JP2000059075A - Electromagnetic wave shielding transparent substrate - Google Patents

Electromagnetic wave shielding transparent substrate

Info

Publication number
JP2000059075A
JP2000059075A JP10225829A JP22582998A JP2000059075A JP 2000059075 A JP2000059075 A JP 2000059075A JP 10225829 A JP10225829 A JP 10225829A JP 22582998 A JP22582998 A JP 22582998A JP 2000059075 A JP2000059075 A JP 2000059075A
Authority
JP
Japan
Prior art keywords
transparent
layer
film
electromagnetic wave
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10225829A
Other languages
Japanese (ja)
Inventor
Hideki Goto
英樹 後藤
Junji Tanaka
順二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP10225829A priority Critical patent/JP2000059075A/en
Priority to SG9902750A priority patent/SG81995A1/en
Priority to MYPI99002247A priority patent/MY123910A/en
Priority to CA 2273602 priority patent/CA2273602A1/en
Priority to TW88109384A priority patent/TW560240B/en
Priority to KR1019990020813A priority patent/KR100635835B1/en
Priority to DE19925901A priority patent/DE19925901A1/en
Priority to GB9913205A priority patent/GB2340651B/en
Priority to FR9907155A priority patent/FR2782232B1/en
Priority to US09/326,661 priority patent/US6210787B1/en
Publication of JP2000059075A publication Critical patent/JP2000059075A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain transparency and increase in electromagnetic wave shielding effect by depositing an adhesive layer, a transparent conductive film and a metal thin-film layer in this order, as necessary on at least one face of a transparent high molecular film and then removing only the metal thin film layer by selective etching to form a filter pattern. SOLUTION: A high molecular film in a transparent high molecular film as a base is made of thermoplastic resin, ultraviolet curing resin, thermosetting resin or the like. And, it has a transparency of 80% (50% as a final product) or higher than light transmissivity at 550 nm wavelength. When fabricating a substrate by depositing copper as a metal layer on a transparent high molecular film, a transparent metal oxide is formed as an adhesive layer to obtain both transparency and adhesion. In patterning copper, if it is a transparent conducive film of a high crystallinity, only a copper layer is selectively etched using a selective etchant such as a secondary iron nitrate. Thereby, superior durability as well as high shielding property can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイ装置
の表示面、特に電磁波漏洩防止を必要とするプラズマデ
ィスプレイ(以下PDPと略す)や内部を透視する必要
がある医療用機器が設置されている窓等の表面カバー材
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a window on which a display surface of a display device, in particular, a plasma display (hereinafter abbreviated as PDP) which requires prevention of electromagnetic wave leakage and a medical device which needs to see through the inside are installed. And other surface cover materials.

【0002】[0002]

【従来の技術】近年エレクトロニクスの急激な発展によ
りコンピューター等の発展に伴い電子機器の誤動作を発
生する電磁波障害が大きなな問題と成ってきている。こ
の電磁波障害を未然に防止する手段としては電式機器の
ハウジングを導電化する事により、発生源で不要電波を
封じ込める能動的遮蔽がある。具体的な電磁波漏洩防止
材料としては金属箔、金属箔をパンチング、金属メッシ
ュ、金属繊維、有機・無機繊維にメッキ処理したものが
用いられているがPDPに代表される表示体では透明性
が絶対的な必要条件であり、いずれも光の透過性の観点
からは使用に適さない物であった。
2. Description of the Related Art In recent years, with the rapid development of electronics, electromagnetic waves which cause malfunctions of electronic devices with the development of computers and the like have become a serious problem. As means for preventing the electromagnetic wave interference beforehand, there is an active shield that seals unnecessary radio waves at the source by making the housing of the electronic device conductive. As specific materials for preventing electromagnetic wave leakage, metal foils, punched metal foils, metal meshes, metal fibers, and organic / inorganic fiber plated materials are used. Are all necessary conditions, and all of them are unsuitable for use from the viewpoint of light transmission.

【0003】更に、金属表面は時間の経過と共に酸化が
進行するために上記の中では透明性がある程度期待出来
る金属メッシュでも格子点で高周波接触が絶たれやす
く、長時間に渡り安定な電磁遮蔽効果を示しにくい欠点
があった。 これに対し液晶用電極として広く用いられ
ている酸化劣化もない酸化インジウムと酸化錫の複合酸
化物(以下ITOと略す)を用いられる事が考えられて
いるが電磁波漏洩防止機能は少ない事が指摘されており
静電防止機能用途に限られていたのが実状であった。可
能性として金属並の導電性例えば1Ω/□以下まで導電
性を上げる試みがなされていたが、現状、ガラス基板に
加熱しながら成膜しても4Ω/□レベルであり技術的に
不可能で有った。
Further, since the metal surface is oxidized with the passage of time, high-frequency contact is easily cut off at lattice points even in a metal mesh which can be expected to have a certain degree of transparency, and the electromagnetic shielding effect is stable for a long time. There was a disadvantage that it was difficult to show. On the other hand, it has been considered that a composite oxide of indium oxide and tin oxide (hereinafter abbreviated as ITO), which is widely used as an electrode for liquid crystal and has no oxidative deterioration, is considered to be used, but it is pointed out that there is little electromagnetic wave leakage prevention function. In fact, it has been limited to antistatic function applications. Attempts have been made to increase the conductivity to the same level as that of metal, for example, 1 Ω / □ or less, but at present, even if a film is formed on a glass substrate while heating, the level is 4 Ω / □, which is technically impossible. There was.

