JP2000113445A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2000113445A
JP2000113445A JP10288134A JP28813498A JP2000113445A JP 2000113445 A JP2000113445 A JP 2000113445A JP 10288134 A JP10288134 A JP 10288134A JP 28813498 A JP28813498 A JP 28813498A JP 2000113445 A JP2000113445 A JP 2000113445A
Authority
JP
Japan
Prior art keywords
underlayer
magnetic
recording medium
magnetic recording
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10288134A
Other languages
Japanese (ja)
Other versions
JP3075712B2 (en
Inventor
Masaaki Futamoto
正昭 二本
Nobuyuki Inaba
信幸 稲葉
Yoshiyuki Hirayama
義幸 平山
Yukio Honda
幸雄 本多
Teruaki Takeuchi
輝明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10288134A priority Critical patent/JP3075712B2/en
Priority to US09/413,813 priority patent/US6383667B1/en
Publication of JP2000113445A publication Critical patent/JP2000113445A/en
Application granted granted Critical
Publication of JP3075712B2 publication Critical patent/JP3075712B2/en
Priority to US10/001,995 priority patent/US6541125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having higher coercive force and improved thermal fluctuation resistance so as to be suitable for high density magnetic recording. SOLUTION: Ground surface layers 12 and 13 to be disposed at the lower layer of magnetic films of a Co alloy system are formed as multiple layers and more particularly an alloy material of Co-Rux-cry (5 at.% <=x<=65 at.%, 35 at.%>=y>=0 at.%) having a hexagonal closepacked structure is used as the upper layer ground surface layer 13 to be formed in contact with the magnetic film 14. As a result, the coercive force of the magnetic recording medium is made higher and the thermal fluctuation resistance thereof is made better. The magnetic recording medium having the characteristics necessary for high density magnetic recording above 10 Gb/in2 may be embodied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気記録に
適する磁性膜を有する磁気記録媒体に関する。
The present invention relates to a magnetic recording medium having a magnetic film suitable for high-density magnetic recording.

【0002】[0002]

【従来の技術】現在実用化されている磁気ディスク装置
は、面内磁気記録方式を採用している。面内磁気記録方
式では、ディスク基板面と平行な方向に磁化し易い面内
磁気記録媒体に、基板と平行な面内磁区を高密度に形成
することが技術課題となっている。この面内磁気記録媒
体の記録密度を伸ばすためには、保磁力を向上するとと
もに磁性膜厚を減少しなければならない。しかし、磁性
膜厚を小さくしすぎると熱の影響で記録磁化が減少した
り、消失する問題に遭遇する。このような磁化の熱揺ら
ぎによる影響が顕著になる磁性膜厚は、Co合金系では
20nm以下とされている。Co合金系磁性膜を用いた
記録媒体の高密度化を進めた場合、これまでのトレンド
を延長すると10Gb/in2以上の記録密度を実現す
るためには磁性膜の厚さを20nm以下にしなければな
らない見通しである。Co合金系磁性膜を用いて10G
b/in2以上の記録密度を実現するためには、一層の
高保磁力化を図るとともに磁性膜を構成する結晶粒の結
晶性を向上しなければならない。さらに望ましくは、結
晶粒径を記録密度の向上に見合って微細化し、かつ結晶
粒径分布を狭くすることが必要である。
2. Description of the Related Art Magnetic disk drives currently in practical use employ an in-plane magnetic recording system. In the in-plane magnetic recording system, it is a technical problem to form in-plane magnetic domains parallel to the substrate at high density on an in-plane magnetic recording medium which is easily magnetized in a direction parallel to the disk substrate surface. In order to increase the recording density of this longitudinal magnetic recording medium, the coercive force must be improved and the magnetic film thickness must be reduced. However, if the magnetic film thickness is too small, the problem that the recording magnetization decreases or disappears due to the influence of heat is encountered. The magnetic film thickness at which the influence of the thermal fluctuation of magnetization becomes remarkable is set to 20 nm or less in a Co alloy system. When recording media using a Co alloy-based magnetic film have been increased in density, if the trend so far is extended, in order to achieve a recording density of 10 Gb / in 2 or more, the thickness of the magnetic film must be 20 nm or less. It is a prospect that must be taken. 10G using Co alloy magnetic film
In order to realize a recording density of b / in 2 or more, it is necessary to further increase the coercive force and to improve the crystallinity of crystal grains constituting the magnetic film. More preferably, it is necessary to refine the crystal grain size in accordance with the improvement of the recording density and narrow the crystal grain size distribution.

【0003】Co合金からなる磁性膜の保磁力を向上す
るために、磁性膜と基板の間にCrやCr合金などの体
心立方(bcc)構造を持つ材料、あるいはNiAlな
どのB2構造を持つ下地層を設ける方法が採用されてい
る(David E. Laughlin, Y.C. Feng, David N. Lambet
h, Li-Lien Lee, Li Tang,“Design and crystallograp
hy of multilayered media" in Journal of Magnetism
and Magnetic Materials, Vol. 155, pp.146-150, 199
6)。また、磁性膜の保磁力を向上するためには、エピ
タキシャル成長するCo合金とbcc下地の格子定数の
条件をあわせるのが有効であることが知られている(N.
Inaba, A. Nakamura, T. Yamamoto, Y, Hosoe, M. Fut
amoto,“Magnetic and crystallographic properties o
f CoCrPt thin films formed on Cr-Ti single crystal
line underlayers" in Journal ofApplied Physics, Vo
l.79, No.8, pp.5354-5356, 1996)。さらにCo合金磁
性膜の結晶性を改善するためには、下地層と磁性膜の間
にCo合金磁性膜と同じ結晶構造を持つ非磁性の六方稠
密(hcp)材料からなる新たな下地を追加することが
有効であり(特開平4−321919号公報)、Co−
35at%Cr下地等がCo−Cr−Pt磁性膜用の下
地として用いられている(M. Futamoto, Y.Honda, Y. H
irayama, K. Itoh, H. Ide, Y. Maruyama, “High Dens
ity Magnetic Recording on Highly Oriented CoCr-All
oy Perpendicular Rigid Disk Media" in IEEE Transac
tions on Magnetics, Vol.32, No.5, pp.3789-3794, 19
96)。
In order to improve the coercive force of a magnetic film made of a Co alloy, a material having a body-centered cubic (bcc) structure such as Cr or a Cr alloy or a B2 structure such as NiAl is provided between the magnetic film and the substrate. A method of providing an underlayer is adopted (David E. Laughlin, YC Feng, David N. Lambet
h, Li-Lien Lee, Li Tang, “Design and crystallograp
hy of multilayered media "in Journal of Magnetism
and Magnetic Materials, Vol. 155, pp.146-150, 199
6). It is known that it is effective to adjust the condition of the lattice constant of the Co alloy to be epitaxially grown and the base of the bcc in order to improve the coercive force of the magnetic film (N.
Inaba, A. Nakamura, T. Yamamoto, Y, Hosoe, M. Fut
amoto, “Magnetic and crystallographic properties o
f CoCrPt thin films formed on Cr-Ti single crystal
line underlayers "in Journal of Applied Physics, Vo
l.79, No.8, pp.5354-5356, 1996). In order to further improve the crystallinity of the Co alloy magnetic film, a new underlayer made of a nonmagnetic hexagonal dense (hcp) material having the same crystal structure as the Co alloy magnetic film is added between the underlayer and the magnetic film. Is effective (JP-A-4-321919).
A 35 at% Cr underlayer or the like is used as an underlayer for a Co—Cr—Pt magnetic film (M. Futamoto, Y. Honda, Y. H.
irayama, K. Itoh, H. Ide, Y. Maruyama, “High Dens
ity Magnetic Recording on Highly Oriented CoCr-All
oy Perpendicular Rigid Disk Media "in IEEE Transac
tions on Magnetics, Vol.32, No.5, pp.3789-3794, 19
96).

