JP2000114770A - Electromagnetic wave shielding transparent body - Google Patents

Electromagnetic wave shielding transparent body

Info

Publication number
JP2000114770A
JP2000114770A JP27626498A JP27626498A JP2000114770A JP 2000114770 A JP2000114770 A JP 2000114770A JP 27626498 A JP27626498 A JP 27626498A JP 27626498 A JP27626498 A JP 27626498A JP 2000114770 A JP2000114770 A JP 2000114770A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
transparent
function
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27626498A
Other languages
Japanese (ja)
Inventor
Hideki Goto
英樹 後藤
Junji Tanaka
順二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP27626498A priority Critical patent/JP2000114770A/en
Priority to SG9902750A priority patent/SG81995A1/en
Priority to MYPI99002247A priority patent/MY123910A/en
Priority to CA 2273602 priority patent/CA2273602A1/en
Priority to KR1019990020813A priority patent/KR100635835B1/en
Priority to DE19925901A priority patent/DE19925901A1/en
Priority to FR9907155A priority patent/FR2782232B1/en
Priority to US09/326,661 priority patent/US6210787B1/en
Priority to GB9913205A priority patent/GB2340651B/en
Priority to CN 99108323 priority patent/CN1123011C/en
Publication of JP2000114770A publication Critical patent/JP2000114770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave shielding transparent film appropriate for a window of a display body at low cost, by generating a pattern form where curves according to sinusoidal function or tangential function are arrayed vertically and horizontally for raised electromagnetic wave shielding effect. SOLUTION: At formation of a conductive layer at least on one surface of a transparent polymer film, a pattern form where the curves according to the sinusoidal function or tangential function represented by equation (y=A.Sin(αx+ϕ) y=B.Tan(βx+ψ), where A, B, α, β, ϕ, ψ are arbitrary constants) are arrayed vertically and horizontally is generated to provide an electromagnetic wave shielding body. The electromagnetic shielding body is excellent in transparency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイ装置
の表示面、特に電磁波漏洩防止を必要とするプラズマデ
ィスプレイ(以下PDPと略す)や内部を透視する必要
がある医療用機器が設置されている窓等の表面カバー材
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a window on which a display surface of a display device, in particular, a plasma display (hereinafter abbreviated as PDP) which requires prevention of electromagnetic wave leakage and a medical device which needs to see through the inside are installed. And other surface cover materials.

【0002】[0002]

【従来の技術】近年エレクトロニクスの急激な発展によ
りコンピューター等の発展に伴い電子機器の誤動作を発
生する電磁波障害が大きな問題と成ってきている。この
電磁波障害を未然に防止する手段としては電式機器のハ
ウジングを導電化する事により、発生源で不要電波を封
じ込める能動的遮蔽がある。具体的な電磁波漏洩防止材
料としては金属箔、金属箔をパンチング、金属メッシ
ュ、金属繊維、有機・無機繊維にメッキ処理したものが
用いられているがPDPに代表される表示体や窓等では
透明性が絶対的な必要条件であり、いずれも光の透過性
の観点からは使用に適さない物であった。
2. Description of the Related Art In recent years, with the rapid development of electronics, electromagnetic interference that causes malfunctions of electronic devices has become a serious problem with the development of computers and the like. As means for preventing the electromagnetic wave interference beforehand, there is an active shield that seals unnecessary radio waves at the source by making the housing of the electronic device conductive. As specific materials for preventing electromagnetic wave leakage, metal foils, punched metal foils, metal meshes, metal fibers, and organic / inorganic fiber plated materials are used. However, transparent materials are used for display bodies and windows represented by PDPs. Properties are absolutely necessary conditions, and none of them were suitable for use from the viewpoint of light transmission.

【0003】更に、金属表面は時間の経過と共に酸化が
進行するために上記の中では透明性がある程度期待出来
る金属メッシュでも格子点で高周波接触が絶たれやす
く、長時間に渡り安定な電磁遮蔽効果を示しにくい欠点
があった。これに対し液晶用電極として広く用いられて
いる酸化劣化もない酸化インジウムと酸化錫の複合酸化
物(以下ITOと略す)を用いられる事が考えられてい
るが電磁波漏洩防止機能は少ない事が指摘されており静
電防止機能用途に限られていたのが実状であった。 可
能性として金属並の導電性例えば1Ω/□以下まで導電
性を上げる試みがなされていたが、現状、ガラス基板に
加熱しながら成膜しても4Ω/□レベルでありプラスチ
ックフィルム上に形成することは技術的に不可能であっ
た。
Further, since the metal surface is oxidized with the passage of time, high-frequency contact is easily cut off at lattice points even in a metal mesh which can be expected to have a certain degree of transparency, and the electromagnetic shielding effect is stable for a long time. There was a disadvantage that it was difficult to show. On the other hand, it has been considered that a composite oxide of indium oxide and tin oxide (hereinafter abbreviated as ITO), which is widely used as an electrode for liquid crystal and has no oxidative deterioration, is considered to be used, but it is pointed out that there is little electromagnetic wave leakage prevention function. In fact, it has been limited to antistatic function applications. Attempts have been made to increase the conductivity to the same level as that of metal, for example, 1 Ω / □ or less, but at present, even if the film is formed while heating on a glass substrate, the level is 4 Ω / □, and the film is formed on a plastic film. That was technically impossible.