【0004】更に、重量の問題が有る。特に今後注目さ
れているつまりPDPの目指す対角40〜50インチ以
上の様な大型サイズで重量が重いガラス基板を用いたの
ではPDP実装時には取り付け性からも問題であった。
一方軽量化の為に基板としてプラスチック基板を用いる
と透明性、導電性を上げる為の最も重要な基板加熱とい
う手段が耐熱性の点から用いることが出来ず低抵抗を得
るのは不可能であった。更に膜厚を上げて抵抗を下げよ
うとするとITO膜とプラスチック基板との線膨張率の
差から成膜後内部応力から剥離したり、クラックが発生
し金属並の低抵抗のITOを形成する事は事質上20〜
40Ωで有り、目的を達成する事は不可能であった。
[0004] In addition, there is the problem of weight. In particular, if a large-sized and heavy glass substrate having a diagonal of 40 to 50 inches or more is used, which is attracting attention in the future, there is a problem from the viewpoint of mountability when mounting the PDP.
On the other hand, if a plastic substrate is used as a substrate for weight reduction, the most important means of heating the substrate to increase transparency and conductivity cannot be used from the viewpoint of heat resistance, and it is impossible to obtain a low resistance. Was. If the resistance is lowered by further increasing the film thickness, the film may be peeled off from internal stress after film formation due to the difference in the coefficient of linear expansion between the ITO film and the plastic substrate, or cracks may be formed to form ITO having a resistance as low as metal. Is 20 ~
It was 40Ω, and it was impossible to achieve the purpose.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる現状
に鑑みなされたもので、透明性を有し、電磁波遮蔽効果
が高い、表示体用特にはプラズマディスプレー用や医療
用機器室の窓用として最適な電磁波遮蔽透明フィルムを
安価に提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a high transparency and a high electromagnetic wave shielding effect. It is used for a display, particularly for a plasma display or a window of a medical equipment room. It is to provide an optimal electromagnetic wave shielding transparent film at a low cost.

【0006】[0006]

【課題を解決するための手段】本発明は、透明高分子フ
ィルムの少なくとも片面に、必要に応じて接着層、透明
導電膜、金属薄膜層を順次積層した後、金属薄膜層のみ
を選択的にエッチング除去してフィルターパターンを作
成した電磁波遮蔽透明体である。好ましい形態として
は、金属薄膜層が銅からなり、波長550nmでの光線
透過率は50%以上である電磁波遮蔽透明体である。更
に好ましい形態としては、厚み1mm以上の透明高分子
補強体を接着層を介し積層し、積層フィルムあるいは透
明高分子補強体の少なくても一方に反射防止層及び/又
はハードコート層が設けられている電磁波遮蔽透明体で
ある。
According to the present invention, an adhesive layer, a transparent conductive film, and a metal thin film layer are sequentially laminated on at least one side of a transparent polymer film, if necessary, and only the metal thin film layer is selectively formed. It is an electromagnetic wave shielding transparent body formed by etching to form a filter pattern. A preferred embodiment is a transparent electromagnetic shielding material in which the metal thin film layer is made of copper and the light transmittance at a wavelength of 550 nm is 50% or more. In a more preferred embodiment, a transparent polymer reinforcement having a thickness of 1 mm or more is laminated via an adhesive layer, and at least one of the laminated film and the transparent polymer reinforcement is provided with an antireflection layer and / or a hard coat layer. Is an electromagnetic wave shielding transparent body.

【0007】[0007]

【発明の実施の形態】本発明に最も重要な基材となる透
明導電性フィルムに於ける高分子フィルムは、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート、ポ
リエチレンナフタレート等のポリエステル、ポリイミ
ド、ポリカーボネート、ポリアクリロニトリル、ポリエ
ーテルサルフォン、ポリサルフォン、ポリエーテルイミ
ド、ポリアリレート、ノルボルネンに代表される熱可塑
性樹脂、紫外線硬化型樹脂、エポキシ樹脂に代表される
熱硬化型樹脂等からなり、550nmでの光線透過率が
80%(以下では全て550nmでの値を示す)以上の
透明性を有したフィルムか或いはこれら高分子の共重合
体が使用出来き適宜選択される。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer film in the transparent conductive film which is the most important substrate in the present invention includes polyester such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, polyimide, polycarbonate, polyacrylonitrile, and the like. It is made of a thermoplastic resin represented by polyethersulfone, polysulfone, polyetherimide, polyarylate, norbornene, a thermosetting resin represented by an ultraviolet curable resin, an epoxy resin or the like, and has a light transmittance at 550 nm of 80. % (Hereinafter, all values at 550 nm) or a copolymer of these polymers can be used and is appropriately selected.

【0008】全光線透過率は出来る限り高い事が望まし
いが、最終製品としては50%以上が必要な事から最低
2枚を積層する場合でも基板としては80%を有すれば
目的に適うからであり、透過率が高ければ高いほど複数
枚を積層出来る為、好ましくは85%以上が、最も好ま
しくは90%以上でありこのため厚みを薄化するのも有
効な手段である。高分子フィルムの厚みとしては、透明
性さえ満足すれば特に制限されるものでは無いが加工性
上からは25〜300μmが好ましい。厚さ25μm未
満の場合はフィルムが柔軟過ぎ、透明導電層である酸化
物の成膜や加工する際の張力により伸張やシワが発生し
易くその為透明導電層の亀裂や剥離が生じやすく適さな
い。又、300μmを超えるとフィルムの可撓性が減少
し、各工程中での連続巻き取りが困難で適さない。特に
複数枚を積層する際は加工性が大幅に劣るため作業性、
並びに全体の厚さを考慮すれば25〜100μmが特に
好ましい。
Although it is desirable that the total light transmittance is as high as possible, the final product needs to be 50% or more. Therefore, even if at least two sheets are laminated, if the substrate has 80%, it is suitable for the purpose. Yes, since the higher the transmittance, the more layers can be laminated, the thickness is preferably 85% or more, most preferably 90% or more. Therefore, reducing the thickness is also an effective means. The thickness of the polymer film is not particularly limited as long as transparency is satisfied, but is preferably 25 to 300 μm from the viewpoint of processability. When the thickness is less than 25 μm, the film is too flexible, and the tension or the like at the time of film formation or processing of the oxide which is the transparent conductive layer is apt to be stretched or wrinkled, so that the transparent conductive layer is easily cracked or peeled off, which is not suitable. . On the other hand, if it exceeds 300 μm, the flexibility of the film decreases, and continuous winding in each step is difficult and not suitable. Especially when laminating a plurality of sheets, workability is greatly inferior,
In addition, in consideration of the entire thickness, 25 to 100 μm is particularly preferable.

【0009】透明な高分子フィルムに金属層として銅を
積層した基板を作成する場合、充分な密着力が得られな
い問題がある。これは基材、接着層と銅層との線膨張係
数、弾性率などの物理定数が大きく異なることがその原
因として考えられる。また透明性と密着性を両立する接
着材の設計が困難であることも大きな要因となってい
る。この問題は銅を蒸着やスパッタリングなどの方法で
積層する場合に特に顕著であり充分な密着性が得られに
くい。銅と基材との密着性が充分でない場合、生産性を
上げることが困難になるため、製品のコスト高につなが
る問題がある。そこで上記の課題を解決するために、透
明金属酸化物を接着層として設けることで、透明性、密
着性を両立し、かつ高信頼性の電磁波遮蔽透明体を得る
ことを見出したものである。特に導電層を細線にパター
ン化する際にはこの問題は重要である。例えばパターン
化をエッチングラインで行う際には、シャワー水圧に耐
え得るために基材と導電層の密着力は最低でも0.3k
g/cm程度が必要であり、実用上問題無いレベルとし
ては1.0kg/cm以上の密着力が必要である。これ
らの密着力が得られないと、パターン化後に導電層が剥
離したり、エッチング加工時に断線が生じる原因とな
る。さらに高い光線透過率を有することが望まれるた
め、接着層の厚み、接着層に用いる物質の屈折率なども
重要な特性となる。
When a substrate is prepared by laminating copper as a metal layer on a transparent polymer film, there is a problem that sufficient adhesion cannot be obtained. This is considered to be because the physical constants such as the coefficient of linear expansion and the elastic modulus between the base material, the adhesive layer and the copper layer are largely different. Another major factor is that it is difficult to design an adhesive that achieves both transparency and adhesion. This problem is particularly remarkable when copper is laminated by a method such as vapor deposition or sputtering, and it is difficult to obtain sufficient adhesion. If the adhesion between the copper and the base material is not sufficient, it is difficult to increase the productivity, and there is a problem that the cost of the product is increased. Then, in order to solve the above-mentioned problem, it has been found that by providing a transparent metal oxide as an adhesive layer, it is possible to obtain a highly reliable electromagnetic wave shielding transparent body having both transparency and adhesion. This problem is particularly important when the conductive layer is patterned into fine wires. For example, when patterning is performed on an etching line, the adhesion between the base material and the conductive layer should be at least 0.3 k in order to withstand shower water pressure.
g / cm is required, and an adhesion force of 1.0 kg / cm or more is required as a level having no practical problem. If these adhesions are not obtained, the conductive layer may be peeled off after patterning, or may be disconnected during etching. Since a higher light transmittance is desired, the thickness of the adhesive layer, the refractive index of a substance used for the adhesive layer, and the like are also important characteristics.

【0010】ここで、透明金属酸化膜の例としては、I
23や、In23とSnO2(ITO)、In23
ZnO、In23とGa23などの導電性複合酸化物、
SiOx、TiOx、これらの複合酸化物などがあげら
れる。透明酸化膜の成膜方法としてはスパッタ、蒸着、
イオンプレーティングなどの真空蒸着法、ゾルゲル法に
よるコーティング法などがあり、成膜する膜の種類、膜
厚、生産性などを考慮して選択すれば良い。真空蒸着法
では抵抗値の低い導電性膜を成膜する事ができるためシ
ールド効果の向上が期待でき、塗布法を用いた場合には
表面層の微細な凹凸による銅層のアンカー効果が期待で
きるため、密着性向上に有利である。透明金属酸化膜を
成膜する前に、基材との密着性を得るために通常用いら
れるアンダーコート処理、プライマー処理、コロナ処理
などの前処理を行うことも可能である。
Here, as an example of the transparent metal oxide film, I
conductive complex oxides such as n 2 O 3 , In 2 O 3 and SnO 2 (ITO), In 2 O 3 and ZnO, In 2 O 3 and Ga 2 O 3 ;
Examples include SiOx, TiOx, and composite oxides thereof. As a method of forming a transparent oxide film, sputtering, evaporation,
There are a vacuum deposition method such as ion plating, a coating method using a sol-gel method, and the like, which may be selected in consideration of the type, thickness, and productivity of the film to be formed. In the vacuum deposition method, it is possible to form a conductive film having a low resistance value, so that an improvement in the shielding effect can be expected. In the case of using the coating method, an anchor effect of the copper layer due to fine irregularities on the surface layer can be expected. Therefore, it is advantageous for improving the adhesion. Before forming the transparent metal oxide film, it is also possible to perform a pretreatment such as an undercoat treatment, a primer treatment, and a corona treatment, which are usually used for obtaining adhesion to the substrate.

【0011】続いて透明金属酸化膜上に銅層を成膜す
る。透明金属酸化膜上に銅層を積層すると、銅層と透明
酸化膜層の間ではマイグレーションが生じる。これによ
り両層の間には亜酸化銅からなる中間層が生成するが、
この中間層は厚み方向で両成分の組成が少しずつ変化し
ている傾斜構造を有しているために、単に亜酸化銅の中
間層を設けた時以上に密着性は向上する。また亜酸化銅
から酸化銅へと酸化が進行して、酸化銅層としての厚み
が増加すると逆に密着性は低下するため、銅と透明金属
酸化膜のマイグレーションにより生じる程度の中間層の
組成と、厚みが密着力を最大にするのに最も適する。密
着性が向上する事に加えて、他の重要な特性も同時に向
上させることが可能である。 (1)例えば、通常銅表面には酸化防止を目的としてN
iメッキ処理や防錆コート処理が施されるが、ガスバリ
ア性の高い透明酸化膜層を設けることで基材方向からの
水蒸気、酸素等のガスの侵入を防ぎ、酸化による経時的
な密着性の劣化を防ぐ事ができる。これは長期間の信頼
性を得る場合に特に重要である。 (2)透明金属酸化物として導電体を適用した場合に
は、積層することで銅により形成したメッシュ開口部に
も導電性が付与されるため、電磁波シールド効果が向上
する効果も付与される。メッシュにより形成される電磁
波遮蔽層とITO膜でシールド特性の周波数依存性が異
なるよう設計した場合には、遮蔽できる電磁波の周波数
を広く取ることが出来るため、電磁波遮蔽体としての特
性を大幅に向上させることが可能である。 (3)ITO膜は近赤外線領域の光線を遮蔽する特性が
あり、電磁波遮蔽透明体に近赤外線カット機能を付与す
る効果も得られる。 (4)ITO膜と積層するコーティング層の屈折率の差
により、反射防止機能を持たせることが可能である。
Subsequently, a copper layer is formed on the transparent metal oxide film. When a copper layer is laminated on the transparent metal oxide film, migration occurs between the copper layer and the transparent oxide film layer. This creates an intermediate layer of cuprous oxide between the two layers,
Since this intermediate layer has a gradient structure in which the composition of both components changes little by little in the thickness direction, the adhesiveness is improved more than when only an intermediate layer of cuprous oxide is provided. In addition, the oxidation proceeds from cuprous oxide to copper oxide, and as the thickness of the copper oxide layer increases, the adhesion decreases. The thickness is most suitable for maximizing the adhesion. In addition to the improved adhesion, other important properties can be improved at the same time. (1) For example, the surface of copper is usually coated with N for the purpose of preventing oxidation.
Although i-plating treatment and rust-prevention coating treatment are applied, the provision of a transparent oxide film layer with high gas barrier property prevents gas such as water vapor and oxygen from entering the substrate from entering, and the temporal adhesion due to oxidation Deterioration can be prevented. This is especially important for long term reliability. (2) In the case where a conductor is applied as the transparent metal oxide, conductivity is imparted also to the mesh openings formed of copper by lamination, so that an effect of improving the electromagnetic wave shielding effect is also imparted. If the electromagnetic wave shielding layer formed of mesh and the ITO film are designed so that the frequency dependence of the shielding characteristics is different, the frequency of the electromagnetic waves that can be shielded can be widened, so the characteristics as an electromagnetic wave shielding body are greatly improved. It is possible to do. (3) The ITO film has a property of blocking light rays in the near-infrared region, and has an effect of imparting a near-infrared cut function to the electromagnetic wave shielding transparent body. (4) An antireflection function can be provided by the difference in the refractive index between the ITO film and the coating layer to be laminated.