【0004】[0004]

【発明が解決しようとする課題】10Gb/in2以上
の高密度磁気記録を可能とするためには、面内磁気記録
媒体においては高保磁力化と耐熱揺らぎ特性の向上が必
要である。本発明は、Co合金系、特にPtを含む磁性
膜を用いた磁気記録媒体で10Gb/in2以上の高密
度磁気記録の実現を容易ならしめることを目的とする。
In order to enable high-density magnetic recording of 10 Gb / in 2 or more, it is necessary for a longitudinal magnetic recording medium to have a high coercive force and an improvement in thermal fluctuation characteristics. An object of the present invention is to facilitate realization of high-density magnetic recording of 10 Gb / in 2 or more with a magnetic recording medium using a magnetic film containing a Co alloy, particularly Pt.

【0005】[0005]

【課題を解決するための手段】従来の面内磁気記録媒体
の耐熱揺らぎ特性を詳細に調べた結果、磁性膜の一部に
磁気異方性エネルギーの低い結晶性の劣る領域が形成さ
れ、この部分から記録磁化の劣化が進行することが判明
した。結晶性の劣る領域が存在すると媒体の保磁力も低
下することが分かった。さらに耐熱揺らぎ特性を改善す
るためには、磁性膜を構成する結晶粒の粒径分布を低減
することが効果的である。本発明は、磁性膜と基板との
間に設ける下地層を多層化し、最終的に磁性膜を構成す
る結晶粒の配向、粒径、及び結晶性を制御することによ
り上記目的を達成するものである。
As a result of a detailed examination of the heat fluctuation characteristics of the conventional in-plane magnetic recording medium, a region having low magnetic anisotropy energy and poor crystallinity was formed in a part of the magnetic film. It was found that the recording magnetization deteriorated from the portion. It was found that the presence of a region having poor crystallinity also reduced the coercive force of the medium. In order to further improve the heat fluctuation characteristics, it is effective to reduce the particle size distribution of the crystal grains constituting the magnetic film. The present invention achieves the above object by forming a multi-layered underlayer provided between a magnetic film and a substrate, and finally controlling the orientation, grain size, and crystallinity of crystal grains constituting the magnetic film. is there.

【0006】面内磁気記録において最も一般的に使用さ
れ、また検討されている媒体の磁性膜材料は六方稠密
(hcp)構造を持つCo合金材料である。Co合金系
面内磁気記録媒体において、結晶性が低い領域は膜の成
長初期領域に存在する。この部分の結晶性は下地層に強
く影響される。本発明は、少なくとも2層からなる下地
層の構造を採用し、特に磁性膜と接する側の上層下地層
に選ばれた材料を用いることによって、磁性膜の結晶性
の問題を解決するものである。
[0006] The magnetic film material of the medium most commonly used and studied in longitudinal magnetic recording is a Co alloy material having a hexagonal close-packed (hcp) structure. In a Co alloy-based in-plane magnetic recording medium, a region having low crystallinity exists in the initial growth region of the film. The crystallinity of this portion is strongly affected by the underlayer. The present invention solves the problem of crystallinity of a magnetic film by employing a structure of an underlayer consisting of at least two layers, and in particular, by using a material selected for an upper underlayer on the side in contact with the magnetic film. .

【0007】図を参照して説明する。図1は、本発明を
実現するための媒体構造の一例を示す断面模式図であ
る。非磁性基板11上に、結晶の配向と粒径を制御する
ためのB2構造を持つ下層下地層12を形成する。Ni
Al,FeAl,FeV,CuZn,CoAlあるいは
CuPd規則相はB2構造を持つ材料であるが、これら
の材料からなる膜を基板上に形成すると(100)面が
基板と平行な配向膜が成長し易い性質がある。さらに、
このようなB2構造を持つ材料からなる膜を構成する結
晶粒の分布は、Cr,V,Nbなどの単体金属からなる
膜を形成した場合に比べて小さくなる傾向がある。B2
構造を持つ材料をスパッター法等で非磁性基板上に形成
すると、(112)配向膜が優先的に成長する。この上
にhcp構造を持つCo合金膜を形成すると、エピタキ
シャル成長により、(1 0 -1 0)面が基板と平行に成長
する。本発明では、下層下地層12上に、hcp構造を
持つCo−Rux−Cryの合金材料からなる非磁性もし
くは弱磁性の上層下地層13を形成する。ここで、5a
t%≦x≦65at%,35at%≧y≧0at%とす
る。
A description will be given with reference to the drawings. FIG. 1 is a schematic sectional view showing an example of a medium structure for realizing the present invention. On a non-magnetic substrate 11, a lower underlayer 12 having a B2 structure for controlling crystal orientation and grain size is formed. Ni
Al, FeAl, FeV, CuZn, CoAl or CuPd ordered phase is a material having a B2 structure. When a film made of such a material is formed on a substrate, an alignment film having a (100) plane parallel to the substrate is easily grown. There is nature. further,
The distribution of crystal grains constituting a film made of a material having such a B2 structure tends to be smaller than a case where a film made of a single metal such as Cr, V, or Nb is formed. B2
When a material having a structure is formed on a nonmagnetic substrate by a sputtering method or the like, the (112) orientation film grows preferentially. When a Co alloy film having an hcp structure is formed thereon, the (10-10) plane grows in parallel with the substrate by epitaxial growth. In the present invention, on the lower base layer 12, to form a Co-Ru x -Cr y nonmagnetic or weak magnetic upper underlayer 13 made of an alloy material having a hcp structure. Where 5a
It is assumed that t% ≦ x ≦ 65 at% and 35 at% ≧ y ≧ 0 at%.

【0008】Co,Ruはhcp構造を持つ互いに全率
固溶する金属材料であり、Co中にRuが34at%以
上固溶すると非磁性に変化する。Coの金属原子半径
1.26オングストロームに比べてRuは大きい金属原
子半径1.32オングストロームを持つため、Co中の
Ru添加量を増すと、平均の金属原子半径は増大する。
磁気記録媒体の記録層に用いられるCo合金磁性膜はC
oにCr,Ta,Pt,Nb,B,Yなどの元素を添加
した材料が用いられ、合金磁性膜の平均の金属原子半径
は一般に純Coに比べて大きくなる。上層下地層に用い
る材料はCo合金と同様なhcp構造を持ち、かつエピ
タキシャル成長条件を整えるためには平均の金属原子半
径の差が小さいこと、さらに非磁性もしくは弱磁性であ
ることが必要である。記録層に用いるCo−Cr−T
a,Co−Cr−Pt,Co−Cr−Pt−Ta,Co
−Cr−Pt−Ta−Nb,Co−Cr−Pt−Ta−
Bなどの平均の原子半径は、本発明者の実験によれば
1.265〜1.290オングストロームの範囲にある
ことが分かった。特に、CoにPtを合金元素として添
加した媒体においては、Ptの金属原子半径が1.38
オングストロームと大きいため、Ptの添加量にほぼ比
例して平均の金属原子半径が増大する。Co−Ruの2
元系でこの範囲の原子半径にするためには、Co中にR
uを5〜65at%添加する必要があった。
[0008] Co and Ru are metallic materials having a hcp structure and forming a solid solution with each other. When Ru is dissolved in Co at a concentration of 34 at% or more, it changes to non-magnetic. Since Ru has a larger metal atomic radius of 1.32 angstroms than the metal atomic radius of Co of 1.26 angstroms, the average metal atomic radius increases as the amount of Ru added in Co increases.
The Co alloy magnetic film used for the recording layer of the magnetic recording medium is C
A material obtained by adding elements such as Cr, Ta, Pt, Nb, B, and Y to o is used, and the average metal atomic radius of the alloy magnetic film is generally larger than that of pure Co. The material used for the upper underlayer must have the same hcp structure as the Co alloy, and have a small difference in average metal atom radius and be non-magnetic or weakly magnetic in order to adjust the epitaxial growth conditions. Co-Cr-T used for recording layer
a, Co-Cr-Pt, Co-Cr-Pt-Ta, Co
-Cr-Pt-Ta-Nb, Co-Cr-Pt-Ta-
The average atomic radius of B and the like was found to be in the range of 1.265 to 1.290 angstroms according to experiments performed by the present inventors. In particular, in a medium in which Pt is added to Co as an alloy element, the metal atomic radius of Pt is 1.38.
Since the thickness is as large as Å, the average metal atom radius increases almost in proportion to the amount of Pt added. Co-Ru 2
In order to obtain an atomic radius in this range in the original system, R
u had to be added at 5-65 at%.

【0009】Ruの添加量が5〜34at%の少ない領
域では、合金は磁性を示すため、非磁性化もしくは弱磁
性化するためにCrを添加する。Crの金属原子半径は
1.28オングストロームでCoと近い値をとるため、
Co中にCrを添加しても平均の金属原子半径はほとん
ど変化しない。Co中にCrを25at%以上添加する
と、Co−Cr合金は非磁性化する。RuのCoに対す
る添加量が5〜34at%の範囲では、Crを最大35
at%添加することにより、Co−Ru−Cr材料を非
磁性化もしくは弱磁性化する必要がある。下地として許
容できる弱磁性の範囲は、飽和磁化(Ms)が30em
u/cc以下であり、Co−Ru5−Cry合金の場合、
y>19at%に相当する。Coに添加するRu量に対
応して、Cr添加量を調整するのが有効である。Ru添
加量が30at%を超える範囲では、Cr添加量を0a
t%としてもMs<30emu/ccとなるため、Co
−Rux−CryにおけるCrの添加量の範囲としては、
34at%≧y≧0at%となる。ただ、Co−Rux
−Cry合金下地層を構成する結晶粒の粒径を揃えてか
つ結晶粒界を明確化して、下地層としての機能向上を図
るためにはCr添加量は、y≧5at%であることが望
ましい。Crを添加すると、合金中でCrが結晶粒界に
選択的に偏析することにより、上記の望ましい効果が生
ずる。
In a region where the addition amount of Ru is as small as 5 to 34 at%, the alloy shows magnetism, so that Cr is added to make it non-magnetic or weakly magnetic. Since the metal atomic radius of Cr is 1.28 angstroms and is close to that of Co,
Even if Cr is added to Co, the average metal atomic radius hardly changes. When 25 at% or more of Cr is added to Co, the Co—Cr alloy becomes non-magnetic. When the addition amount of Ru to Co is in the range of 5 to 34 at%, Cr is reduced to 35 at the maximum.
By adding at%, it is necessary to demagnetize or weaken the Co—Ru—Cr material. The range of the weak magnetism that can be accepted as the underlayer is that the saturation magnetization (Ms) is 30 em.
u / cc or less, when the Co-Ru 5 -Cr y alloy,
y> 19 at%. It is effective to adjust the amount of Cr added in accordance with the amount of Ru added to Co. In the range where the Ru addition amount exceeds 30 at%, the Cr addition amount is 0a.
Since Ms <30 emu / cc even if t%, Co
The range of the addition amount of Cr in -ru x -Cr y,
34 at% ≧ y ≧ 0 at%. However, Co-Ru x
Align the grain size of the crystal grains constituting the -cr y alloy underlayer and clarifies the grain boundaries, Cr addition amount in order to function improvement as the underlying layer, that is y ≧ 5at% desirable. The addition of Cr selectively segregates Cr at the grain boundaries in the alloy, thereby producing the above-described desirable effects.

【0010】Co合金からなる記録磁性膜用の上層下地
層として、上記のCo−Rux−Cry合金を設けること
により、記録磁性膜を構成する結晶粒の結晶性を改善で
き、かつ保磁力の増大を図ることができる。磁性膜と上
層下地層の平均の金属原子半径の差が5%以下となるよ
うに、Co−Rux−CryにおけるRuの添加量の調整
を図ることにより、これらの効果を増幅させることがで
きる。上層下地層としてCo−Rux−Cry合金を設け
る場合、特に有効な記録用の磁性膜材料はPtを含むC
o合金であり、特にPtの添加量範囲として5at%〜
30at%の範囲の材料が好適である。この組成範囲の
Pt量を含むCo合金磁性膜は高い磁気異方性エネルギ
ーを持つ耐熱揺らぎ性の良い高保磁力の磁気記録媒体応
用に適当である。
[0010] As upper base layer for recording magnetic film of Co alloy, by providing the above-mentioned Co-Ru x -Cr y alloy, can improve the crystal grains of the crystalline constituting the recording magnetic film and the coercive force Can be increased. As the difference between the average of the metal atomic radius of the magnetic film and the upper base layer is 5% or less, by promoting the adjustment of the amount of Ru in the Co-Ru x -Cr y, it is amplified these effects it can. C case where the Co-Ru x -Cr y alloy as an upper base layer, particularly effective magnetic film materials for records containing Pt
o alloy, in particular, as a Pt addition amount range of 5 at% to
Materials in the range of 30 at% are preferred. A Co alloy magnetic film containing a Pt content in this composition range is suitable for application to a magnetic recording medium having a high coercive force having high magnetic anisotropy energy and good heat fluctuation resistance.

【0011】Co−Rux−Cry合金膜の厚さは0.5
nm以上100nm以下、特に望ましい範囲は1nm以
上50nm以下である。0.5nm以下では下層下地層
の影響でCo−Rux−Cry合金膜に結晶歪が残るた
め、また100nm以上になると膜厚が厚くなることに
伴って発生する表面起伏が大きくなるため、高密度磁気
記録媒体として必要な媒体表面の平滑性を確保するのが
困難になる。
[0011] The thickness of the Co-Ru x -Cr y alloy film 0.5
nm or more and 100 nm or less, a particularly desirable range is 1 nm or more and 50 nm or less. The crystal strain Co-Ru x -Cr y alloy film by the influence of the underlying base layer remains at 0.5nm or less, and because the surface undulations generated in association with the film thickness becomes more than 100nm becomes thicker increases, It becomes difficult to ensure the smoothness of the medium surface required for a high-density magnetic recording medium.

【0012】図2は、本発明の磁気記録媒体の他の例を
示す断面模式図である。非磁性基板21上に形成する下
層下地層22として、Cr,Vあるいはこれらの合金等
のbcc構造材料を用い、上層下地層23としてhcp
構造を持つCo−Rux−Cry(5at%≦x≦65a
t%,35at%≧y≧0at%)の合金材料を用いる
ことにより、類似の効果が生ずる。また、本発明の別の
応用形態として、下層下地としてbcc構造材料層を設
けた上に、B2構造を持つ材料層、hcp構造を持つC
o−Rux−Cry(5at%≦x≦65at%,35a
t%≧y≧0at%)の合金材料層を設け、その上にC
o合金からなる記録磁性膜層を設けても良い。あるい
は、下層下地層としてB2構造を持つ材料層、その上に
中間下地層としてCr,V及びこれらの合金等のbcc
構造材料層、上層下地層としてhcp構造を持つCo−
Rux−Cry(5at%≦x≦65at%,35at%
≧y≧0at%)の合金材料層を設け、その上にCo合
金からなる記録磁性膜層を設けても良い。
FIG. 2 is a schematic sectional view showing another example of the magnetic recording medium of the present invention. The lower underlayer 22 formed on the nonmagnetic substrate 21 is made of a bcc structure material such as Cr, V or an alloy thereof, and the upper underlayer 23 is formed of hcp.
Co-Ru x -Cr y having the structure (5at% ≦ x ≦ 65a
A similar effect is obtained by using an alloy material of (t%, 35 at% ≧ y ≧ 0 at%). Further, as another application form of the present invention, a material layer having a B2 structure, a C layer having an hcp structure are provided on a bcc structure material layer as a lower underlayer.
o-Ru x -Cr y (5at % ≦ x ≦ 65at%, 35a
t% ≧ y ≧ 0 at%) is provided, and C
A recording magnetic film layer made of an o-alloy may be provided. Alternatively, a material layer having a B2 structure as a lower base layer, and a bcc layer of Cr, V, an alloy thereof, or the like as an intermediate base layer thereon.
Co—having an hcp structure as a structural material layer and an upper underlayer
Ru x -Cr y (5 at% ≦ x ≦ 65 at%, 35 at%
.Gtoreq.y.gtoreq.0 at%), and a recording magnetic film layer made of a Co alloy may be provided thereon.

【0013】図3は、上記の効果に加えて、記録磁性膜
を構成する結晶の粒径分布を制御した磁気記録媒体を実
現するための媒体構造断面を示すものである。非磁性基
板31上にMgO,LiF等のNaCl型結晶構造を持
つ下層下地層32を形成する。MgO,LiF等の材料
膜は(100)配向膜が得られ易く、しかも結晶粒径の
分布が狭く粒径が揃いやすい。成膜の条件(基板温度、
成膜速度など)を調整することにより、10Gb/in
2以上の記録密度を実現するのに望ましい結晶粒径10
nm程度の下地層を容易に形成できる。中間下地層33
はB2構造を持つ材料からなり、上層下地層34はhc
p構造を持つCo−Rux−Cry(5at%≦x≦65
at%,35at%≧y≧0at%)の合金材料からな
る。この上に、hcp構造を持つCo合金からなる記録
層用の磁性膜35が形成される。
FIG. 3 shows a cross-section of a medium structure for realizing a magnetic recording medium in which the grain size distribution of the crystal constituting the recording magnetic film is controlled in addition to the above effects. A lower underlayer 32 having a NaCl type crystal structure such as MgO or LiF is formed on a non-magnetic substrate 31. For a material film such as MgO or LiF, a (100) oriented film is easily obtained, and the distribution of crystal grain sizes is narrow and the grain sizes are easy to be uniform. Film formation conditions (substrate temperature,
10 Gb / in by adjusting the deposition rate
Desirable crystal grain size of 10 for realizing recording density of 2 or more
An underlayer of about nm can be easily formed. Intermediate underlayer 33
Is made of a material having a B2 structure, and the upper underlayer 34 is made of hc
with p structure Co-Ru x -Cr y (5at % ≦ x ≦ 65
at%, 35 at% ≧ y ≧ 0 at%). On this, a magnetic film 35 for a recording layer made of a Co alloy having an hcp structure is formed.

【0014】図4は、非磁性基板41とMgO,LiF
等のNaCl型結晶構造を持つ下層下地層43の接着力
を増強、あるいはNaCl構造を持つ材料層が(10
0)配向膜を形成しやすい条件を整えるために、Si,
Cr,Ti,Nb,Zr,Hf,Ta,SiOx,Zr
2,SiNもしくはこれらを主成分とする合金からな
る接着強化層42を設けた例を示すものである。接着強
化層としては、上記の材料の他に、例えばSi−30a
t%Cr,Si−15at%Ge,Nb−30at%Z
r,Si02+ZrO2,SiO2+MgOなどの合金や
混合物でも良い。
FIG. 4 shows a nonmagnetic substrate 41 and MgO, LiF
In this case, the adhesive strength of the lower underlayer 43 having the NaCl type crystal structure is enhanced, or the material layer having the NaCl structure becomes (10
0) In order to prepare conditions for easily forming an alignment film, Si,
Cr, Ti, Nb, Zr, Hf, Ta, SiO x, Zr
This shows an example in which an adhesion reinforcing layer 42 made of O 2 , SiN or an alloy containing these as a main component is provided. As the adhesion reinforcing layer, in addition to the above materials, for example, Si-30a
t% Cr, Si-15at% Ge, Nb-30at% Z
An alloy or a mixture of r, SiO 2 + ZrO 2 , SiO 2 + MgO and the like may be used.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 〔実施例1〕直径2.5インチのガラス基板を用いて、
直流マグネトロンスパッタ法によって、図1に示す断面
構造を持つ面内磁気記録媒体を作製した。基板11上
に、下層下地層12、上層下地層13、記録用磁性膜1
4、及び保護膜15をこの順序で形成した。下層下地用
にはNiAlターゲット、上層下地用にCo−Rux
Cryターゲット、記録磁性膜用にCo−21at%C
r−15at%Ptターゲット、保護膜用にカーボンタ
ーゲットを用いた。Co−Rux−Cryターゲット組成
はCo−50at%Ru合金ターゲット上にRuもしく
はCrペレットを置いた混合ターゲットを用いて、成膜
組成が3at%≦x≦70at%,40at%≧y≧0
at%の範囲になるように調整した。
Embodiments of the present invention will be described below. [Example 1] Using a glass substrate having a diameter of 2.5 inches,
An in-plane magnetic recording medium having a cross-sectional structure shown in FIG. 1 was manufactured by a DC magnetron sputtering method. On a substrate 11, a lower underlayer 12, an upper underlayer 13, a recording magnetic film 1
4 and the protective film 15 were formed in this order. NiAl target for lower base, for upper base Co-Ru x -
Cr y target, the recording magnetic film Co-21 at% C
An r-15 at% Pt target and a carbon target for a protective film were used. Co-Ru x -Cr y is the target composition using a mixed target of placing the Ru or Cr pellets on Co-50at% Ru alloy target, 3at% ≦ x ≦ 70at% is deposited composition, 40at% ≧ y ≧ 0
At% was adjusted.

【0016】スパッタのArガス圧力を3mTorr、
スパッターパワー10W/cm2、基板温度250℃の
条件でNiAl膜を15nm、上層下地層を5nm、磁
性膜を16nm、カーボン膜を8nmの厚さ形成した。
潤滑膜としてパーフロロポリエーテル系の膜を塗布し
た。作成した試料の上層下地層の組成として以下の結果
を得た。Co−10at%Ru,Co−20at%R
u,Co−30at%Ru,Co−35at%Ru,C
o−40at%Ru,Co−50at%Ru,Co−6
0at%Ru,Co−65at%Ru,Co−75at
%Ru,Co−85at%Ru,Co−10at%Ru
−5at%Cr,Co−20at%Ru−5at%C
r,Co−30at%Ru−5at%Cr,Co−50
at%Ru−5at%Cr,Co−65at%Ru−5
at%Cr,Co−75at%Ru−5at%Cr,C
o−30at%Ru−10at%Cr,Co−60at
%Ru−10at%Cr,Co−10at%Ru−20
at%Cr,Co−20at%Ru−20at%Cr,
Co−40at%Ru−20at%Cr,Co−10a
t%Ru−30at%Cr,Co−25at%Ru−3
0at%Cr,Co−40at%Ru−30at%C
r,Co−5at%Ru−35at%Cr,Co−25
at%Ru−35at%Cr,Co−5at%Ru−4
0at%Cr,Co−30at%Ru−30at%C
r。
The Ar gas pressure for sputtering is 3 mTorr,
Under the conditions of a sputter power of 10 W / cm 2 and a substrate temperature of 250 ° C., a NiAl film was formed to a thickness of 15 nm, an upper underlayer was formed to a thickness of 5 nm, a magnetic film was formed to a thickness of 16 nm, and a carbon film was formed to a thickness of 8 nm.
A perfluoropolyether-based film was applied as a lubricating film. The following results were obtained as the composition of the upper underlayer of the prepared sample. Co-10at% Ru, Co-20at% R
u, Co-30at% Ru, Co-35at% Ru, C
o-40at% Ru, Co-50at% Ru, Co-6
0 at% Ru, Co-65 at% Ru, Co-75 at
% Ru, Co-85 at% Ru, Co-10 at% Ru
-5at% Cr, Co-20at% Ru-5at% C
r, Co-30at% Ru-5at% Cr, Co-50
at% Ru-5 at% Cr, Co-65 at% Ru-5
at% Cr, Co-75at% Ru-5at% Cr, C
o-30at% Ru-10at% Cr, Co-60at
% Ru-10at% Cr, Co-10at% Ru-20
at% Cr, Co-20at% Ru-20at% Cr,
Co-40at% Ru-20at% Cr, Co-10a
t% Ru-30at% Cr, Co-25at% Ru-3
0 at% Cr, Co-40 at% Ru-30 at% C
r, Co-5 at% Ru-35 at% Cr, Co-25
at% Ru-35 at% Cr, Co-5 at% Ru-4
0 at% Cr, Co-30 at% Ru-30 at% C
r.

【0017】比較試料として、NiAl下層下地層上に
直接Co−21at%Cr−15at%Pt磁性膜を形
成した試料(比較例1)、及びNiAl下層下地層上に
Co−35at%Crからなる非磁性の上層下地層を設
けてCo−21at%Cr−15at%Pt磁性膜を形
成した試料(比較例2)を作製した。これらの試料にお
いて、上層下地層及び記録用磁性膜の平均の金属原子半
径をX線回折法で、保磁力を振動型磁力計(VSM)で
測定した。また、記録再生特性の評価を記録再生分離型
の磁気ヘッドを用いて行なった。記録ヘッドのギャップ
長は0.2μm、再生用のスピンバルブヘッドのシール
ド間隔は0.2μm、測定時のスペーシングは0.04
μmとした。記録信号の経時変化の測定は、350kF
CIの磁気記録信号の記録直後の再生出力(St=0)と
100時間後の再生出力(St=100)の比として評価し
た。
As comparative samples, a sample in which a Co-21 at% Cr-15 at% Pt magnetic film was formed directly on a NiAl underlayer (Comparative Example 1), and a non-Co-35 at% Cr film on a NiAl underlayer. A sample (Comparative Example 2) in which a magnetic upper layer was provided to form a Co-21 at% Cr-15 at% Pt magnetic film was prepared. In these samples, the average metal atom radius of the upper underlayer and the recording magnetic film was measured by an X-ray diffraction method, and the coercive force was measured by a vibrating magnetometer (VSM). The evaluation of the recording / reproducing characteristics was performed using a recording / reproducing separated magnetic head. The gap length of the recording head is 0.2 μm, the shield interval of the spin valve head for reproduction is 0.2 μm, and the spacing at the time of measurement is 0.04.
μm. Measurement of the change over time of the recording signal is 350 kF
It was evaluated as the ratio of the reproduced output ( St = 0 ) immediately after recording of the CI magnetic recording signal and the reproduced output ( St = 100 ) after 100 hours.

【0018】図5に、上層下地層のCo−Ru−Cr合
金系のそれぞれ平均の金属原子半径の測定値とCo−2
1at%Cr−15at%Pt磁性膜の平均金属原子半
径の値を示す。Co−Ru−Cr合金系の金属原子半径
は、Ru濃度に依存して増大した。磁性膜の金属原子半
径とほとんど等しくなるRu濃度は20−40at%R
uの範囲となった。
FIG. 5 shows the measured values of the average metal atomic radius of the Co-Ru-Cr alloy system of the upper underlayer and Co-2
The value of the average metal atom radius of the 1 at% Cr-15 at% Pt magnetic film is shown. The metal atomic radius of the Co-Ru-Cr alloy system increased depending on the Ru concentration. The Ru concentration that is almost equal to the metal atomic radius of the magnetic film is 20-40 at% R
u range.

【0019】図6は、Co−Ru−Cr合金系のRu濃
度と媒体保磁力の関係を示す。10Gb/in2以上の
記録密度実現に必要と考えられる保磁力が2.5kOe
以上となるRuの組成範囲は5〜65at%であり、し
かも、この範囲であってもCr濃度が35at%を超え
ると保磁力は2.5kOe以下になることが分かった。
なお、Ruの組成範囲を10〜30at%とすると3.
0kOe以上の保磁力が得られる。これに対し、比較例
1、2の試料の保磁力はいずれも2.5kOe以下であ
り、本発明が高い保磁力を得るのに有効であることが確
認された。
FIG. 6 shows the relationship between the Ru concentration of the Co-Ru-Cr alloy and the coercivity of the medium. The coercive force considered to be necessary for realizing a recording density of 10 Gb / in 2 or more is 2.5 kOe
The above Ru composition range is 5 to 65 at%, and even in this range, it is found that the coercive force becomes 2.5 kOe or less when the Cr concentration exceeds 35 at%.
When the composition range of Ru is set to 10 to 30 at%, 3.
A coercive force of 0 kOe or more is obtained. On the other hand, the coercive force of each of the samples of Comparative Examples 1 and 2 was 2.5 kOe or less, confirming that the present invention was effective for obtaining a high coercive force.

【0020】図7は、350kFCIの記録信号の10
0時間後の出力比率を示す図である。0.9以上の比率
が得られている範囲は、Co−Rux−Cry合金におい
て5at%≦x≦65at%,35at%≧y≧0であ
ることが確認された。なお、10at%≦x≦30at
%とすると、0.95以上の比率が得られることが分か
る。また、図6及び図7の結果を比較することにより、
同じ記録用磁性膜を用いた媒体においては、高い保磁力
を示す媒体は記録信号の安定性も良いことが分かった。
本発明による磁気記録媒体は、比較例1、2のいずれに
比べても記録信号の減少比率が改善されていることが分
かった。
FIG. 7 shows the 10 k of the recording signal of 350 kFCI.
It is a figure which shows the output ratio after 0 hour. Range 0.9 or more ratios are obtained, 5at% ≦ x ≦ 65at% in Co-Ru x -Cr y alloy, to be 35at% ≧ y ≧ 0 was confirmed. In addition, 10at% ≦ x ≦ 30at
%, A ratio of 0.95 or more can be obtained. Also, by comparing the results of FIGS. 6 and 7,
In the medium using the same recording magnetic film, it was found that a medium having a high coercive force also had good stability of a recording signal.
It was found that the magnetic recording medium according to the present invention had an improved reduction ratio of the recording signal as compared with any of Comparative Examples 1 and 2.

【0021】〔実施例2〕実施例1において、下層下地
層としてbcc構造を持つ材料を用い、かつ記録用の磁
性膜としてCo−17at%Cr−20at%Pt−3
at%Taを用いた以外は、膜厚、組成及び形成プロセ
ス条件を同様にして、図2に示す断面構造を持つ磁気記
録媒体を作成した。ここでbcc構造を持つ材料とし
て、Cr,Cr−50at%V,Cr−5at%Ti,
Cr−10at%Nb,Cr−15at%Moを用い
た。
Example 2 In Example 1, a material having a bcc structure was used as the lower underlayer, and Co-17 at% Cr-20 at% Pt-3 was used as the magnetic film for recording.
A magnetic recording medium having a cross-sectional structure shown in FIG. 2 was prepared by using the same film thickness, composition, and forming process conditions except that at% Ta was used. Here, as materials having a bcc structure, Cr, Cr-50 at% V, Cr-5 at% Ti,
Cr-10 at% Nb and Cr-15 at% Mo were used.

【0022】比較試料として上層下地層を導入しない試
料を作成した。媒体の保磁力を測定した結果、表1に示
す結果を得た。本発明で提案する下地層を有する磁気記
録媒体は大きな保磁力を有していることが分かる。N
o.9,10,16,27,29の試料のように、下地
層が本発明の提案から外れる場合には、磁気記録媒体の
性能向上への寄与がそれほど大きくならない。
As a comparative sample, a sample without the upper underlayer was prepared. As a result of measuring the coercive force of the medium, the results shown in Table 1 were obtained. It can be seen that the magnetic recording medium having the underlayer proposed in the present invention has a large coercive force. N
When the underlayer deviates from the proposal of the present invention as in the samples of Examples 9, 10, 16, 27 and 29, the contribution to the improvement of the performance of the magnetic recording medium is not so large.

【0023】[0023]

【表1】 [Table 1]

【0024】〔実施例3〕実施例1において、B2構造
を持つ下層下地層としてFeAl,FeV,CuZn,
CoAl及びCuPd材料を用いた以外の条件を同様に
して磁気記録媒体を作成した。媒体保磁力の向上効果と
記録磁気信号の時間変化に関する安定性を調べた結果、
実施例1と類似の結果を得、本発明の有効性を確認し
た。
[Embodiment 3] In Embodiment 1, FeAl, FeV, CuZn,
A magnetic recording medium was prepared under the same conditions except that CoAl and CuPd materials were used. As a result of examining the effect of improving the medium coercive force and the stability of the recording magnetic signal over time,
Similar results to Example 1 were obtained, confirming the effectiveness of the present invention.

【0025】〔実施例4〕下層下地層としてNaCl構
造を持つ材料を、中間下地層としてB2構造を持つ規則
合金層を、上層下地層としてCo−Ru−Cr合金膜を
用い、かつ記録用の磁性膜としてCo−18at%Cr
−15at%Pt−4at%Nbを用いて図3に示す断
面構造を持つ磁気記録媒体を作成した。NaCl構造を
持つ材料としてはMgO及びLiFを用いた。下層下地
層の成膜法として高周波スパッタ法を採用した以外は、
実施例1と同様の膜厚、組成及び形成プロセス条件とし
た。
[Embodiment 4] A material having a NaCl structure is used as a lower underlayer, a regular alloy layer having a B2 structure is used as an intermediate underlayer, a Co-Ru-Cr alloy film is used as an upper underlayer, and recording is performed. Co-18at% Cr as magnetic film
Using -15 at% Pt-4 at% Nb, a magnetic recording medium having a sectional structure shown in FIG. 3 was prepared. MgO and LiF were used as materials having a NaCl structure. Except that the high frequency sputtering method was adopted as the method of forming the lower underlayer,
The same film thickness, composition, and forming process conditions as in Example 1 were used.

【0026】比較試料として、NaCl構造を持つ下層
下地層を導入しない試料で、しかも上層下地層としてC
o−30at%Ru−5at%Crを用いた試料(比較
例)を作成した。媒体の保磁力を測定した結果、表2に
示す結果を得た。本発明の磁気記録媒体は比較例に比し
て大きな保磁力を有していることが分かる。なお、N
o.9,10,16,27のように上部下地層の組成範
囲が本発明で提案する範囲から外れる場合には、磁気記
録媒体の性能向上に対する寄与がそれほど大きくならな
い。
As a comparative sample, a sample in which the lower underlayer having the NaCl structure was not introduced, and C was used as the upper underlayer.
A sample (comparative example) using o-30 at% Ru-5 at% Cr was prepared. As a result of measuring the coercive force of the medium, the results shown in Table 2 were obtained. It can be seen that the magnetic recording medium of the present invention has a larger coercive force than the comparative example. Note that N
When the composition range of the upper underlayer deviates from the range proposed in the present invention as in o. 9, 10, 16, and 27, the contribution to the performance improvement of the magnetic recording medium is not so large.

【0027】[0027]

【表2】 [Table 2]

【0028】また、NaCl構造を持つ材料のMgOを
下層下地層に設けてその上に上層下地層としてCo−3
0at%Ru−5at%Crを設けた試料と比較例の記
録用磁性膜を構成する結晶粒の分布を測定し、図8に示
す結果を得た。MgOからなる下層下地を形成した試料
の方が結晶粒の分布が狭く粒径が揃っており、高密度磁
気記録媒体としてより望ましい特性を有していることが
分かった。
Further, MgO of a material having a NaCl structure is provided on the lower underlayer, and Co-3 is formed thereon as an upper underlayer.
The distribution of crystal grains constituting the recording magnetic film of the sample provided with 0 at% Ru-5 at% Cr and the comparative example was measured, and the results shown in FIG. 8 were obtained. It was found that the sample in which the lower underlayer made of MgO was formed had a narrower crystal grain distribution and a uniform particle size, and had more desirable characteristics as a high-density magnetic recording medium.

【0029】〔実施例5〕直径2.5インチのシリコン
基板を用いて、高周波スパッタ法及び直流マグネトロン
スパッタ法によって、図4に示す断面構造を持つ磁気記
録媒体を作製した。基板41上に、接着強化層42とし
てSi,Cr,Ti,Nb,Zr,Ta,Hf,SiO
2,ZrO2,SiN,Si−25at%Cr,Si−5
at%Ti,SiO2+ZrO2を、下層下地層43とし
てMgOを、中間下地層44としてCrを、上層下地層
45としてCo−20at%Ru−15at%Crを、
記録用磁性膜46としてCo−20at%Cr−13a
t%Pt−2at%Nbを、そして保護膜47としてカ
ーボンをこの順序で形成した。ここで非導電材料のSi
2,SiN,SiO2+ZrO2の膜形成には高周波ス
パッタ法をそれ以外の膜形成には直流マグネトロンスパ
ッタ法を採用した。スパッタのArガス圧力を3mTo
rr、スパッターパワー10W/cm2、基板温度28
0℃の条件で接着強化層を2nm、下層下地層を5n
m、中間下地層を10nm、上層下地層を3nm、磁性
膜を15nm、保護膜を7nmの厚さ形成し、磁気記録
媒体を形成した。比較試料として、接着強下層を設けな
い以外は同様の構造の媒体を作製した。媒体の保磁力を
VSMにより、また接着強度をAl23−TiC球面摺
動子で測定した。摺動回数が105回で媒体の剥離が認
められない場合を○、それ以下で剥離が認められた場合
を×とした。測定した結果をそれぞれ表3に示す。
Example 5 Using a 2.5 inch diameter silicon substrate, a magnetic recording medium having a cross-sectional structure shown in FIG. 4 was produced by a high frequency sputtering method and a DC magnetron sputtering method. On a substrate 41, Si, Cr, Ti, Nb, Zr, Ta, Hf, SiO
2, ZrO 2, SiN, Si -25at% Cr, Si-5
at% Ti, SiO 2 + ZrO 2 , MgO as the lower underlying layer 43, Cr as the intermediate underlying layer 44, Co-20 at% Ru-15 at% Cr as the upper underlying layer 45,
Co-20 at% Cr-13a as the recording magnetic film 46
In this order, t% Pt-2at% Nb and carbon as the protective film 47 were formed. Here, the non-conductive material Si
A high frequency sputtering method was used for forming a film of O 2 , SiN, SiO 2 + ZrO 2 , and a DC magnetron sputtering method was used for forming other films. Ar gas pressure for sputtering is 3mTo
rr, sputter power 10 W / cm 2 , substrate temperature 28
Under the condition of 0 ° C., the adhesion enhancement layer is 2 nm, and the lower underlayer is 5 n
m, an intermediate underlayer of 10 nm, an upper underlayer of 3 nm, a magnetic film of 15 nm, and a protective film of 7 nm to form a magnetic recording medium. As a comparative sample, a medium having the same structure except that no adhesive strength lower layer was provided. The coercive force of the medium was measured with a VSM, and the adhesive strength was measured with an Al 2 O 3 —TiC spherical slider. When the number of times of sliding was 105 times and no peeling of the medium was observed, it was evaluated as ○, and when it was less than that, it was evaluated as ×. Table 3 shows the measured results.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明によれば、磁気記録媒体の高保磁
力化と耐熱揺らぎ安定性の確保が可能となることによ
り、特に10Gb/in2以上の高密度磁気記録が可能
となり、装置の小型化や大容量化が容易になる。
According to the present invention, the high coercive force of the magnetic recording medium and the stability of the thermal fluctuation can be ensured, so that high-density magnetic recording of 10 Gb / in 2 or more can be achieved, and the size of the apparatus can be reduced. It is easy to increase the capacity and increase the capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による磁気記録媒体の一例の断面模式
図。
FIG. 1 is a schematic sectional view of an example of a magnetic recording medium according to the present invention.

【図2】本発明による磁気記録媒体の他の例の断面模式
図。
FIG. 2 is a schematic sectional view of another example of the magnetic recording medium according to the present invention.

【図3】本発明による磁気記録媒体の他の例の断面模式
図。
FIG. 3 is a schematic sectional view of another example of the magnetic recording medium according to the present invention.

【図4】本発明による磁気記録媒体の他の例の断面模式
図。
FIG. 4 is a schematic sectional view of another example of the magnetic recording medium according to the present invention.

【図5】上層下地層の組成と平均金属原子半径の関係を
示す図。
FIG. 5 is a diagram showing the relationship between the composition of an upper underlayer and the average metal atom radius.

【図6】上層下地層の組成と媒体保磁力の関係を示す
図。
FIG. 6 is a diagram showing the relationship between the composition of the upper underlayer and the coercive force of the medium.

【図7】上層下地層の組成と磁気記録信号の出力比率の
関係を示す図。
FIG. 7 is a diagram showing a relationship between a composition of an upper underlayer and an output ratio of a magnetic recording signal.

【図8】媒体の結晶粒の直径の分布を示す図。FIG. 8 is a diagram showing a distribution of diameters of crystal grains of a medium.

【符号の説明】[Explanation of symbols]