【0004】更に、重量の問題がある。特に今後注目さ
れているつまりPDPの目指す対角40〜50インチ以
上の様な大型サイズで重量が重いガラス基板を用いたの
ではPDP実装時には取り付け性からも問題であった。
一方軽量化の為に基板としてプラスチック基板を用いる
と透明性、導電性を上げる為の最も重要な基板加熱とい
う手段が耐熱性の点から用いることが出来ず低抵抗を得
るのは不可能であった。更に膜厚を上げて抵抗を下げよ
うとするとITO膜とプラスチック基板との線膨張率の
差から成膜後内部応力から剥離したり、クラックが発生
し金属並の低抵抗のITOを形成する事は20〜40Ω
が限界であり、目的を達成する事は不可能であった。
Further, there is a problem of weight. In particular, if a large-sized and heavy glass substrate having a diagonal of 40 to 50 inches or more is used, which is attracting attention in the future, there is a problem from the viewpoint of mountability when mounting the PDP.
On the other hand, if a plastic substrate is used as a substrate for weight reduction, the most important means of heating the substrate to increase transparency and conductivity cannot be used from the viewpoint of heat resistance, and it is impossible to obtain a low resistance. Was. If the resistance is lowered by further increasing the film thickness, the film may be peeled off from internal stress after film formation due to the difference in the coefficient of linear expansion between the ITO film and the plastic substrate, or cracks may be formed to form ITO having a resistance as low as metal. Is 20-40Ω
However, it was the limit, and it was impossible to achieve the purpose.

【0005】[0005]

【発明が解決しようとする課題】本発明は、透明性を有
し、電磁波遮蔽効果が高い、表示体用特にはプラズマデ
ィスプレー用や医療用機器室の窓用として最適な電磁波
遮蔽透明フィルムを安価に提供することにある。
SUMMARY OF THE INVENTION The present invention provides an inexpensive transparent electromagnetic wave shielding film having transparency and a high electromagnetic wave shielding effect, which is most suitable for a display, particularly for a plasma display or a window of a medical equipment room. To provide

【0006】[0006]

【課題を解決するための手段】本発明は、透明高分子フ
ィルムの少なくとも片面に導電層を形成するにあたり、
下式に示すSin関数(1)またはTan関数(2)に
従う曲線を縦、横に配列したパターン形状を作成した電
磁波遮蔽透明体である。 y=A・Sin(αx+φ) (1) y=B・Tan(βx+ψ) (2) A、B、α、β、φ、ψ:任意の定数 本発明は、透明高分子フィルムの少なくとも片面に導電
層を形成するにあたり、下式に示す指数関数(3)、対
数関数(4)に従う曲線を縦、横に配列したパターン形
状を作成した電磁波遮蔽透明体である。 y=C・exp(γx+ρ) (3) y=D・ ln(δx+ξ) (4) C、D、γ、δ、ρ、ξ:任意の定数 本発明は、透明高分子フィルムの少なくとも片面に導電
層を形成するにあたり、下式に示す反比例関数(5)に
従う曲線を縦、横に配列したパターン形状を作成した電
磁波遮蔽透明体である。 y=E/x (5) E:任意の定数 本発明は、上式(1)〜(5)の曲線を組み合わせ配列
することでパターン形状を作成した電磁波遮蔽透明体で
ある。好ましい形態としては、波長550nmでの光線
透過率が50%以上であり、厚み1mm以上の透明高分
子補強体に接着層を介して積層し、積層フィルムあるい
は透明高分子補強体の少なくても一方に反射防止層及び
/又はハードコート層及び/又は近赤外線カット層が設
けられている電磁波遮蔽透明体である。
The present invention provides a method for forming a conductive layer on at least one surface of a transparent polymer film.
It is a transparent electromagnetic wave shielding body in which a pattern according to a Sin function (1) or a Tan function (2) shown in the following equation is arranged vertically and horizontally. y = A · Sin (αx + φ) (1) y = B · Tan (βx + ψ) (2) A, B, α, β, φ, ψ: Arbitrary constants In the present invention, at least one surface of the transparent polymer film is conductive. In forming a layer, the electromagnetic wave shielding transparent body has a pattern shape in which curves according to an exponential function (3) and a logarithmic function (4) shown in the following equation are arranged vertically and horizontally. y = C · exp (γx + ρ) (3) y = D · ln (δx + ξ) (4) C, D, γ, δ, ρ, ξ: Arbitrary constants In the present invention, at least one surface of the transparent polymer film is conductive. In forming a layer, the electromagnetic wave shielding transparent body has a pattern shape in which curves according to an inverse proportional function (5) shown in the following equation are arranged vertically and horizontally. y = E / x (5) E: Arbitrary constant The present invention is a transparent electromagnetic wave shielding body in which a pattern shape is created by combining and arranging the curves of the above equations (1) to (5). In a preferred embodiment, the transparent polymer reinforcement having a light transmittance at a wavelength of 550 nm of 50% or more and a thickness of 1 mm or more is laminated via an adhesive layer, and at least one of a laminated film and a transparent polymer reinforcement is used. And an anti-reflection layer and / or a hard coat layer and / or a near infrared cut layer.

【0007】[0007]

【発明の実施の形態】本発明に最も重要な導電層を形成
する際の基材となる高分子フィルムは、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ポリエチ
レンナフタレート等のポリエステル、ポリイミド、ポリ
カーボネート、ポリアクリロニトリル、ポリエーテルサ
ルフォン、ポリサルフォン、ポリエーテルイミド、ポリ
アリレート、ノルボルネンに代表される熱可塑性樹脂、
紫外線硬化型樹脂、エポキシ樹脂に代表される熱硬化型
樹脂等からなり、550nmでの光線透過率が80%
(以下では全て550nmでの値を示す)以上の透明性
を有したフィルムか或いはこれら高分子の共重合体が使
用出来き適宜選択される。
BEST MODE FOR CARRYING OUT THE INVENTION A polymer film serving as a base material for forming a conductive layer most important to the present invention is made of polyester such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyimide, polycarbonate, polyacrylonitrile, and the like. Thermoplastic resin represented by polyethersulfone, polysulfone, polyetherimide, polyarylate, norbornene,
It is made of a UV-curable resin, a thermosetting resin represented by an epoxy resin or the like, and has a light transmittance at 550 nm of 80%.
(Hereinafter, values at 550 nm are all shown.) A film having higher transparency or a copolymer of these polymers can be used and is appropriately selected.

【0008】全光線透過率は出来る限り高い事が望まし
いが、最終製品としては50%以上が必要な事から最低
2枚を積層する場合でも基板としては80%を有すれば
目的に適うからであり、透過率が高ければ高いほど複数
枚を積層出来る為、好ましくは85%以上が、最も好ま
しくは90%以上でありこのため厚みを薄化するのも有
効な手段である。高分子フィルムの厚みとしては、透明
性さえ満足すれば特に制限されるものでは無いが加工性
上からは25〜300μmが好ましい。厚さ25μm未
満の場合はフィルムが柔軟過ぎ、導電層の積層工程時の
張力により伸張やシワが発生し易く適さない。又、30
0μmを超えるとフィルムの可撓性が減少し、各工程中
での連続巻き取りが困難で適さない。特に複数枚を積層
する際は加工性が大幅に劣るため作業性、並びに全体の
厚さを考慮すれば25〜100μmが特に好ましい。
Although it is desirable that the total light transmittance is as high as possible, the final product needs to be 50% or more. Therefore, even if at least two sheets are laminated, if the substrate has 80%, it is suitable for the purpose. Yes, since the higher the transmittance, the more layers can be laminated, the thickness is preferably 85% or more, most preferably 90% or more. Therefore, reducing the thickness is also an effective means. The thickness of the polymer film is not particularly limited as long as transparency is satisfied, but is preferably 25 to 300 μm from the viewpoint of processability. If the thickness is less than 25 μm, the film is too flexible, and it is not suitable because the film tends to be stretched or wrinkled due to the tension during the lamination process of the conductive layer. Also, 30
If it exceeds 0 μm, the flexibility of the film decreases, and continuous winding in each step is difficult and not suitable. In particular, when a plurality of sheets are laminated, the workability is significantly inferior, and the workability and the overall thickness are particularly preferably 25 to 100 μm in consideration of the overall thickness.

【0009】導電層を積層する際、密着力向上を目的と
して公知の接着層を設ける。特に導電層を細線にパター
ン化する際にはこの問題は重要である。例えばパターン
化をエッチングラインで行う際には、シャワー水圧に耐
え得るために基材と導電層の密着力は最低でも0.3k
g/cm程度が必要であり、実用上問題無いレベルとし
ては1.0kg/cm以上の密着力が必要である。これ
らの密着力が得られないと、パターン化後に導電層が剥
離したり、エッチング加工時に断線が生じる原因とな
る。さらに高い光線透過率を有することが望まれるた
め、接着層の厚み、接着層に用いる物質の屈折率なども
重要な特性となる。接着材の種類は使用する基材に応じ
て適時選択することが可能であるが、接着層に用いる樹
脂としては合成樹脂系では、ユリア樹脂系、メラミン樹
脂系、フェノール樹脂系、エポキシ樹脂系、酢酸ビニル
樹脂系、シアノアクリレート系、ポリウレタン系、αオ
レフィン−無水マレイン酸樹脂系、水性高分子−イソシ
アネート系、アクリル樹脂系、UV硬化樹脂系があり、
他にエマルション型接着材、ホットメルト型接着材、合
成ゴム系接着材、シリコーン系接着材、無機系接着材等
がある。
When laminating the conductive layers, a known adhesive layer is provided for the purpose of improving the adhesion. This problem is particularly important when the conductive layer is patterned into fine wires. For example, when patterning is performed on an etching line, the adhesion between the base material and the conductive layer should be at least 0.3 k in order to withstand shower water pressure.
g / cm is required, and an adhesion force of 1.0 kg / cm or more is required as a level having no practical problem. If these adhesions are not obtained, the conductive layer may be peeled off after patterning, or may be disconnected during etching. Since a higher light transmittance is desired, the thickness of the adhesive layer, the refractive index of a substance used for the adhesive layer, and the like are also important characteristics. The type of adhesive can be selected as appropriate according to the base material used, but as a resin used for the adhesive layer, a synthetic resin-based resin, urea resin-based, melamine resin-based, phenolic resin-based, epoxy resin-based, There are vinyl acetate resin type, cyanoacrylate type, polyurethane type, α-olefin-maleic anhydride resin type, aqueous polymer-isocyanate type, acrylic resin type, UV curable resin type,
Other examples include an emulsion adhesive, a hot melt adhesive, a synthetic rubber adhesive, a silicone adhesive, and an inorganic adhesive.

【0010】上記フィルムに形成する導電層としてはA
u、Ag、Al、Pt、Cu等の金属、或いはこれらを
主成分とする合金、酸化物、窒化物、ITOや導電性ポ
リマーを用いる事ができ、これらはパターニング加工が
可能で有れば、特に限定されるものではない。また必要
に応じてこれらを積層しても差し支えない。ここで、金
属の場合、膜厚は50Å〜50μmが好ましい。50Å
未満では遮蔽効果が著しく悪く50μmを超えるとパタ
ーン加工性が低下したり、透過率が低下するからであ
る。又、導電層を積層した場合の効果として、例えば金
属層の上下をITO等で保護した場合には、酸化劣化が
大幅に改善出来るメリットが上げられる。成膜方法とし
ては、金属等では蒸着法、電気メッキ法、金属箔のラミ
ネートにより積層する方法、またこれらを併用した方法
などが可能であり経済性、パターン加工性、シールド特
性等の点からから選択される。又、ITOを含む酸化物
や窒化物の成膜方法は蒸着法、スパッタリング法が一般
的であるが、更にゾル・ゲル法も可能となる。パターニ
ングの形成方法としてはフォトリソ法、印刷法などが適
用できる。
The conductive layer formed on the above-mentioned film may be A
Metals such as u, Ag, Al, Pt, and Cu, or alloys, oxides, nitrides, ITO, and conductive polymers containing these as main components can be used, and if these can be patterned, There is no particular limitation. If necessary, these may be laminated. Here, in the case of metal, the film thickness is preferably 50 ° to 50 μm. 50Å
If it is less than 50 μm, the shielding effect is remarkably poor, and if it exceeds 50 μm, the pattern workability is reduced and the transmittance is reduced. Further, as an effect of laminating the conductive layers, for example, when the upper and lower portions of the metal layer are protected by ITO or the like, there is an advantage that oxidation deterioration can be largely improved. As a film forming method, for metals and the like, a vapor deposition method, an electroplating method, a method of laminating by laminating a metal foil, and a method of using these in combination are possible. Selected. In addition, as a method of forming an oxide or nitride containing ITO, a vapor deposition method and a sputtering method are generally used, but a sol-gel method is also possible. As a method for forming the patterning, a photolithography method, a printing method, or the like can be applied.

【0011】導電層にパターンを形成するにあたって
は、その形状が非常に重要となる。例えばPDP画面の
ように、透明電磁波シールド体を設置する対象に格子状
の画素が形成されている場合、PDPの画素と透明電磁
波シールド体の格子状パターンの両者を重ねると、モア
レが発生して画面の視認性を著しく低下させる。そこで
本発明ではこのモアレ現象を解消する方法として、透明
高分子フィルムの少なくとも片面に導電層を形成するに
あたり、Sin、Tan、指数、対数、反比例関数に従
う曲線を縦、横に配列したパターン形状を作成するば良
いことを見出したものである。モアレ現象はPDP画素
を形成する隔壁により生じる光の強度の周期的な強度分
布と、導電層パターンにより生じる同様の強度分布が合
成されることで発生する。従ってPDPを構成する画素
とパターンの形状が類似している場合には、モアレ縞が
発生しやすい。本発明にあるSin、Tan、指数、対
数、反比例関数をパターン設計に適用した場合は、PD
Pの隔壁とパターンの重ね合わせにより光の強度分布は
発生するものの、これが目視により認識できない程度に
微小かつ均一にすることができるため、充分な透明性を
有する開口率と、電磁波シールド特性を維持したまま、
モアレ現象の発生を抑えることが可能となる。ここでモ
アレ縞はPDP画素と電磁波シールドパターンを重ね合
わせた時の形状に依存して発生することから、電磁波シ
ールドパターンを構成する関数の周期、振幅などはPD
P画素のピッチ、ライン幅を考慮して決定する。また、
これらの関数を配列するピッチ、ライン幅は必要とされ
る電磁波シールド特性と開口率を両立する範囲内で任意
に決定される。
In forming a pattern on a conductive layer, its shape is very important. For example, when a lattice-shaped pixel is formed on a target on which a transparent electromagnetic wave shielding body is installed, such as a PDP screen, when both the pixel of the PDP and the lattice-shaped pattern of the transparent electromagnetic wave shielding body are overlapped, moire occurs. The visibility of the screen is significantly reduced. Therefore, in the present invention, as a method for solving this moiré phenomenon, in forming a conductive layer on at least one surface of a transparent polymer film, a pattern shape in which curves according to Sin, Tan, exponent, logarithm, and inverse proportional function are arranged vertically and horizontally is used. They found that it was good to create them. The moiré phenomenon is caused by combining a periodic intensity distribution of light intensity generated by a partition wall forming a PDP pixel and a similar intensity distribution generated by a conductive layer pattern. Therefore, if the pattern of the pixel constituting the PDP is similar to that of the pattern, moiré fringes are likely to occur. When Sin, Tan, exponent, logarithm and inverse proportional function according to the present invention are applied to pattern design, PD
Although the light intensity distribution is generated due to the superposition of the partition walls and the pattern of P, the light intensity distribution can be made minute and uniform so that it cannot be visually recognized, so that the aperture ratio having sufficient transparency and the electromagnetic wave shielding characteristics are maintained. While doing
It is possible to suppress the occurrence of the moire phenomenon. Here, the moire fringes are generated depending on the shape of the PDP pixel and the electromagnetic wave shield pattern when they are superimposed.
Determined in consideration of the pitch and line width of the P pixels. Also,
The pitch and line width for arranging these functions are arbitrarily determined within a range in which the required electromagnetic wave shielding characteristics and aperture ratio are compatible.

【0012】規制の対象となる電磁波の周波数は10K
Hz〜1000MHzの範囲が一般的であるので導電層
の導電性は103Ω・cm以下の固有抵抗が必要であ
る。一般に電磁波シールド効果は以下の式で表わされ
る。 S(dB)=10log(1/ρf)+1.7t√f/ρ S(dB) :電磁波遮蔽効果 ρ(Ω・cm) :導電膜の体積固有抵抗 f(MHz) :電磁波周波数 当然,遮蔽効果Sを大きくするには、固有抵抗ρを限り
なく低くする必要があり低い程、より広範囲の周波数の
電磁波を有効に遮蔽する事が可能になるからである。目
的とするシールド効果を得るために、パターン形状と導
電層素材、導電層の膜厚を適時設計することが可能であ
る。
The frequency of the electromagnetic wave to be regulated is 10K
Since the range of Hz to 1000 MHz is generally used, the conductivity of the conductive layer requires a specific resistance of 10 3 Ω · cm or less. Generally, the electromagnetic wave shielding effect is expressed by the following equation. S (dB) = 10log (1 / ρf) + 1.7t√f / ρ S (dB): Electromagnetic wave shielding effect ρ (Ω · cm): Volume resistivity of conductive film f (MHz): Electromagnetic wave frequency Naturally, shielding effect In order to increase S, it is necessary to reduce the specific resistance ρ as much as possible. The lower the specific resistance ρ, the more effectively electromagnetic waves having a wider range of frequencies can be effectively shielded. In order to obtain a desired shielding effect, it is possible to appropriately design the pattern shape, the material of the conductive layer, and the film thickness of the conductive layer.

【0013】このようにして電磁波カットフィルタを形
成した事により次式で表わされる遮蔽効果を大幅に向上
させる事が出来た。 S(dB)=20Xlog10(E0/E1) E0は入射電磁波 E1は通過した電磁波 従来の電波吸収体である許容反射減衰量は電力吸収率9
9%以上に相当する20dB以上が一つの目安とされて
いるが本発明により30〜50dBが可能に成った。
By forming the electromagnetic wave cut filter in this way, the shielding effect represented by the following equation can be greatly improved. S (dB) = 20 X log10 (E0 / E1) E0 is an incident electromagnetic wave E1 is a transmitted electromagnetic wave The allowable return loss, which is a conventional radio wave absorber, is a power absorption rate of 9
One guideline is 20 dB or more corresponding to 9% or more, but the present invention has enabled 30 to 50 dB.

【0014】透明高分子補強板は外圧に耐えるために使
用するものであり、傷等による損傷ひいては透明性の低
下を防ぐためハードコートは不可欠である。ハードコー
ト層はエポキシアクリレート、ウレタンアクリレート等
のUV硬化樹脂、エポキシ樹脂をはじめとする熱硬化樹
脂以外に、無機材具体的には酸化珪素、アルミナ、酸化
チタン、酸化ジルコニュウム等の透明酸化物等が好まし
い。更に、本来の補強板としては軽量化の為、高分子を
使用する関係上1mm以上の強度が必要になる。厚みは
増せば増すほど強度は得られるが、重量、透明性の点か
らは不利になる為、人為的な外圧、指圧に耐え得る強度
とすれば1mm以上で目的を達成出来き実用上は5mm
までである。
The transparent polymer reinforcing plate is used to withstand an external pressure, and a hard coat is indispensable to prevent damage due to scratches and the like, and to prevent a decrease in transparency. The hard coat layer is made of a UV curable resin such as epoxy acrylate or urethane acrylate, or a thermosetting resin such as an epoxy resin, or an inorganic material, specifically, a transparent oxide such as silicon oxide, alumina, titanium oxide, or zirconium oxide. preferable. Further, the original reinforcing plate needs to have a strength of 1 mm or more due to the use of a polymer in order to reduce the weight. The strength increases as the thickness increases, but it is disadvantageous in terms of weight and transparency. If the strength can withstand artificial external pressure and finger pressure, the object can be achieved with 1 mm or more, and practically 5 mm
Up to.

【0015】更に、透明高分子補強板は反射防止機能を
有する事が望ましい。これはPDPからの表示部での乱
反射を防止しコントラストを高める為に設置される。無
論ハードコート層に反射防止機能を付与してもよく、こ
れとは別に積層しても良い。
Further, it is desirable that the transparent polymer reinforcing plate has an antireflection function. This is installed in order to prevent diffuse reflection from the PDP on the display unit and increase contrast. Of course, the hard coat layer may have an anti-reflection function, and may be separately laminated.

【0016】[0016]

【実施例】《実施例1》厚み75μmのポリエチエンテ
レフタレートフィルム(以下PETと略す)に、ウレタ
ン系接着材層1を塗布した後、銅箔(厚み12μm)を
ラミネートして銅箔付きPETフィルムを得た。この導
電層をフォトリソ法にてパターニング加工し、図1に示
したSin関数及びTan関数により表記される曲線を
縦、横に配列したパターンを作成した。この時のライン
幅は10μm、スペース幅は160μmであった。パタ
ーン加工後の550nmでの光線透過率は74%、近赤
外線領域での光線透過率は<10%(900〜1200
nm)、電界シールド特性は200〜1000MHzの
範囲で50dB以上(アドバンテスト法)と良好であっ
た。次いで、2mm厚のポリカーボネート基板の片面に
反射防止機能を持つ鉛筆硬度3H以上のハードコートを
施し、脂肪族ポリエステルウレタン(東洋モートン製A
D−N401)接着材層2でハードコート層の裏面に前
記パターン加工基材を積層した。尚、外縁部に於いて各
透明導電膜とフラットケーブルを銀ペースト(住友ベー
クライト製CRM−1085)で接着し電気的に接地し
た。鉛筆硬度は3Hであり擦傷性に優れたもので、遮蔽
性だけではなく耐久性にも優れ、PDP画面に重ね合わ
せた時にモアレ縞が発生しない、視認性に優れたPDP
用電磁波遮蔽透明板が得られた。
EXAMPLES Example 1 A urethane-based adhesive layer 1 was applied to a 75 μm-thick polyethylene terephthalate film (hereinafter abbreviated as PET), and then a copper foil (12 μm thick) was laminated to form a PET film with a copper foil. I got This conductive layer was patterned by a photolithography method to form a pattern in which curves represented by the Sin function and the Tan function shown in FIG. 1 were arranged vertically and horizontally. At this time, the line width was 10 μm, and the space width was 160 μm. The light transmittance at 550 nm after pattern processing is 74%, and the light transmittance in the near infrared region is <10% (900 to 1200).
nm), and the electric field shielding characteristics were as good as 50 dB or more (Advantest method) in the range of 200 to 1000 MHz. Subsequently, a hard coat having a pencil hardness of 3H or more having an anti-reflection function is applied to one surface of a 2 mm thick polycarbonate substrate, and aliphatic polyester urethane (A manufactured by Toyo Morton Co., Ltd.)
DN-401) The patterned base material was laminated on the back surface of the hard coat layer with the adhesive layer 2. At the outer edge, each transparent conductive film and the flat cable were bonded with silver paste (CRM-1085 manufactured by Sumitomo Bakelite) and electrically grounded. PDP with excellent pencil hardness of 3H and excellent in abrasion resistance, excellent not only in shielding property but also in durability, no moiré fringe when superimposed on PDP screen, excellent in visibility
An electromagnetic wave shielding transparent plate for use was obtained.

【0017】《実施例2〜4》実施例1におけるパター
ンを図2に示したSin関数(実施例2)、図3に示し
た指数関数及び対数関数(実施例3)、図4に示した反
比例関数(実施例4)により記述される曲線により構成
し実施例1と同様に電磁波遮蔽透明板を作成したとこ
ろ、PDP画面に重ね合わせた時にモアレ縞が発生しな
い、視認性に優れたものであった。
<< Embodiments 2 to 4 >> The patterns in Embodiment 1 are shown in FIG. 2 by the Sin function (Embodiment 2), the exponential function and the logarithmic function shown in FIG. 3 (Embodiment 3), and FIG. When an electromagnetic wave shielding transparent plate was formed in the same manner as in Example 1 by using the curve described by the inverse proportional function (Example 4), moire fringes did not occur when superimposed on the PDP screen. there were.

【0018】《比較例1》実施例1においてSin、T
an関数により記述される曲線を用いる代わりに直線で
パターンを形成したところ、PDP画面に重ね合わせた
時にモアレ縞が発生し実用に供する事ができなかった。
<< Comparative Example 1 >> In Example 1, Sin, T
When a pattern was formed by a straight line instead of using the curve described by the an function, moiré fringes occurred when the pattern was superimposed on a PDP screen, and it could not be put to practical use.

【0019】[0019]

【発明の効果】本発明により、透明性に優れた、電磁波
遮蔽板透明体を提供することが可能となった。
According to the present invention, it is possible to provide a transparent electromagnetic wave shielding plate having excellent transparency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1のパターン図面例FIG. 1 is an example of a pattern drawing according to a first embodiment.

【図2】 実施例2のパターン図面例FIG. 2 is an example of a pattern drawing according to a second embodiment.

【図3】 実施例3のパターン図面例FIG. 3 is an example of a pattern drawing according to a third embodiment.

【図4】 実施例4のパターン図面例FIG. 4 is an example of a pattern drawing according to a fourth embodiment.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 透明高分子フィルムの少なくとも片面に
導電層を形成するにあたり、下式に示すSin関数
(1)またはTan関数(2)に従う曲線を縦、横に配
列したパターン形状を作成することを特徴とする電磁波
遮蔽透明体。 y=A・Sin(αx+φ) (1) y=B・Tan(βx+ψ) (2) A、B、α、β、φ、ψ:任意の定数
In forming a conductive layer on at least one surface of a transparent polymer film, a pattern is formed by vertically and horizontally arranging a curve according to a Sin function (1) or a Tan function (2) shown in the following equation. An electromagnetic wave shielding transparent body characterized by the following. y = A · Sin (αx + φ) (1) y = B · Tan (βx + ψ) (2) A, B, α, β, φ, ψ: arbitrary constant
【請求項2】 透明高分子フィルムの少なくとも片面に
導電層を形成するにあたり、下式に示す指数関数
(3)、対数関数(4)に従う曲線を縦、横に配列した
パターン形状を作成することを特徴とする電磁波遮蔽透
明体。 y=C・exp(γx+ρ) (3) y=D・ ln(δx+ξ) (4) C、D、γ、δ、ρ、ξ:任意の定数
2. In forming a conductive layer on at least one surface of a transparent polymer film, a pattern is formed by arranging a curve according to an exponential function (3) and a logarithmic function (4) shown below and vertically and horizontally. An electromagnetic wave shielding transparent body characterized by the following. y = C · exp (γx + ρ) (3) y = D · ln (δx + ξ) (4) C, D, γ, δ, ρ, ξ: arbitrary constant
【請求項3】 透明高分子フィルムの少なくとも片面に
導電層を形成するにあたり、下式に示す反比例関数
(5)に従う曲線を縦、横に配列したパターン形状を作
成することを特徴とする電磁波遮蔽透明体。 y=E/x (5) E:任意の定数
3. A method for forming a conductive layer on at least one surface of a transparent polymer film, comprising forming a pattern shape in which curves according to an inverse proportional function (5) shown in the following formula are arranged vertically and horizontally. Transparent body. y = E / x (5) E: arbitrary constant
【請求項4】 請求項1〜3記載の曲線を組み合わせ配
列することでパターン形状を作成することを特徴とする
電磁波遮蔽透明体。
4. A transparent electromagnetic wave shielding body, wherein a pattern is formed by combining and arranging the curves according to claim 1.
【請求項5】 波長550nmでの光線透過率は50%
以上である請求項1〜4記載の電磁波遮蔽透明体。
5. The light transmittance at a wavelength of 550 nm is 50%.
The transparent electromagnetic wave shielding body according to claim 1, which is the above.
【請求項6】 請求項1〜5記載の電磁波遮蔽透明体を
厚み1mm以上の透明高分子補強体に接着層を介し積層
した電磁波遮蔽透明体。
6. An electromagnetic wave shielding transparent body comprising the transparent electromagnetic wave shielding body according to claim 1 laminated on a transparent polymer reinforcement having a thickness of 1 mm or more via an adhesive layer.
【請求項7】 積層フィルムあるいは透明高分子補強体
の少なくても一方に反射防止層が設けられている請求項
6記載の電磁波遮蔽透明体。
7. The electromagnetic wave shielding transparent body according to claim 6, wherein an antireflection layer is provided on at least one of the laminated film and the transparent polymer reinforcing body.
【請求項8】 積層フィルムあるいは透明高分子補強体
の少なくても一方にハードコート層が設けられている請
求項6または7記載の電磁波遮蔽透明体。
8. The electromagnetic wave shielding transparent body according to claim 6, wherein a hard coat layer is provided on at least one of the laminated film and the transparent polymer reinforcing body.
【請求項9】 積層フィルムあるいは透明高分子補強体
の少なくとも一方にに近赤外線カット層が層が設けられ
ている請求項6〜8記載の電磁波遮蔽透明体。
9. The electromagnetic wave shielding transparent body according to claim 6, wherein a near-infrared cut layer is provided on at least one of the laminated film and the transparent polymer reinforcement.
JP27626498A 1998-08-10 1998-09-30 Electromagnetic wave shielding transparent body Pending JP2000114770A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP27626498A JP2000114770A (en) 1998-09-30 1998-09-30 Electromagnetic wave shielding transparent body
SG9902750A SG81995A1 (en) 1998-08-10 1999-06-03 Transparent electromagnetic wave shield
MYPI99002247A MY123910A (en) 1998-08-10 1999-06-03 Transparent electromagnetic wave shield
CA 2273602 CA2273602A1 (en) 1998-08-10 1999-06-04 Transparent electromagnetic wave shield
KR1019990020813A KR100635835B1 (en) 1998-08-10 1999-06-05 Transparent body for shielding electromagnetic interference
DE19925901A DE19925901A1 (en) 1998-08-10 1999-06-07 Shield for guarding displays against leakage of electromagnetic waves has polymer film and conductive lattice
FR9907155A FR2782232B1 (en) 1998-08-10 1999-06-07 TRANSPARENT PROTECTION SCREEN FOR ELECTROMAGNETIC WAVES
US09/326,661 US6210787B1 (en) 1998-08-10 1999-06-07 Transparent electromagnetic wave shield
GB9913205A GB2340651B (en) 1998-08-10 1999-06-07 Transparent electromagnetic wave shield
CN 99108323 CN1123011C (en) 1998-08-10 1999-06-07 Shielding transparent body for electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27626498A JP2000114770A (en) 1998-09-30 1998-09-30 Electromagnetic wave shielding transparent body

Publications (1)

Publication Number Publication Date
JP2000114770A true JP2000114770A (en) 2000-04-21

Family

ID=17567022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27626498A Pending JP2000114770A (en) 1998-08-10 1998-09-30 Electromagnetic wave shielding transparent body

Country Status (1)

Country Link
JP (1) JP2000114770A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852858B1 (en) * 2006-02-07 2008-08-18 주식회사 엘지화학 Emi shielding film and optical filter having the same
JP2009302035A (en) * 2008-05-16 2009-12-24 Fujifilm Corp Conductive film, and transparent heating element
JP2010003667A (en) * 2008-05-19 2010-01-07 Fujifilm Corp Conductive film and transparent heating element
WO2014097921A1 (en) * 2012-12-18 2014-06-26 富士フイルム株式会社 Conductive film, display device equipped with same and method for determining pattern of conductive film
EP2315494A4 (en) * 2008-07-17 2017-03-01 FUJIFILM Corporation Formed body with curved surface shape, method of producing the formed body, front cover for vehicle lighting device, and method of producing the front cover
EP2052289B1 (en) * 2006-08-16 2019-09-18 Sage Electrochromics, Inc. Transparent electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852858B1 (en) * 2006-02-07 2008-08-18 주식회사 엘지화학 Emi shielding film and optical filter having the same
EP2052289B1 (en) * 2006-08-16 2019-09-18 Sage Electrochromics, Inc. Transparent electrode
JP2009302035A (en) * 2008-05-16 2009-12-24 Fujifilm Corp Conductive film, and transparent heating element
US9095010B2 (en) 2008-05-16 2015-07-28 Fujifilm Corporation Conductive film, and transparent heating element
EP2278850A4 (en) * 2008-05-16 2016-03-02 Fujifilm Corp Conductive film, and transparent heating element
CN107102783A (en) * 2008-05-16 2017-08-29 富士胶片株式会社 Conducting film and transparent heating element
JP2010003667A (en) * 2008-05-19 2010-01-07 Fujifilm Corp Conductive film and transparent heating element
US8937268B2 (en) 2008-05-19 2015-01-20 Fujifilm Corporation Conductive film and transparent heating element
EP2286992A4 (en) * 2008-05-19 2016-02-24 Fujifilm Corp Conductive film and transparent heating element
EP2315494A4 (en) * 2008-07-17 2017-03-01 FUJIFILM Corporation Formed body with curved surface shape, method of producing the formed body, front cover for vehicle lighting device, and method of producing the front cover
WO2014097921A1 (en) * 2012-12-18 2014-06-26 富士フイルム株式会社 Conductive film, display device equipped with same and method for determining pattern of conductive film
JPWO2014097921A1 (en) * 2012-12-18 2017-01-12 富士フイルム株式会社 Display device and method for determining pattern of conductive film
JP6001089B2 (en) * 2012-12-18 2016-10-05 富士フイルム株式会社 Display device and method for determining pattern of conductive film

Similar Documents

Publication Publication Date Title
KR100635835B1 (en) Transparent body for shielding electromagnetic interference
EP2747093A2 (en) Conductive structure and method for manufacturing same
WO2006059448A1 (en) Electroconductive laminate, and electromagnetic wave shielding film and protective plate for plasma display
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
JPWO2006088108A1 (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP2012009873A (en) Conductive stacked body, manufacturing method for the same, electromagnetic wave shielding film for plasma display, and protection plate for plasma display
JP2007320127A (en) Conductive laminate, electromagnetic wave shielding film for plasma display, and protective plate for plasma display
JP2008210898A (en) Electromagnetic wave shielding film and window glass using the same
JP2000114770A (en) Electromagnetic wave shielding transparent body
JP2000059083A (en) Electromagnetic wave shielding transparent substance
JP3713774B2 (en) Transparent electromagnetic shielding board
JP2000059074A (en) Electromagnetic shielding transparent body
JP2008036952A (en) Electroconductive laminate and protective plate for plasma display
JP3532611B2 (en) Transparent electromagnetic wave shielding film and method for producing light diffusing material using the same
JP2000059077A (en) Electromagnetic wave shielding transparent substance
US20210410239A1 (en) Electromagnetic wave shielding film having wireless energy conversion function
JPH11261288A (en) Electromagnetic wave shielding transparent member
JP2000277977A (en) Electromagnetic wave shield member, manufacture thereof, and display device
JP2000059076A (en) Electromagnetic shielding transparent body
JP2000059075A (en) Electromagnetic wave shielding transparent substrate
JPH10261891A (en) Electromagnetic shielding body and display filter formed therewith
JPH10214717A (en) Electro-magnetic wave shield
TW560240B (en) Transparent electromagnetic wave shield
JPH11177277A (en) Electromagnetic wave shielding laminate
JPH11177276A (en) Electromagnetic wave shielding transparent body

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050808

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106