【0012】ここで、銅層の膜厚は50Å〜50μmが
好ましい。50Å未満では遮蔽効果が著しく悪く50μ
mを超えるとパターン加工性が低下したり、透過率が低
下するからである。ここでの銅層の形成方法としては、
スパッタ法、蒸着法以外に電気メッキでも可能となり経
済性、パターン加工性、シールド特性等の点からから選
択される。また銅表面には酸化劣化防止を目的として、
金、ニッケルなどによるメッキ処理、防錆コート処理を
必要に応じて施しても良い。
Here, the thickness of the copper layer is preferably 50 ° to 50 μm. If it is less than 50 °, the shielding effect is remarkably poor, and
If it exceeds m, the pattern workability will decrease and the transmittance will decrease. The method of forming the copper layer here is as follows.
In addition to the sputtering method and the vapor deposition method, electroplating is also possible, and is selected from the viewpoints of economy, pattern workability, shielding characteristics, and the like. For the purpose of preventing oxidation deterioration on the copper surface,
A plating treatment with gold, nickel, or the like, or a rust-preventive coating treatment may be performed as necessary.

【0013】銅のパターン加工においては、銅層のみを
選択的にエッチングする必要がある。これは銅層の密着
性、透明電磁波遮蔽体の光学特性、シールド特性を満足
する上で重要である。パターン加工の条件は、透明金属
酸化膜の種類によって設定することができる。例えばS
iOx、TiOxやそれらの複合酸化物の場合には、通
常銅のエッチング液として用いられる塩化第2銅、塩化
第2鉄などを使用すればよく、結晶化度の高い透明導電
膜であれば、硝酸第2鉄などの選択エッチング液を用い
ることで、銅層のみを選択的にエッチングすることが可
能である。
In the patterning of copper, it is necessary to selectively etch only the copper layer. This is important for satisfying the adhesion of the copper layer, the optical characteristics and the shielding characteristics of the transparent electromagnetic wave shield. The pattern processing conditions can be set according to the type of the transparent metal oxide film. For example, S
In the case of iOx, TiOx, or a composite oxide thereof, cupric chloride or ferric chloride, which is usually used as an etching solution for copper, may be used. By using a selective etching solution such as ferric nitrate, it is possible to selectively etch only the copper layer.

【0014】規制の対象となる電磁波の周波数は10K
Hz〜1000MHzの範囲が一般的であるので導電層
の導電性は103Ω・cm以下の固有抵抗が必要であ
る。一般に電磁波シールド効果は以下の式で表わされ
る。 S(dB)=10log(1/ρf)+1.7t√f/ρ S(dB) :電磁波遮蔽効果 ρ(Ω・cm) :導電膜の体積固有抵抗 f(MHz) :電磁波周波数 当然,遮蔽効果Sを大きくするには、固有抵抗ρを限り
なく低くする必要があり低い程、より広範囲の周波数の
電磁波を有効に遮蔽する事が可能になるからである。目
的とするシールド効果を得るために、パターン形状と導
電層の素材、導電層の膜厚を適時設計することが可能で
ある。
The frequency of the electromagnetic wave to be regulated is 10K
Since the range of Hz to 1000 MHz is generally used, the conductivity of the conductive layer requires a specific resistance of 10 3 Ω · cm or less. Generally, the electromagnetic wave shielding effect is expressed by the following equation. S (dB) = 10log (1 / ρf) + 1.7t√f / ρ S (dB): Electromagnetic wave shielding effect ρ (Ω · cm): Volume resistivity of conductive film f (MHz): Electromagnetic wave frequency Naturally, shielding effect In order to increase S, it is necessary to reduce the specific resistance ρ as much as possible. The lower the specific resistance ρ, the more effectively electromagnetic waves having a wider range of frequencies can be effectively shielded. In order to obtain a desired shielding effect, it is possible to appropriately design the pattern shape, the material of the conductive layer, and the thickness of the conductive layer.

【0015】このようにして電磁波カットフィルタを形
成した事により次式で表わされる遮蔽効果を大幅に向上
させる事が出来た。 S(dB)=20Xlog10(E0/E1) E0は入射電磁波 E1は通過した電磁波 従来の電波吸収体である許容反射減衰量は電力吸収率9
9%以上に相当する20dB以上が一つの目安とされて
いるが本発明により30〜50dBが可能に成った。
By forming the electromagnetic wave cut filter in this manner, the shielding effect represented by the following equation can be greatly improved. S (dB) = 20 X log10 (E0 / E1) E0 is an incident electromagnetic wave E1 is a transmitted electromagnetic wave The allowable return loss, which is a conventional radio wave absorber, is a power absorption rate of 9
One guideline is 20 dB or more corresponding to 9% or more, but the present invention has enabled 30 to 50 dB.

【0016】透明高分子補強板は外圧に耐えるために使
用されるものであるが、傷等による損傷ひいては透明性
の低下を及ぼすのでハードコートは不可欠である。ハー
ドコート層はエポキシアクリレート、ウレタンアクリレ
ート等の樹脂以外に、無機材具体的には酸化珪素、アル
ミナ、酸化チタン、酸化ジルコニュウム等の透明酸化物
等が好ましい。更に、本来の補強板としては軽量化の
為、高分子を使用する関係上1mm以上の強度が必要に
なる。厚みは増せば増すほど強度は得られるが、重量、
透明性の点からは不利になる為、人為的な外圧、指圧に
耐え得る強度とすれば1mm以上で目的を達成出来き実
用上は5mmまでである。
The transparent polymer reinforcing plate is used to withstand external pressure. However, a hard coat is indispensable because it is damaged by scratches and the like, and furthermore, reduces transparency. The hard coat layer is preferably made of an inorganic material, specifically a transparent oxide such as silicon oxide, alumina, titanium oxide or zirconium oxide, in addition to a resin such as epoxy acrylate or urethane acrylate. Further, the original reinforcing plate needs to have a strength of 1 mm or more due to the use of a polymer in order to reduce the weight. The strength increases as the thickness increases, but the weight,
Since it is disadvantageous from the viewpoint of transparency, if the strength is sufficient to withstand artificial external pressure and acupressure, the object can be achieved with 1 mm or more and practically up to 5 mm.

【0017】PDPはキセノンガス放電を利用して発光
させている。この際生じる近赤外線が外部に漏洩し広く
利用されているセンサーの誤動作に結びつく為、近赤外
線カット機能はPDPの前面シールド板には不可欠であ
る。近赤外線カット機能を付与するためには、透明高分
子補強体に近赤外線カット機能を付与する方法、コーテ
ィング層を新たに新設する方法が用いられる。近赤外線
吸収剤としては、例えばアントラキノン系、アミニウム
系、ポリメチン系、ジイモニウム系、シアニン系色素
や、パラジウム、ニッケル、白金、モリブデン、タング
ステン等の金属錯体、有機塩が上げられる。
The PDP emits light using xenon gas discharge. The near-infrared ray generated at this time leaks to the outside and leads to malfunction of widely used sensors, so that the near-infrared ray cut function is indispensable for the front shield plate of the PDP. In order to provide a near-infrared cut function, a method of providing a near-infrared cut function to the transparent polymer reinforcement and a method of newly providing a coating layer are used. Examples of the near-infrared absorbing agent include anthraquinone-based, aminium-based, polymethine-based, diimonium-based, and cyanine-based dyes, metal complexes such as palladium, nickel, platinum, molybdenum, and tungsten, and organic salts.

【0018】更に、ハードコート層の反対側の面には反
射防止機能を有する事が望ましい。これはPDPからの
表示部での乱反射を防止しコントラストを高める為に設
置される。無論ハードコート層に機能を付与出来れば形
成面に、制限は無い。
Furthermore, it is desirable that the surface opposite to the hard coat layer has an antireflection function. This is installed in order to prevent diffuse reflection from the PDP on the display unit and increase contrast. Of course, there is no limitation on the formation surface as long as the function can be imparted to the hard coat layer.

【0019】[0019]

【実施例】《実施例1》厚み75μmのポリエチエンテ
レフタレートフィルム(以下PETと略す)に、アンダ
ーコートとして分子量1540、融点70℃のエポキシ
アクリレートプレポリマー(昭和高分子製、VR−6
0)100重量部、酢酸ブチル400重量部、セロソル
ブアセテート100重量部、ベンゾインエチルエーテル
2重量部を用い、1μmの厚みにコートした。更に酸化
インジウムをスパッタリング法で透過率80%、シート
抵抗150Ωの結晶質の膜に成るように成膜した。銅薄
膜をスパッタにより2000Å成膜し、続いて電気メッ
キ処理して、銅厚み4μm、表面抵抗値4×10-3Ω/
□の銅箔付きPETフィルムを得た。この導電層をフォ
トリソ法により、硝酸第2鉄をエッチング液としてパタ
ーニング加工し、ライン幅10μm、スペース幅160
μmメッシュ状フィルターパターンを得た。得られたフ
ィルムの銅箔面同士を熱硬化型エポキシ系接着材にて貼
り合わせ90度剥離試験を行ったところ、1kg/cm
以上の密着力が得られた。80℃90%RHの高温高湿
下で促進試験を実施したところ、1000h後の密着力
は900g/cmで実質上問題無いレベルであった。ま
た、パターン加工後の550nmでの光線透過率は74
%、近赤外線領域での光線透過率は<10%(900〜
1200nm)、電界シールド特性は200〜1000
MHzの範囲で50dB以上(アドバンテスト法)と良
好であった。2mm厚のポリカーボネート基板の片面
に、近赤外線カット材を添加した反射防止機能を持つ鉛
筆硬度3H以上のハードコートを施し、脂肪族ポリエス
テルウレタン(東洋モートン製AD−N401)接着剤
でハードコート層の裏面にパターン加工基材を積層し
た。尚、外縁部に於いて各透明導電膜とフラットケーブ
ルを銀ペースト(住友ベークライト製CRM−108
5)で接着し電気的に接地した。鉛筆硬度は3Hであり
擦傷性に優れたものでPDP用電磁波遮蔽透明板として
遮蔽性だけではなく耐久性にも優れた特性を得られた。
EXAMPLES Example 1 An epoxy acrylate prepolymer (VR-6, manufactured by Showa Polymer Co., Ltd.) having a molecular weight of 1540 and a melting point of 70 ° C. was used as an undercoat on a 75 μm-thick polyethylene terephthalate film (hereinafter abbreviated as PET).
0) 100 parts by weight, 400 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate, and 2 parts by weight of benzoin ethyl ether were used to coat to a thickness of 1 μm. Further, indium oxide was formed by a sputtering method so as to form a crystalline film having a transmittance of 80% and a sheet resistance of 150Ω. A copper thin film was formed to a thickness of 2000 ° by sputtering and then electroplated to obtain a copper thickness of 4 μm and a surface resistance of 4 × 10 −3 Ω /.
The PET film with copper foil of □ was obtained. This conductive layer is patterned by a photolithography method using ferric nitrate as an etchant to obtain a line width of 10 μm and a space width of 160 μm.
A μm mesh filter pattern was obtained. When the copper foil surfaces of the obtained films were bonded to each other with a thermosetting epoxy-based adhesive and subjected to a 90-degree peel test, 1 kg / cm
The above adhesion was obtained. When an acceleration test was performed under high temperature and high humidity of 80 ° C. and 90% RH, the adhesion after 1000 hours was 900 g / cm, which was a level that was substantially no problem. The light transmittance at 550 nm after pattern processing is 74.
%, The light transmittance in the near infrared region is <10% (900 to
1200 nm), electric field shielding property is 200 to 1000
It was as good as 50 dB or more (Advantest method) in the range of MHz. On one side of a 2 mm thick polycarbonate substrate, a hard coat having a pencil hardness of 3H or more having an anti-reflection function added with a near-infrared cut material is applied, and a hard coat layer is formed with an aliphatic polyester urethane (AD-N401 manufactured by Toyo Morton) adhesive. A patterned substrate was laminated on the back surface. At the outer edge, each transparent conductive film and the flat cable were coated with silver paste (CRM-108 manufactured by Sumitomo Bakelite).
5) Adhesion and electrical grounding. The pencil hardness was 3H, which was excellent in abrasion properties. As a transparent plate for electromagnetic wave shielding for PDP, characteristics excellent not only in shielding properties but also in durability were obtained.

【0020】《実施例2》透明金属酸化膜をSiOxと
した以外は実施例1と同様に電磁波遮蔽透明体を作製し
た。実施例1と同様に密着性試験を行ったところ、1k
g/cm以上の密着力が得られた。
Example 2 A transparent electromagnetic wave shielding body was produced in the same manner as in Example 1 except that the transparent metal oxide film was SiOx. An adhesion test was performed in the same manner as in Example 1.
An adhesion of at least g / cm was obtained.

【0021】《比較例1》実施例1に於いて透明金属酸
化膜層を設けずに銅を積層した。実施例1と同様に密着
性試験を行ったところ、密着力は200g/cm以下で
あり、後のパターニング工程において一部ラインの欠損
が発生し歩留まりが非常に悪くなった。
Comparative Example 1 In Example 1, copper was laminated without providing a transparent metal oxide film layer. When an adhesion test was performed in the same manner as in Example 1, the adhesion was 200 g / cm or less, and some lines were missing in the subsequent patterning step, resulting in a very poor yield.

【0022】[0022]

【発明の効果】本発明により、透明性に優れた、電磁波
遮蔽板透明体を提供することが可能となった。
According to the present invention, it is possible to provide a transparent electromagnetic wave shielding plate having excellent transparency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の層構成図FIG. 1 is a diagram illustrating a layer configuration according to a first embodiment.

【図2】 比較例1の層構成図FIG. 2 is a layer configuration diagram of Comparative Example 1.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明高分子フィルムの少なくとも片面に、
必要に応じて接着層、透明導電膜、金属薄膜層を順次積
層した後、金属薄膜層のみを選択的にエッチング除去し
てフィルターパターンを作成する事を特徴とする電磁波
遮蔽透明体。
1. The method according to claim 1, wherein at least one side of the transparent polymer film has
A transparent electromagnetic wave shielding body characterized in that a filter pattern is formed by sequentially laminating an adhesive layer, a transparent conductive film, and a metal thin film layer as necessary, and then selectively removing only the metal thin film layer by etching.
【請求項2】 金属薄膜層が銅からなることを特徴とす
る請求項1記載の電磁波遮蔽透明体。
2. The electromagnetic wave shielding transparent body according to claim 1, wherein the metal thin film layer is made of copper.
【請求項3】 波長550nmでの光線透過率は50%
以上である請求項1または2記載の電磁波遮蔽透明体。
3. The light transmittance at a wavelength of 550 nm is 50%.
The electromagnetic wave shielding transparent body according to claim 1 or 2, which is as described above.
【請求項4】 請求項1〜3記載の電磁波遮蔽透明体を
厚み1mm以上の透明高分子補強体に接着層を介し積層
した電磁波遮蔽透明体。
4. An electromagnetic wave shielding transparent body comprising the electromagnetic wave shielding transparent body according to claim 1 laminated on a transparent polymer reinforcement having a thickness of 1 mm or more via an adhesive layer.
【請求項5】 積層フィルムあるいは透明高分子補強体
の少なくても一方に反射防止層が設けられている請求項
4記載の電磁波遮蔽透明体。
5. The electromagnetic wave shielding transparent body according to claim 4, wherein an antireflection layer is provided on at least one of the laminated film and the transparent polymer reinforcing body.
【請求項6】 積層フィルムあるいは透明高分子補強体
の少なくても一方にハードコート層が設けられている請
求項4または5記載の電磁波遮蔽透明体。
6. The electromagnetic wave shielding transparent body according to claim 4, wherein a hard coat layer is provided on at least one of the laminated film and the transparent polymer reinforcing body.
JP10225829A 1998-08-10 1998-08-10 Electromagnetic wave shielding transparent substrate Pending JP2000059075A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10225829A JP2000059075A (en) 1998-08-10 1998-08-10 Electromagnetic wave shielding transparent substrate
SG9902750A SG81995A1 (en) 1998-08-10 1999-06-03 Transparent electromagnetic wave shield
MYPI99002247A MY123910A (en) 1998-08-10 1999-06-03 Transparent electromagnetic wave shield
CA 2273602 CA2273602A1 (en) 1998-08-10 1999-06-04 Transparent electromagnetic wave shield
TW88109384A TW560240B (en) 1998-08-10 1999-06-05 Transparent electromagnetic wave shield
KR1019990020813A KR100635835B1 (en) 1998-08-10 1999-06-05 Transparent body for shielding electromagnetic interference
DE19925901A DE19925901A1 (en) 1998-08-10 1999-06-07 Shield for guarding displays against leakage of electromagnetic waves has polymer film and conductive lattice
GB9913205A GB2340651B (en) 1998-08-10 1999-06-07 Transparent electromagnetic wave shield
FR9907155A FR2782232B1 (en) 1998-08-10 1999-06-07 TRANSPARENT PROTECTION SCREEN FOR ELECTROMAGNETIC WAVES
US09/326,661 US6210787B1 (en) 1998-08-10 1999-06-07 Transparent electromagnetic wave shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10225829A JP2000059075A (en) 1998-08-10 1998-08-10 Electromagnetic wave shielding transparent substrate

Publications (1)

Publication Number Publication Date
JP2000059075A true JP2000059075A (en) 2000-02-25

Family

ID=16835468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10225829A Pending JP2000059075A (en) 1998-08-10 1998-08-10 Electromagnetic wave shielding transparent substrate

Country Status (1)

Country Link
JP (1) JP2000059075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266312A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Conductive mesh having conductive thin film, electromagnetic-wave shielding film, and manufacturing method thereof
JP2015109449A (en) * 2011-11-24 2015-06-11 タツタ電線株式会社 Shield film, shield print circuit board, and shield film manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266312A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Conductive mesh having conductive thin film, electromagnetic-wave shielding film, and manufacturing method thereof
JP2015109449A (en) * 2011-11-24 2015-06-11 タツタ電線株式会社 Shield film, shield print circuit board, and shield film manufacturing method
JP2016036044A (en) * 2011-11-24 2016-03-17 タツタ電線株式会社 Shield film, shielded printed wiring board, and method for manufacturing shield film
JP2016040837A (en) * 2011-11-24 2016-03-24 タツタ電線株式会社 Shield film, shield printed wiring board, and method for manufacturing shield film
US10015915B2 (en) 2011-11-24 2018-07-03 Tatsuta Electric Wire & Cable Co., Ltd. Shield film, shielded printed wiring board, and method for manufacturing shield film
US10051765B2 (en) 2011-11-24 2018-08-14 Tatsuta Electric Wire & Cable Co., Ltd. Shield film, shielded printed wiring board, and method for manufacturing shield film

Similar Documents

Publication Publication Date Title
KR100635835B1 (en) Transparent body for shielding electromagnetic interference
KR101656581B1 (en) Conductive structure body and method for manufacturing the same
EP2747093A2 (en) Conductive structure and method for manufacturing same
US20080118762A1 (en) Electromagnetic wave shielding film and protective plate for plasma display panel
CN111244229B (en) Manufacturing method of flexible transparent thin-film solar cell
JP2000059083A (en) Electromagnetic wave shielding transparent substance
JP2008210898A (en) Electromagnetic wave shielding film and window glass using the same
JP2000119047A (en) Glass laminate and its production
JP2000059074A (en) Electromagnetic shielding transparent body
JP2000059075A (en) Electromagnetic wave shielding transparent substrate
JP3713774B2 (en) Transparent electromagnetic shielding board
JP2002246788A (en) Transparent electromagnetic radiation shielding material
JP2000114770A (en) Electromagnetic wave shielding transparent body
WO2010055787A1 (en) Electromagnetic shielding laminated glass
JPH0911390A (en) Transparent conductive laminate
JPH11177276A (en) Electromagnetic wave shielding transparent body
JPH11261288A (en) Electromagnetic wave shielding transparent member
JP2582859B2 (en) Static electricity, electromagnetic wave shielding material
JP2000059077A (en) Electromagnetic wave shielding transparent substance
JP2000277977A (en) Electromagnetic wave shield member, manufacture thereof, and display device
JP3924846B2 (en) Transparent conductive film
JP2647720B2 (en) Transparent conductive laminate
JP2000059076A (en) Electromagnetic shielding transparent body
JPH10214717A (en) Electro-magnetic wave shield
JP2613206B2 (en) Method for producing transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106