11…非磁性基板、12…下層下地層、13…上層下地
層、14…磁性膜、15…保護膜、21…非磁性基板、
22…下層下地層、23…上層下地層、24…下磁性
膜、25…保護膜、31…非磁性基板、32…下層下地
層、33…中間下地層、34…上層下地層、35…磁性
膜、36…保護膜、41…非磁性基板、42…接着強化
層、43…下層下地層、44…中間下地層、45…上層
下地層、46…磁性膜、47…保護膜
11 nonmagnetic substrate, 12 lower underlayer, 13 upper underlayer, 14 magnetic film, 15 protective film, 21 nonmagnetic substrate,
22 lower underlayer, 23 upper layer, 24 lower magnetic film, 25 protective film, 31 nonmagnetic substrate, 32 lower layer, 33 intermediate layer, 34 upper layer, 35 magnetic layer Film: 36: Protective film, 41: Non-magnetic substrate, 42: Adhesion reinforcing layer, 43: Lower underlayer, 44: Intermediate underlayer, 45: Upper underlayer, 46: Magnetic film, 47: Protective film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平山 義幸 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 本多 幸雄 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 竹内 輝明 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D006 BB01 BB07 CA01 CA05 CA06 DA03 FA09  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yoshiyuki Hirayama 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. In Central Research Laboratory (72) Inventor Teruaki Takeuchi 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5D006 BB01 BB07 CA01 CA05 CA06 DA03 FA09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板と該非磁性基板上に下地層を
介して形成されたCo合金磁性膜及び保護膜を備える磁
気記録媒体において、前記下地層は前記基板に近い側の
下層下地層及び磁性膜に近い側の上層下地層の2層構造
を有し、前記下層下地層はB2構造を持つ規則合金層か
らなり、前記上層下地層は六方稠密構造を持つCo−R
x−Cry(5at%≦x≦65at%,35at%≧
y≧0at%)の合金材料からなることを特徴とする磁
気記録媒体。
1. A magnetic recording medium comprising a non-magnetic substrate, a Co alloy magnetic film formed on the non-magnetic substrate via an underlayer, and a protective film, wherein the underlayer is a lower underlayer on a side close to the substrate. The lower underlayer is a regular alloy layer having a B2 structure, and the upper underlayer is a Co-R having a hexagonal close-packed structure.
u x -Cr y (5 at% ≦ x ≦ 65 at%, 35 at% ≧
A magnetic recording medium comprising an alloy material satisfying y ≧ 0 at%).
【請求項2】 請求項1記載の磁気記録媒体において、
前記B2構造を持つ規則合金層はNiAl,FeAl,
FeV,CuZn,CoAl,CuPdから選ばれた材
料であることを特徴とする磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein
The ordered alloy layer having the B2 structure includes NiAl, FeAl,
A magnetic recording medium comprising a material selected from FeV, CuZn, CoAl, and CuPd.
【請求項3】 非磁性基板と該非磁性基板上に下地層を
介して形成されたCo合金磁性膜及び保護膜を備える磁
気記録媒体において、前記下地層は前記基板に近い側の
下層下地層及び磁性膜に近い側の上層下地層の2層構造
を有し、前記下層下地層は体心立方構造を持つ金属膜か
らなり、前記上層下地層は六方稠密構造を持つCo−R
x−Cry(5at%≦x≦65at%,35at%≧
y≧0at%)の合金材料からなることを特徴とする磁
気記録媒体。
3. A magnetic recording medium comprising a non-magnetic substrate, a Co alloy magnetic film formed on the non-magnetic substrate via an underlayer, and a protective film, wherein the underlayer is a lower underlayer on a side closer to the substrate. The lower underlayer is a metal film having a body-centered cubic structure, and the upper underlayer is a Co-R having a hexagonal close-packed structure.
u x -Cr y (5 at% ≦ x ≦ 65 at%, 35 at% ≧
A magnetic recording medium comprising an alloy material satisfying y ≧ 0 at%).
【請求項4】 請求項3記載の磁気記録媒体において、
前記体心立方構造を持つ金属膜はCr,Cr−Ti,C
r−Mo,Cr−Nb,Cr−Vから選ばれた材料であ
ることを特徴とする磁気記録媒体。
4. The magnetic recording medium according to claim 3, wherein
The metal film having the body-centered cubic structure is Cr, Cr-Ti, C
A magnetic recording medium comprising a material selected from r-Mo, Cr-Nb, and Cr-V.
【請求項5】 非磁性基板と該非磁性基板上に下地層を
介して形成されたCo合金磁性膜及び保護膜を備える磁
気記録媒体において、前記下地層は基板に近い側から下
層、中間、上層の3層構造を有し、前記下層下地層はM
gOもしくはLiF、前記中間下地層はB2構造を持つ
規則合金層もしくは体心立方構造を持つ金属膜、前記上
層下地層は六方稠密構造を持つCo−Rux−Cry(5
at%≦x≦65at%,35at%≧y≧0at%)
の合金材料からなることを特徴とする磁気記録媒体。
5. A magnetic recording medium comprising a non-magnetic substrate, a Co alloy magnetic film and a protective film formed on the non-magnetic substrate via an underlayer, wherein the underlayer is a lower layer, an intermediate layer, and an upper layer from a side close to the substrate. And the lower underlayer is M
gO or LiF, the intermediate underlayer metal film having an ordered alloy layer or body-centered cubic structure having a B2 structure, wherein the upper base layer is Co-Ru x -Cr y (5 having a hexagonal close-packed structure
at% ≦ x ≦ 65at%, 35at% ≧ y ≧ 0at%)
A magnetic recording medium characterized by comprising an alloy material of the following.
【請求項6】 請求項5記載の磁気記録媒体において、
前記基板と前記下層下地層の間にSi,Cr,Ti,N
b,Zr,Hf,Ta,SiOx,ZrO2,SiNも
しくはこれらを主成分とする合金からなる接着強化層を
設けたことを特徴とする磁気記録媒体。
6. The magnetic recording medium according to claim 5, wherein
Si, Cr, Ti, N between the substrate and the lower underlayer.
b, Zr, Hf, Ta, SiOx, magnetic recording medium characterized in that a ZrO 2, SiN or adhesion enhancing layer consisting of a main component alloy.
【請求項7】 請求項1〜6のいずれか1項記載の磁気
記録媒体において、前記磁性膜はPtを5at%以上、
30at%以下含む六方稠密構造を持つCo合金材料か
らなることを特徴とする磁気記録媒体。
7. The magnetic recording medium according to claim 1, wherein the magnetic film has Pt of 5 at% or more.
A magnetic recording medium comprising a Co alloy material having a hexagonal close-packed structure containing not more than 30 at%.
【請求項8】 請求項1〜7のいずれか1項記載の磁気
記録媒体において、前記上層下地層の厚さが1nm以
上、50nm以下であることを特徴とする磁気記録媒
体。
8. The magnetic recording medium according to claim 1, wherein the thickness of the upper underlayer is 1 nm or more and 50 nm or less.
JP10288134A 1998-10-09 1998-10-09 Magnetic recording media Expired - Fee Related JP3075712B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10288134A JP3075712B2 (en) 1998-10-09 1998-10-09 Magnetic recording media
US09/413,813 US6383667B1 (en) 1998-10-09 1999-10-07 Magnetic recording medium
US10/001,995 US6541125B2 (en) 1998-10-09 2001-12-05 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10288134A JP3075712B2 (en) 1998-10-09 1998-10-09 Magnetic recording media

Publications (2)

Publication Number Publication Date
JP2000113445A true JP2000113445A (en) 2000-04-21
JP3075712B2 JP3075712B2 (en) 2000-08-14

Family

ID=17726261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10288134A Expired - Fee Related JP3075712B2 (en) 1998-10-09 1998-10-09 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3075712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015417A (en) * 2000-02-23 2002-01-18 Fuji Electric Co Ltd Magnetic recording medium and method for manufacturing the same
JP2002190108A (en) * 2000-10-13 2002-07-05 Fuji Electric Co Ltd Magnetic recording medium and its production method
US6623874B2 (en) * 2000-10-06 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
JP2011210303A (en) * 2010-03-29 2011-10-20 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015417A (en) * 2000-02-23 2002-01-18 Fuji Electric Co Ltd Magnetic recording medium and method for manufacturing the same
US6623874B2 (en) * 2000-10-06 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
US7005202B2 (en) 2000-10-06 2006-02-28 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
JP2002190108A (en) * 2000-10-13 2002-07-05 Fuji Electric Co Ltd Magnetic recording medium and its production method
JP2011210303A (en) * 2010-03-29 2011-10-20 Showa Denko Kk Thermally assisted magnetic recording medium and magnetic storage device

Also Published As

Publication number Publication date
JP3075712B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US6541125B2 (en) Magnetic recording medium
JP2561655B2 (en) In-plane magnetic recording medium
US6150015A (en) Ultra-thin nucleation layer for magnetic thin film media and the method for manufacturing the same
US5851643A (en) Magnetic recording media and magnetic recording read-back system which uses such media
US20040191578A1 (en) Method of fabricating L10 ordered fePt or FePtX thin film with (001) orientation
US5344706A (en) Magnetic recording medium comprising an underlayer and a cobalt samarium amorphous magnetic layer having a SmCo5 crystalline interface with the underlayer
US20030186086A1 (en) Magnetic recording medium and magnetic storage apparatus
US5658659A (en) Magnetic alloy and method for manufacturing same
US6010795A (en) Magnetic recording medium comprising a nickel aluminum or iron aluminum underlayer and chromium containing intermediate layer each having (200) dominant crystalographic orientation
US6221481B1 (en) High Cr, low saturation magnetization intermediate magnetic layer for high coercivity and low medium noise
JP3298893B2 (en) Bicrystalline cluster magnetic recording media
US6156422A (en) High density magnetic recording medium with high Hr and low Mrt
US6544672B1 (en) Magnetic recording medium and magnetic storage
US6183832B1 (en) CoCrPtB alloys with increased boron content and method of producing same
JP3075712B2 (en) Magnetic recording media
JPH10334444A (en) Magnetic recording medium
JP2003203330A (en) Magnetic recording medium
US20030228495A1 (en) Magnetic recording medium and manufacturing method thereof
JPH06259743A (en) Magnetic recording medium and magnetic recorder
KR100456166B1 (en) Magnetic recording medium comprising a nickel aluminum or iron aluminum underlayer
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP3157806B2 (en) Magnetic recording media
JP2809049B2 (en) Magnetic recording media
JPH0817032A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees