oriented electrical steel sheet
US09/412,541 US6309473B1 (en) 1998-10-09 1999-10-05 Method of making grain-oriented magnetic steel sheet having low iron loss
DE69918037T DE69918037T2 (en) 1998-10-09 1999-10-07 Process for the production of grain-oriented magnetic steel sheets with low iron losses
KR1019990043223A KR100635848B1 (en) 1998-10-09 1999-10-07 Method of making grain-oriented magnetic steel sheet having low iron loss
EP99119849A EP1004680B1 (en) 1998-10-09 1999-10-07 Method of making grain-oriented magnetic steel sheet having low iron loss
CA002286495A CA2286495C (en) 1998-10-09 1999-10-07 Method of making grain-oriented magnetic steel sheet having low iron loss
CN99125435A CN1109112C (en) 1998-10-09 1999-10-08 Process for production of grain orientational electromagnetic steel plate
US09/800,050 US6423157B2 (en) 1998-10-09 2001-03-05 Method of making grain-oriented magnetic steel sheet having low iron loss
US10/263,573 USRE39482E1 (en) 1998-10-09 2002-10-03 Method of making grain-oriented magnetic steel sheet having low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28746398A JP3846064B2 (en) 1998-10-09 1998-10-09 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000119824A true JP2000119824A (en) 2000-04-25
JP3846064B2 JP3846064B2 (en) 2006-11-15

Family

ID=17717672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28746398A Expired - Fee Related JP3846064B2 (en) 1998-10-09 1998-10-09 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3846064B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2003213339A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method for producing grain oriented silicon steel sheet having excellent magnetic property
CN100406585C (en) * 2002-10-29 2008-07-30 杰富意钢铁株式会社 Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP2012031515A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Grain-oriented magnetic steel sheet, and method of manufacturing the same
JP2012052233A (en) * 2010-08-05 2012-03-15 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
JP2012177161A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
US9536657B2 (en) 2010-06-29 2017-01-03 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
WO2017006955A1 (en) * 2015-07-08 2017-01-12 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2003213339A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method for producing grain oriented silicon steel sheet having excellent magnetic property
CN100406585C (en) * 2002-10-29 2008-07-30 杰富意钢铁株式会社 Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
US9536657B2 (en) 2010-06-29 2017-01-03 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JP2012031515A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Grain-oriented magnetic steel sheet, and method of manufacturing the same
JP2012052233A (en) * 2010-08-05 2012-03-15 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
JP2012177161A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method of producing grain-oriented electromagnetic steel sheet
WO2017006955A1 (en) * 2015-07-08 2017-01-12 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2017020059A (en) * 2015-07-08 2017-01-26 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing the same
KR20180016522A (en) * 2015-07-08 2018-02-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electromagnetic steel sheet and method for manufacturing same
EP3321388A4 (en) * 2015-07-08 2018-05-16 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same
KR102071321B1 (en) * 2015-07-08 2020-01-30 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for producing the same
CN111411294A (en) * 2015-07-08 2020-07-14 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet
US11186888B2 (en) 2015-07-08 2021-11-30 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP3846064B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US6309473B1 (en) Method of making grain-oriented magnetic steel sheet having low iron loss
WO2007136127A1 (en) Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2011174138A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP3846064B2 (en) Oriented electrical steel sheet
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4259037B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014208895A (en) Method of producing grain oriented electrical steel
JP3928275B2 (en) Electrical steel sheet
JP2003193141A (en) Method of producing grain oriented silicon steel sheet having excellent coating property
CN111417737A (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JPH05295441A (en) Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
USRE39482E1 (en) Method of making grain-oriented magnetic steel sheet having low iron loss
JP2003201518A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2001047194A (en) Production of high magnetic flux density grain oriented silicon steel sheet having extremely low iron loss
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees