JP2000111884A - Liquid crystal panel frame and liquid crystal panel body - Google Patents

Liquid crystal panel frame and liquid crystal panel body

Info

Publication number
JP2000111884A
JP2000111884A JP28551398A JP28551398A JP2000111884A JP 2000111884 A JP2000111884 A JP 2000111884A JP 28551398 A JP28551398 A JP 28551398A JP 28551398 A JP28551398 A JP 28551398A JP 2000111884 A JP2000111884 A JP 2000111884A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal panel
substrates
pair
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28551398A
Other languages
Japanese (ja)
Inventor
Mayumi Iguchi
真由美 井口
Takao Minato
孝夫 湊
Katsuhiro Suzuki
克宏 鈴木
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP28551398A priority Critical patent/JP2000111884A/en
Publication of JP2000111884A publication Critical patent/JP2000111884A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal panel body which has a uniform and stable alignment as a whole and obtains high contrast by solving problems of generation of crack and unevenness of density. SOLUTION: The liquid crystal panel frame has plural linear partition members 404 provided between both substrates and arranged in parallel with each other with a specified interval and alignment films 403 subjected to uniaxial aligning treatment. The plural linear partition members 404 are extended almost in parallel with respect to a direction of the uniaxial aligning treatment. Further, either ferroelectric or antiferroelectric liquid crystal is enclosed in the liquid crystal panel frame, in which parts, except for opening edge parts for passage of liquid crystal formed on edges of the plural linear partition members 404, form respective linear spaces in the state closed toward liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用業務用の情
報表示端末としての液晶ディスプレイに係わる。更に詳
しくは、強誘電性液晶もしくは反強誘電性液晶等のスメ
クチック層を用いる液晶ディスプレイの配向の制御技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display as an information display terminal for home business. More specifically, the present invention relates to a technique for controlling the orientation of a liquid crystal display using a smectic layer such as a ferroelectric liquid crystal or an antiferroelectric liquid crystal.

【0002】[0002]

【従来の技術】フラットパネルディスプレイとして液晶
ディスプレイはその軽量性、省スペース・低消費電力な
どの利点からの最も普及が進んでおり、近年の大画面化
と高精細化技術の進展によりCRT に取って替わるものと
して期待されている。
2. Description of the Related Art Liquid crystal displays are becoming more and more popular as flat panel displays because of their advantages such as light weight, space saving and low power consumption. It is expected as a replacement.

【0003】なかでも、強誘電及び反強誘電性液晶は高
速応答性・高視野角・メモリー性のため単純マトリック
ス駆動が可能である。しかしながら、配向性に関しては
スメクチック層に特徴的なジグザグ欠陥や線状の欠陥が
発生し表示品質的には十分とは言い難い。さらに、半固
体的なスメクチック相を利用するため、液体的なネマチ
ック液晶とは違って、液晶パネル体の変形により液晶の
層構造が一度破壊されてしまうと、自己回復性がなく継
続使用ができないという致命的な欠点があった。
Above all, ferroelectric and antiferroelectric liquid crystals can be driven by a simple matrix because of their high-speed response, high viewing angle, and memory properties. However, with respect to the orientation, zigzag defects and linear defects characteristic of the smectic layer occur, and it is hard to say that the display quality is sufficient. Furthermore, since a semi-solid smectic phase is used, unlike a liquid nematic liquid crystal, if the layer structure of the liquid crystal is broken once by deformation of the liquid crystal panel body, there is no self-healing property and it cannot be used continuously. There was a fatal drawback.

【0004】この2つの問題点を同時に解決する手段と
して、一対のガラス基板を直線状の隔壁部材を介して完
全に接着し、形成される直線状空間にこれらの液晶を封
じ込め、温度勾配冷却法により液晶の配向状態を改善す
る技術が本願発明者らにより開示されている(特開平7
―318912号公報、特開平7―159792号公報
等)。
As means for solving these two problems at the same time, a pair of glass substrates is completely adhered via a linear partition member, these liquid crystals are sealed in a linear space formed, and a temperature gradient cooling method is used. The present inventors have disclosed a technique for improving the alignment state of the liquid crystal by using the method described in Japanese Patent Application Laid-Open No.
-318912, JP-A-7-159792, etc.).

【0005】この方法において、液晶パネル枠は、図1
に示すように、一対の基板101の少なくとも一方の基
板上に電極102とその上に配向制御用の配向膜103
が形成され、さらに直線状の隔壁部材104が定法のフ
ォトリソ法によりスペーサーとして形成される。この隔
壁部材104の幅は電極間の幅程度で5〜30ミクロン
程度の範囲で選定され、厚みはセルギャップとほぼ同じ
であり、1〜2ミクロンの範囲で所望の値に設定され
る。ピッチは電極ピッチあるいは複数ピッチで30〜3
00ミクロン程度である。このような隔壁部材104を
介して上下の基板を加熱圧着により接着することで、開
口端部以外は実質的に密閉された細長い直線状空間が得
られこの内部に液晶105を封入保持する。なお、前記
配向膜103は、隔壁とほぼ平行方向にラビング処理、
UV照射などの一軸配向性を有するものであり、有機配向
膜の他に二酸化珪素の斜方蒸着膜で一軸配向性を付与さ
れてもかまわない。
In this method, the liquid crystal panel frame is formed as shown in FIG.
As shown in FIG. 3, an electrode 102 is formed on at least one of a pair of substrates 101 and an alignment film 103 for controlling alignment is formed thereon.
Is formed, and the linear partition member 104 is formed as a spacer by a standard photolithography method. The width of the partition member 104 is selected in the range of about 5 to 30 microns, which is about the width between electrodes, and the thickness is almost the same as the cell gap, and is set to a desired value in the range of 1 to 2 microns. The pitch is 30 to 3 at the electrode pitch or multiple pitches
It is about 00 microns. By bonding the upper and lower substrates by heat and pressure via such a partition member 104, an elongated linear space that is substantially closed except at the opening end is obtained, and the liquid crystal 105 is sealed and held therein. The alignment film 103 is rubbed in a direction substantially parallel to the partition wall.
It has uniaxial orientation such as UV irradiation, and the uniaxial orientation may be imparted by an obliquely deposited silicon dioxide film in addition to the organic orientation film.

【0006】この構造の液晶パネル枠にスメクチック液
晶を液体状態もしくはコレステリック相で封入し、液晶
パネル体を高温の恒温槽から室温程度の恒温槽に漸次移
動させる温度勾配冷却を行う。移動方向は隔壁とほぼ平
行方向に行われ、これにより、個々の直線状空間には図
2に示すように温度勾配が生じ、内部の液晶は空間の一
端から他端に向かって順次冷却される。この温度勾配冷
却により液晶の体積収縮が低温側から順次起こり、それ
に伴い一定方向への液晶の流動が誘起される。こうする
ことによりスメクチックA相の配向性が向上し、その結
果ジグザグ欠陥と線状欠陥のないカイラルスメクチック
相が形成される。
A smectic liquid crystal is sealed in a liquid state or a cholesteric phase in a liquid crystal panel frame having this structure, and a temperature gradient cooling is performed to gradually move the liquid crystal panel from a high temperature constant temperature bath to a room temperature constant temperature bath. The moving direction is substantially parallel to the partition walls, whereby a temperature gradient is generated in each linear space as shown in FIG. 2, and the liquid crystal inside is cooled sequentially from one end of the space to the other end. . Due to the temperature gradient cooling, the volume shrinkage of the liquid crystal occurs sequentially from the low temperature side, and the flow of the liquid crystal in a certain direction is thereby induced. By doing so, the orientation of the smectic A phase is improved, and as a result, a chiral smectic phase free of zigzag defects and linear defects is formed.

【0007】なお、この温度勾配冷却法において効果的
な液晶の流動をスメクチックA 相で誘導するためには隔
壁部材と上下基板に囲まれた細長い空間の断面積をある
臨界値より小さくする必要がある。このためには大きく
変えることのできないセルギャップではなく隔壁部材の
ピッチを最適化する。この値は概ね800ミクロン程度
以下である。
In order to induce effective liquid crystal flow in the smectic A phase in this temperature gradient cooling method, it is necessary to make the sectional area of the elongated space surrounded by the partition member and the upper and lower substrates smaller than a certain critical value. is there. For this purpose, the pitch of the partition member is optimized, not the cell gap which cannot be largely changed. This value is about 800 microns or less.

【0008】温度勾配に関してはスメクチックA 相にお
いて1mmあたり2℃以上が必要である。コレステリック
相のない反強誘電性液晶では望ましい温度勾配は1mmあ
たり4℃以上である。温度勾配をかける方法としては2
種類の温度雰囲気の恒温槽間を液晶パネル体を移動させ
るものであり、その恒温槽は液体、固体、気体のいずれ
かから選択される。このような強い温度勾配は上述した
接着型液晶パネル体にしか印加できない。接着していな
い場合はガラス基板の収縮が激しく、ガラス表面で液晶
がこすられスメクチック層は砂状になり望ましい配向状
態は得られない。
[0008] Regarding the temperature gradient, the smectic A phase needs to be at least 2 ° C per mm. In an antiferroelectric liquid crystal having no cholesteric phase, a desirable temperature gradient is 4 ° C. or more per 1 mm. There are two methods for applying a temperature gradient.
The liquid crystal panel is moved between thermostats of different temperature atmospheres, and the thermostat is selected from liquid, solid, and gas. Such a strong temperature gradient can be applied only to the above-mentioned adhesive liquid crystal panel body. If not adhered, the glass substrate shrinks sharply, the liquid crystal is rubbed on the glass surface, and the smectic layer becomes sandy, so that a desirable alignment state cannot be obtained.

【0009】温度勾配冷却法には前述のように、隔壁部
材を有する接着型パネルを使用するが、これにより、ス
メクチック液晶の配向制御だけではなく耐衝撃性の問題
も解決する事ができる。前記隔壁部材により、液晶パネ
ル体は頑強になり、100N/cm2程度までの押圧衝撃に耐え
ることができる。更に別の利点はセルギャップが隔壁に
より非常に高精度で制御できることである。更に別の利
点は隔壁で仕切られているので液晶の浸透方向が直線的
に制限され蛇行しなくなることである。
As described above, the adhesive type panel having the partition member is used for the temperature gradient cooling method. This can solve not only the problem of controlling the alignment of the smectic liquid crystal but also the problem of impact resistance. Due to the partition member, the liquid crystal panel body becomes robust and can withstand a pressing impact up to about 100 N / cm 2 . Yet another advantage is that the cell gap can be controlled with very high precision by the partition walls. Still another advantage is that since the liquid crystal is partitioned by the partition walls, the direction of permeation of the liquid crystal is linearly restricted and does not meander.

【0010】上述の隔壁部材による接着型パネルと温度
勾配冷却法を併用することにより、液晶パネル体の耐衝
撃性を大幅に向上させるだけではなく、強誘電性液晶に
関してはほぼ無欠陥の配向層を安定して製造できる。反
強誘電性液晶でもこれまでにない配向性が得られる。
The combined use of the above-mentioned adhesive panel with the partition member and the temperature gradient cooling method not only significantly improves the impact resistance of the liquid crystal panel body, but also provides a substantially defect-free alignment layer for the ferroelectric liquid crystal. Can be manufactured stably. An unprecedented orientation can be obtained even with an antiferroelectric liquid crystal.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、一軸配
向処理が隔壁の延長方向に平行に近い場合(図3参
照)、パネル冷却時や温度勾配冷却時に隔壁と平行方向
すなわち液晶の層法線方向301に液晶の割れ302
(クラック)が生じることがあるという問題があった。
この問題は、隔壁ピッチが250 μm程度以下の場合に生
じるものである。これは、収縮率の大きい層内方向30
3の距離が短く限定されることにより、液晶の体積収縮
分を層内で収容しきれなくなるためと考えられる。ここ
で使用している層構造を有する液晶では、液晶の流動が
層内よりも層間で起こりにくいため、層間での移動はあ
る程度までしか起こり得ない。層間移動で補いきれなか
った密度変化分は、層内で賄うしかないわけだが、隔壁
により層内方向の距離が短く限定されてしまうと、これ
ができなくなり、クラックが発生するものと考えられ
る。すなわちクラック発生の原因とは液晶の充填密度の
不足とも言える。
However, when the uniaxial orientation treatment is nearly parallel to the direction in which the partition walls extend (see FIG. 3), the direction parallel to the partition walls, that is, the liquid crystal layer normal direction 301 during panel cooling or temperature gradient cooling. Liquid crystal crack 302
(Cracks) may occur.
This problem occurs when the partition pitch is about 250 μm or less. This is because the in-layer direction 30 with a large shrinkage
It is considered that, by limiting the distance of 3 short, the volume contraction of the liquid crystal cannot be accommodated in the layer. In the liquid crystal having the layer structure used here, the flow of the liquid crystal is less likely to occur between the layers than in the layer, so that the movement between the layers can occur only to a certain extent. The density change that could not be compensated for by the interlayer movement must be covered within the layer, but if the distance in the layer direction is limited to a short distance by the partition, this cannot be achieved, and cracks are considered to occur. That is, it can be said that the cause of the crack generation is insufficient of the filling density of the liquid crystal.

【0012】また、クラック発生の問題とともに、液晶
の充填が高密度でない場合には、パネル内で密度の不均
一が起こりやすく表示ムラにつながるという問題もあっ
た。
In addition to the problem of cracks, when the filling of liquid crystal is not at a high density, there is a problem that the density is non-uniform in the panel and the display becomes uneven.

【0013】本発明は上述のクラック発生と密度の不均
一の発生の問題を解決して、全体的に均一で安定な配向
を有し、かつ高いコントラスト比を得ることのできる液
晶パネル枠及び液晶パネル体を提供することを目的とす
る。
The present invention solves the above-mentioned problems of crack generation and non-uniform density, and has a liquid crystal panel frame and a liquid crystal having uniform and stable orientation as a whole and capable of obtaining a high contrast ratio. It is intended to provide a panel body.

【0014】[0014]

【課題を解決するための手段】本発明は上記の課題を解
決するために、請求項1に記載の発明は、少なくとも一
方が透明な一対の基板と、それらの基板上に形成されて
いて互いに対向する一対の電極と、両基板間に設けられ
ていて所定の間隔をおいて互いに平行に並べられた複数
の直線状の隔壁部材と、上記一対の基板のうちの少なく
とも一方の上に形成されていて一軸配向処理が施される
配向膜とを有しており、複数の直線状の隔壁部材は、一
軸配向処理の方向に対して略平行に延びており、さらに
複数の直線状の隔壁部材の一端に形成されている液晶通
過用の開口端部以外の部分が液体に対して密閉された状
態の直線状空間を形成することを特徴とする液晶パネル
枠である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a first aspect of the present invention, in which at least one of a pair of transparent substrates and a pair of transparent substrates formed on those substrates are provided. A pair of electrodes facing each other, a plurality of linear partition members provided between the two substrates and arranged in parallel at a predetermined interval, and formed on at least one of the pair of substrates. A plurality of linear partition members extending substantially parallel to the direction of the uniaxial alignment process, and further comprising a plurality of linear partition members. The liquid crystal panel frame is characterized in that a part other than the liquid crystal passing opening end formed at one end of the liquid crystal panel forms a linear space sealed with respect to the liquid.

【0015】請求項2に記載の発明は、請求項1記載の
発明を前提とし、上記複数の直線状の隔壁部材が20〜
800μmの間隔で並べられていることを特徴とする液
晶パネル枠である。
According to a second aspect of the present invention, based on the first aspect of the present invention, the plurality of linear partition members are 20 to 20.
A liquid crystal panel frame characterized by being arranged at an interval of 800 μm.

【0016】請求項3に記載の発明は、請求項1または
2に記載の発明を前提とし、上記複数の直線状の隔壁部
材と一軸配向処理のベクトル方向のなす角の大きさが0
〜30°であることを特徴とする液晶パネル枠である。
According to a third aspect of the present invention, based on the premise of the first or second aspect, the angle between the plurality of linear partition members and the vector direction of the uniaxial orientation process is zero.
A liquid crystal panel frame characterized by being at an angle of up to 30 °.

【0017】請求項4に記載の発明は、請求項1から3
に記載の発明を前提とし、上記一対の両基板が一軸配向
処理が施される配向膜を有しており、かつ、一軸配向処
理のベクトルの方向がともに開口端部またはその逆方向
を向いていることを特徴とする液晶パネル枠である。
The invention described in claim 4 is the invention according to claims 1 to 3
Assuming the invention described in the above, the pair of substrates has an alignment film subjected to uniaxial alignment processing, and the direction of the uniaxial alignment processing vector is both directed to the open end or the opposite direction. A liquid crystal panel frame.

【0018】請求項5に記載の発明は、少なくとも一方
が透明な一対の基板と、それらの基板上に形成されてい
て互いに対向する一対の電極と、両基板間に設けられて
いて所定の間隔をおいて互いに平行に並べられた複数の
直線状の隔壁部材と、上記一対の基板のうちの少なくと
も一方の上に形成されていて一軸配向処理が施される配
向膜とを有しており、複数の直線状の隔壁部材は、一軸
配向処理の方向に対して略平行に延びており、さらに複
数の直線状の隔壁部材の一端に形成されている液晶通過
用の開口端部以外の部分が液体に対して密閉された状態
の直線状空間を形成し、さらにそれらの各直線状空間の
内部に強誘電性液晶又は反強誘電性液晶が封入されるこ
とを特徴とする液晶パネル体である。
According to a fifth aspect of the present invention, at least one of a pair of transparent substrates, a pair of electrodes formed on the substrates and facing each other, and a predetermined interval provided between the two substrates. A plurality of linear partition members arranged in parallel with each other, and an alignment film formed on at least one of the pair of substrates and subjected to a uniaxial alignment treatment, The plurality of linear partition members extend substantially in parallel to the direction of the uniaxial alignment treatment, and a portion other than the liquid crystal passing opening formed at one end of the plurality of linear partition members is further provided. A liquid crystal panel body characterized by forming a linear space sealed with respect to a liquid, and further enclosing a ferroelectric liquid crystal or an antiferroelectric liquid crystal inside each of the linear spaces. .

【0019】請求項6に記載の発明は、請求項5に記載
の発明を前提とし、上記強誘電性液晶又は反強誘電性液
晶は、液晶通過用の開口端部と逆側から冷却する温度勾
配冷却により配向していることを特徴とする液晶パネル
体である。
The invention according to claim 6 is based on the invention according to claim 5, wherein the ferroelectric liquid crystal or the antiferroelectric liquid crystal is cooled from a side opposite to an end of the opening through which the liquid crystal passes. A liquid crystal panel, which is oriented by gradient cooling.

【0020】本願発明者は、液晶の層内方向・層法線方
向の液晶の流動能の違いから生じる液晶パネル体中のク
ラックの発生と密度の不均一の問題を、液晶充填密度の
不足によるものと捉え、封止方法と一軸配向処理の方向
および液晶の浸透方向を調節することで液晶を高密度に
充填し、液晶パネル体全体を均一にかつクラックレスに
することができることを見いだした。
The inventor of the present application has solved the problem of the occurrence of cracks and non-uniform density in the liquid crystal panel caused by the difference in the flowability of the liquid crystal in the direction of the liquid crystal layer and the normal direction of the layer due to the insufficient liquid crystal filling density. By adjusting the sealing method, the direction of the uniaxial alignment treatment, and the direction of the liquid crystal permeation, it was found that the liquid crystal could be filled at a high density and the entire liquid crystal panel could be made uniform and crackless.

【0021】スメクチック液晶では上述のように層内方
向と層法線方向での流動能は、一般に層法線方向よりも
層内方向の方が流動能が大きい。一軸配向処理の方向が
隔壁の延長方向に平行な場合は、液晶の流動能の高い層
内方向が隔壁により短くさえぎられてしまうために体積
収縮分すなわち密度変化分を補えずクラックが発生する
と考えられる。また、このように液晶にある程度の流動
能があるために、液晶の密度の不均一から表示ムラが起
こる場合がある。これら2点の問題点は、ともにパネル
内の液晶の密度というものが鍵となっている。
As described above, in the smectic liquid crystal, the flowability in the in-layer direction and the layer normal direction is generally larger in the in-layer direction than in the layer normal direction. If the direction of the uniaxial alignment treatment is parallel to the direction in which the partition walls extend, it is considered that cracks may occur because the partition walls have a high flowability of the liquid crystal and are blocked short by the partition walls. Can be Further, since the liquid crystal has a certain degree of fluidity, display unevenness may occur due to non-uniform density of the liquid crystal. The key to these two problems is the density of the liquid crystal in the panel.

【0022】本願発明者はこの点に着目し、液晶を高密
度に充填することで、問題を解決する方法を見いだし
た。クラック発生の問題は、温度降下時の液晶の密度変
化が原因であり、液晶の不均一の問題は、密度分布の不
均一が原因であるので、基板と隔壁によって作られた液
体に対して密閉された直線状空間に限界まで液晶を詰め
込む、すなわち高密度に液晶を充填することにより、温
度降下時の密度変化を液晶内部で緩和・収容することが
可能になり、クラックの発生を防ぐことが可能となる。
また、パネル内の液晶の密度の揺らぎが見られないほど
高密度に液晶を詰め込むことで、全体的に均一な液晶パ
ネル体とすることができる。
The present inventor has paid attention to this point, and has found a method for solving the problem by filling the liquid crystal with high density. The problem of crack generation is caused by the change in the density of the liquid crystal when the temperature drops, and the problem of non-uniformity of the liquid crystal is caused by the non-uniform density distribution. By filling the liquid crystal in the linear space to the limit, that is, filling the liquid crystal at a high density, it is possible to mitigate and accommodate the density change during the temperature drop inside the liquid crystal, and prevent the occurrence of cracks It becomes possible.
In addition, by packing the liquid crystal at a high density such that the fluctuation of the density of the liquid crystal in the panel is not seen, a liquid crystal panel body which is uniform as a whole can be obtained.

【0023】図4に一例として示すような請求項1の液
晶パネル枠の構造を用いると、複数の直線状の隔壁部材
の一端に形成されている液晶通過用の開口端部以外が全
部封止されているので液晶の逃げ場がなく、そのため
に、液晶封入時に一旦パネル内を減圧してその後液晶開
口端部を塞いで大気圧下に戻す、あるいはさらに加圧す
ることができ、液晶を高密度に充填することができる。
この際、液晶パネル枠の一対の基板間に隔壁が存在する
ことにより、液晶と隔壁の表面張力により隔壁がない場
合よりも封入速度が速くなるとともに、液晶の流動と詰
め込み方向を規制できることから、隔壁がない場合より
もより均一に液晶を詰め込むことができ、液晶パネル体
完成後の液晶の流動による密度の揺らぎも制限できる。
When the structure of the liquid crystal panel frame according to the first aspect is used as shown in FIG. 4 as an example, all the portions except for the liquid crystal passing opening formed at one end of the plurality of linear partition members are sealed. There is no escape for the liquid crystal.Therefore, when the liquid crystal is sealed, the inside of the panel is once depressurized and then closed at the liquid crystal opening end to return to the atmospheric pressure. Can be filled.
At this time, since the partition wall is present between the pair of substrates of the liquid crystal panel frame, the sealing speed is higher than the case where there is no partition wall due to the surface tension of the liquid crystal and the partition wall, and the flow and filling direction of the liquid crystal can be regulated. The liquid crystal can be more uniformly packed than in the case where there is no partition, and the fluctuation of the density due to the flow of the liquid crystal after the completion of the liquid crystal panel body can be limited.

【0024】液晶をさらに高密度に詰め込むには、液晶
パネル体に温度勾配冷却法を施すことが有効である。温
度勾配冷却法は、前述の通り、液晶自身の温度降下によ
る体積収縮を駆動力として液晶を流動させる方法である
ので、液晶パネル体の液晶開口端部と逆側から冷却する
ことにより、液晶を高密度に詰め込み、かつ欠陥のない
配向を得ることが可能となる。この際、一対の基板が接
着されていることが望ましい。なお、隔壁は温度勾配冷
却の効果が損なわれない程度にやむを得ずに隙間があっ
ても構わない。
In order to pack the liquid crystal at a higher density, it is effective to apply a temperature gradient cooling method to the liquid crystal panel body. As described above, the temperature gradient cooling method is a method in which the liquid crystal flows by using the volume contraction caused by the temperature drop of the liquid crystal itself as a driving force, so that the liquid crystal is cooled from the side opposite to the liquid crystal opening end of the liquid crystal panel body. It is possible to obtain a high-density packing and defect-free orientation. At this time, it is desirable that the pair of substrates is bonded. The gap may be unavoidably provided in the partition wall to such an extent that the effect of the temperature gradient cooling is not impaired.

【0025】温度勾配冷却を行う際に、一軸配向処理の
ベクトルの方向を使用する液晶と一軸配向処理に合わせ
て設定することにより、層を望む方向に折り曲げたう
え、ジグザグ欠陥や線状欠陥がなく、かつ、クラック・
密度の不均一のないパネル体とすることができる。
When the temperature gradient cooling is performed, by setting the direction of the uniaxial alignment vector in accordance with the liquid crystal to be used and the uniaxial alignment process, the layer is bent in a desired direction, and zigzag defects and linear defects are eliminated. Without cracks
A panel body without uneven density can be obtained.

【0026】一軸配向処理には、前述したようにさまざ
まなものが考えられるが、一般に有機配向膜をラビング
する方法がとられることが多い。一対の基板にこのラビ
ング法を施す場合、ラビングの方向の組み合わせによ
り、反平行・平行・片側ラビングなどの種類がある。
As described above, various types of uniaxial alignment treatment can be considered, but in general, a method of rubbing an organic alignment film is often used. When this rubbing method is applied to a pair of substrates, there are types such as antiparallel, parallel, and single-side rubbing depending on the combination of rubbing directions.

【0027】反平行ラビング(図5B 参照)の場合、ス
メクチック液晶のプレチルトと層の折れ曲がり方向の関
係より、層がどちらの方向に折れ曲がろうとも、同じ安
定性を有しており、温度勾配冷却を施す方向によって配
向が異なることはないため、クラックのない均一な配向
を得るには開口端部と逆側から冷却するだけでよい。し
かし、平行ラビング(図5A 参照)あるいは片側ラビン
グの場合は、層の折れ曲がり方向によって安定性が異な
り、一般にC1よりもC2の方が安定である。温度勾配冷却
法を用いれば、どちらの相でも作り出すことが可能であ
るが、クラックと密度の不均一のない液晶パネル体を作
成するためには、温度勾配冷却の方向は開口端部と逆側
から冷却することが必要となる。そのために、この方向
に温度勾配冷却をかけたときに目的のC1あるいはC2相を
作り出せるように、請求項4のように一軸配向処理の方
向を考慮したパネル体を作成すると、ジグザグ・線状欠
陥およびクラックおよび密度の不均一のないパネル体と
することができる(図6参照)。
In the case of antiparallel rubbing (see FIG. 5B), no matter which direction the layer bends, the same stability is obtained due to the relationship between the pretilt of the smectic liquid crystal and the bending direction of the layer. Since the orientation does not differ depending on the direction of cooling, it is only necessary to cool from the side opposite to the open end in order to obtain a uniform orientation without cracks. However, in the case of parallel rubbing (see FIG. 5A) or one-sided rubbing, the stability differs depending on the bending direction of the layer, and generally C2 is more stable than C1. Either phase can be created by using the temperature gradient cooling method.However, in order to create a liquid crystal panel without cracks and uneven density, the direction of the temperature gradient cooling is opposite to the opening end. Need to be cooled. Therefore, when a panel body considering the direction of the uniaxial orientation treatment is prepared so as to produce a desired C1 or C2 phase when a temperature gradient cooling is applied in this direction, zigzag and linear defects are generated. And a panel body free from cracks and uneven density can be obtained (see FIG. 6).

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態、特に
構成上の特徴について説明する。本発明における代表的
な液晶パネル枠(体)の形態の一例を図4(A, B)に示
す。この液晶パネル体は液晶駆動用電極402の形成さ
れた少なくとも一方が透明な一対の基板401表面に、
例えば有機配向膜を塗布しラビングを施すといったよう
な一軸配向処理を施した層403を有し、この基板間に
所定の間隔をおいて互いに平行に並べられた複数の直線
状の隔壁部材404を形成し、一軸配向処理の方向を隔
壁とのなす角θが請求項3に示すように0〜30°、略
平行となるようにする。このようにして作成した一対の
基板の周辺部を開口端部を残して封止材406にて封止
することにより、複数の直線状の隔壁部材の一端に形成
されている液晶通過用の開口端部以外の部分が液体に対
して密閉された状態の直線状空間を形成した液晶パネル
枠が完成する。そして、この液晶パネル体の直線状空間
に層構造を有する液晶405を挟持するものである。望
ましくは前記隔壁により、前記一対の基板が接着されて
いるものであり、前記液晶が強誘電液晶か反強誘電液晶
であるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention, particularly the structural features, will be described below. An example of a typical liquid crystal panel frame (body) according to the present invention is shown in FIGS. 4A and 4B. This liquid crystal panel body has a structure in which at least one of the liquid crystal driving electrodes 402 is formed on a pair of transparent substrates 401,
For example, a plurality of linear partition members 404 having a layer 403 that has been subjected to a uniaxial orientation treatment such as applying an organic orientation film and performing rubbing, and arranged in parallel with each other at a predetermined interval between the substrates. And the angle [theta] between the direction of the uniaxial orientation treatment and the partition wall is set to be substantially parallel to 0 to 30 [deg.]. By sealing the peripheral portions of the pair of substrates formed as described above with the sealing material 406 except for the opening end portions, the openings for liquid crystal passage formed at one end of the plurality of linear partition members are formed. A liquid crystal panel frame is completed in which a linear space is formed in a state in which portions other than the ends are sealed with respect to the liquid. Then, a liquid crystal 405 having a layer structure is sandwiched in a linear space of the liquid crystal panel body. Preferably, the pair of substrates are bonded by the partition walls, and the liquid crystal is a ferroelectric liquid crystal or an antiferroelectric liquid crystal.

【0029】前記隔壁は請求項2に示すように好ましく
は20〜800 μm間隔(ピッチ)の直線状のものとして形
成される。この範囲で隔壁ピッチを最適化すると液晶の
浸透直進性を向上しかつ温度勾配冷却時の移動能を増大
させる。更に望ましい形態としてこの隔壁により一対の
前記基板が接着されている場合には耐衝撃性が格段に向
上し、温度勾配冷却法の効果が著しい。
The partition is preferably formed as a linear one at intervals of 20 to 800 μm (pitch). By optimizing the partition pitch in this range, the liquid crystal permeation straightness is improved and the mobility at the time of temperature gradient cooling is increased. In a more desirable form, when the pair of substrates are bonded by the partition walls, the impact resistance is remarkably improved, and the effect of the temperature gradient cooling method is remarkable.

【0030】[0030]

【実施例】製造する液晶パネル体の構成は図4と同様の
ものである。一対の電極付き基板に配向膜としてポリイ
ミド(日立化成(株)HL1110)を塗布し、その一方の基
板にポジ型レジスト(シプレイファーイースト(株)MP
1400-25 )にて高さ1.5 μmのストライプ状の隔壁(ピ
ッチ100 μmおよび300 μm)を形成した。ラビングの
方向は一対の基板の両方ともそのベクトル方向が、液晶
透過用の開口端部と逆側を向くようにし、隔壁とのなす
角θ°がθ=0となるようにした。こうして一対の基板
の周辺部を複数の直線状の隔壁部材の一端に設けられた
開口端部を残しエポキシ樹脂で封止した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a liquid crystal panel to be manufactured is the same as that shown in FIG. Polyimide (Hitachi Chemical Co., Ltd. HL1110) is applied to a pair of substrates with electrodes as an alignment film, and a positive resist (Shipley Far East Co., Ltd. MP) is applied to one of the substrates.
1400-25) to form stripe-shaped barrier ribs having a height of 1.5 μm (pitches of 100 μm and 300 μm). The rubbing direction was such that the vector direction of both of the pair of substrates was opposite to the opening end for liquid crystal transmission, and the angle θ ° with the partition wall was θ = 0. In this manner, the peripheral portions of the pair of substrates were sealed with epoxy resin except for the open ends provided at one ends of the plurality of linear partition members.

【0031】この液晶パネル枠に強誘電性液晶( チッソ
(株) CS1014)を封入し、初期状態および温度勾配冷却
の際の方向による配向と液晶割れ発生率、ムラの程度の
ちがいを調べた。配向とムラに関しては定性的な評価
(○△×の3段階)を、液晶割れの発生に関しては隔壁
で仕切られた多数の直線状空間のうちそれらの発生して
いるものの割合をまとめた(表1参照)。温度勾配の方
向に関しては、開口端部と逆側から冷却する方向、すな
わち液晶を詰め込む方向を順方向、開口端部側から冷却
する方向、すなわち液晶を引き出す方向を逆方向と呼ぶ
こととする。なお、比較のためにパネル体の開口端部の
反対側にも開口端部を設け、毛管現象により液晶を封入
した液晶パネル体も作成した。この液晶パネル体との比
較より、請求項1に示した液晶パネル枠の構造が、クラ
ックとムラの低減の双方の項目に関して有効であること
が判明した。また、この液晶パネル体に温度勾配冷却を
順方向に施すことにより、クラックとムラだけではなく
液晶の配向も良好となることが判明した。このときの配
向はC2配向であり、ラビングの方向を開口端部に向かう
方向にすれば、同程度に高品位のC1配向も得ることがで
きた。
A ferroelectric liquid crystal (CS1014, Chisso Corporation) was sealed in the liquid crystal panel frame, and the orientation, the rate of occurrence of liquid crystal cracking, and the degree of unevenness in the initial state and in the direction of temperature gradient cooling were examined. The qualitative evaluation (three ranks of ○ △ ×) was performed for the orientation and unevenness, and the ratio of the occurrence of the liquid crystal cracks among a large number of linear spaces partitioned by partition walls was summarized (Table). 1). Regarding the direction of the temperature gradient, the direction of cooling from the side opposite to the opening end, that is, the direction of packing the liquid crystal, is called the forward direction, and the direction of cooling from the side of the opening end, that is, the direction of drawing the liquid crystal, is called the reverse direction. For comparison, a liquid crystal panel body in which liquid crystal was sealed by capillarity by providing an opening end on the opposite side of the opening end of the panel body was also prepared. From the comparison with this liquid crystal panel body, it was found that the structure of the liquid crystal panel frame described in claim 1 was effective in terms of both cracks and unevenness reduction. Further, it has been found that by applying the temperature gradient cooling to the liquid crystal panel body in the forward direction, not only cracks and unevenness but also the orientation of the liquid crystal is improved. The orientation at this time was the C2 orientation, and by setting the rubbing direction toward the opening end, it was possible to obtain the same high-quality C1 orientation.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上説明したとおり、本発明によれば、
隔壁付きの液晶パネル枠の周辺部を液晶通過用の開口端
部以外、封止することにより、液晶のクラックおよび密
度の不均一を低減できる。また、温度勾配冷却を行う際
には、封止と一軸配向処理の方向を適切に設定した液晶
パネル体を作成し、液晶を詰め込む方向に冷却をかける
ことにより、C1・C2といった望む配向状態を作りだし、
欠陥・クラック・密度の不均一の問題を解決することが
できる。
As described above, according to the present invention,
By sealing the peripheral portion of the liquid crystal panel frame with the partition except for the opening end portion for passing the liquid crystal, it is possible to reduce cracks and non-uniform density of the liquid crystal. In addition, when performing temperature gradient cooling, a liquid crystal panel body in which the directions of sealing and uniaxial alignment processing are appropriately set is created, and cooling is performed in a direction in which liquid crystal is packed, so that a desired alignment state such as C1, C2 is obtained. Make it,
The problem of defects, cracks and uneven density can be solved.

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術におけるパネル体の斜視断面図。FIG. 1 is a perspective sectional view of a panel body according to a conventional technique.

【図2】温度勾配冷却法におけるパネル内の層構造変化
を示す説明図。
FIG. 2 is an explanatory view showing a layer structure change in a panel in a temperature gradient cooling method.

【図3】一軸配向処理の方向とクラックの発生を示す説
明図。
FIG. 3 is an explanatory diagram showing the direction of uniaxial orientation processing and the occurrence of cracks.

【図4】本発明に関わるパネル体の斜視断面図(A) およ
び鳥瞰図(B) 。
FIG. 4 is a perspective sectional view (A) and a bird's-eye view (B) of the panel body according to the present invention.

【図5】ラビング方向と層の折れ曲がり方向による配向
の違いを示す説明図。
FIG. 5 is an explanatory diagram showing a difference in orientation depending on a rubbing direction and a bending direction of a layer.

【図6】液晶の封入方向とラビング方向および温度勾配
冷却方向による配向の違いを示す説明図。
FIG. 6 is an explanatory diagram showing a difference in orientation between a liquid crystal sealing direction, a rubbing direction, and a temperature gradient cooling direction.

【符号の説明】[Explanation of symbols]

101 基板 102 液晶駆動用電極 103 配向膜 104 隔壁部材 105 液晶 301 層法線方向 302 液晶割れ(クラック) 303 層内方向 401 基板 402 液晶駆動用電極 403 配向膜 404 隔壁部材 405 液晶 406 封止材 DESCRIPTION OF SYMBOLS 101 Substrate 102 Liquid crystal drive electrode 103 Alignment film 104 Partition member 105 Liquid crystal 301 Layer normal direction 302 Liquid crystal crack (crack) 303 In-layer direction 401 Substrate 402 Liquid crystal drive electrode 403 Alignment film 404 Partition member 405 Liquid crystal 406 Sealant

フロントページの続き (72)発明者 樋口 章二 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 Fターム(参考) 2H089 LA02 LA09 LA18 LA19 LA20 MA04X MA04Y NA05 NA13 NA24 NA25 NA35 NA60 QA11 QA12 QA15 RA13 RA14 TA04 2H090 HB08Y HC05 HD14 JC17 JD14 KA14 KA15 LA02 MA05 MA07 MB02 MB13 Continuation of front page (72) Inventor Shoji Higuchi 1-5-1, Taito, Taito-ku, Tokyo Letterpress Printing Co., Ltd. F-term (reference) 2H089 LA02 LA09 LA18 LA19 LA20 MA04X MA04Y NA05 NA13 NA24 NA25 NA35 NA60 QA11 QA12 QA15 RA13 RA14 TA04 2H090 HB08Y HC05 HD14 JC17 JD14 KA14 KA15 LA02 MA05 MA07 MB02 MB13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方が透明な一対の基板と、 それらの基板上に形成されていて互いに対向する一対の
電極と、 両基板間に設けられていて所定の間隔をおいて互いに平
行に並べられた複数の直線状の隔壁部材と、 上記一対の基板のうちの少なくとも一方の上に形成され
ていて一軸配向処理が施される配向膜とを有しており、 複数の直線状の隔壁部材は、一軸配向処理の方向に対し
て略平行に延びており、 さらに複数の直線状の隔壁部材の一端に形成されている
液晶通過用の開口端部以外の部分が液体に対して密閉さ
れた状態の直線状空間を形成することを特徴とする液晶
パネル枠。
1. A pair of substrates, at least one of which is transparent, a pair of electrodes formed on the substrates and facing each other, and arranged in parallel with each other at a predetermined interval provided between the two substrates. A plurality of linear partition members, and an alignment film formed on at least one of the pair of substrates and subjected to a uniaxial alignment treatment. Extends substantially parallel to the direction of the uniaxial alignment treatment, and a portion other than the liquid crystal passing opening formed at one end of the plurality of linear partition members is sealed with respect to the liquid. A liquid crystal panel frame characterized by forming a linear space in a state.
【請求項2】上記複数の直線状の隔壁部材が20〜80
0μmの間隔で並べられていることを特徴とする請求項
1記載の液晶パネル枠。
2. The method according to claim 1, wherein the plurality of linear partition members are 20 to 80.
2. The liquid crystal panel frame according to claim 1, wherein the liquid crystal panel frames are arranged at an interval of 0 [mu] m.
【請求項3】上記複数の直線状の隔壁部材と一軸配向処
理のベクトル方向のなす角の大きさが0〜30°である
ことを特徴とする請求項1または2記載の液晶パネル
枠。
3. The liquid crystal panel frame according to claim 1, wherein the angle between the plurality of linear partition members and the vector direction of the uniaxial orientation processing is 0 to 30 °.
【請求項4】上記一対の両基板が一軸配向処理が施され
る配向膜を有しており、かつ、一軸配向処理のベクトル
の方向がともに開口端部またはその逆方向を向いている
ことを特徴とする請求項1から3の何れかに記載の液晶
パネル枠。
4. A method according to claim 1, wherein said pair of substrates have an alignment film to be subjected to a uniaxial alignment process, and both directions of vectors of the uniaxial alignment process are directed to an open end or a direction opposite thereto. The liquid crystal panel frame according to any one of claims 1 to 3, wherein:
【請求項5】少なくとも一方が透明な一対の基板と、 それらの基板上に形成されていて互いに対向する一対の
電極と、 両基板間に設けられていて所定の間隔をおいて互いに平
行に並べられた複数の直線状の隔壁部材と、 上記一対の基板のうちの少なくとも一方の上に形成され
ていて一軸配向処理が施される配向膜とを有しており、 複数の直線状の隔壁部材は、一軸配向処理の方向に対し
て略平行に延びており、 さらに複数の直線状の隔壁部材の一端に形成されている
液晶通過用の開口端部以外の部分が液体に対して密閉さ
れた状態の直線状空間を形成し、 さらにそれらの各直線状空間の内部に強誘電性液晶又は
反強誘電性液晶が封入されることを特徴とする液晶パネ
ル体。
5. A pair of substrates at least one of which is transparent, a pair of electrodes formed on those substrates and facing each other, and arranged in parallel with each other at a predetermined interval provided between the two substrates. A plurality of linear partition members, and an alignment film formed on at least one of the pair of substrates and subjected to a uniaxial alignment treatment. Extends substantially parallel to the direction of the uniaxial alignment treatment, and a portion other than the liquid crystal passing opening formed at one end of the plurality of linear partition members is sealed with respect to the liquid. A liquid crystal panel body, wherein a linear space in a state is formed, and a ferroelectric liquid crystal or an antiferroelectric liquid crystal is sealed in each of the linear spaces.
【請求項6】上記強誘電性液晶又は反強誘電性液晶は、
液晶通過用の開口端部と逆側から冷却する温度勾配冷却
により配向していることを特徴とする請求項5記載の液
晶パネル体。
6. The ferroelectric liquid crystal or the antiferroelectric liquid crystal,
6. The liquid crystal panel body according to claim 5, wherein the liquid crystal panel body is oriented by a temperature gradient cooling for cooling from a side opposite to an end of the liquid crystal passage opening.
JP28551398A 1998-10-07 1998-10-07 Liquid crystal panel frame and liquid crystal panel body Pending JP2000111884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28551398A JP2000111884A (en) 1998-10-07 1998-10-07 Liquid crystal panel frame and liquid crystal panel body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28551398A JP2000111884A (en) 1998-10-07 1998-10-07 Liquid crystal panel frame and liquid crystal panel body

Publications (1)

Publication Number Publication Date
JP2000111884A true JP2000111884A (en) 2000-04-21

Family

ID=17692510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28551398A Pending JP2000111884A (en) 1998-10-07 1998-10-07 Liquid crystal panel frame and liquid crystal panel body

Country Status (1)

Country Link
JP (1) JP2000111884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202510A (en) * 2000-11-02 2002-07-19 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method of manufacturing for the same
WO2005124440A1 (en) * 2004-06-21 2005-12-29 Dai Nippon Printing Co., Ltd. Liquid crystal display element
JP2006039519A (en) * 2004-06-21 2006-02-09 Dainippon Printing Co Ltd Liquid crystal display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202510A (en) * 2000-11-02 2002-07-19 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method of manufacturing for the same
WO2005124440A1 (en) * 2004-06-21 2005-12-29 Dai Nippon Printing Co., Ltd. Liquid crystal display element
JP2006039519A (en) * 2004-06-21 2006-02-09 Dainippon Printing Co Ltd Liquid crystal display element
JP4699100B2 (en) * 2004-06-21 2011-06-08 大日本印刷株式会社 Liquid crystal display element

Similar Documents

Publication Publication Date Title
EP0724182B1 (en) Liquid crystal panel including antiferroelectric liquid crystal and process for producing the same
JPH0685032B2 (en) Chiral smectic liquid crystal element
KR20020078897A (en) Ferroelectric liquid crystal display element and fabricating method thereof
EP0635749B1 (en) Method of manufacturing a liquid crystal panel assembly
JPS61252532A (en) Ferroelectric smectic liquid crystal electrooptic device
TWI333111B (en) Manufacturing method of liquid crystal display
JP2000111884A (en) Liquid crystal panel frame and liquid crystal panel body
JP2000066176A (en) Liquid crystal panel body
JP3189955B2 (en) Liquid crystal display device and method of manufacturing the same
JPH07318912A (en) Liquid crystal panel frame, liquid crystal panel body and liquid crystal display
US6788381B2 (en) Liquid crystal device
JPH08254716A (en) Liquid crystal panel body and method for driving liquid crystal panel body
JP2738330B2 (en) Method and apparatus for manufacturing liquid crystal panel
JPH07159792A (en) Liquid crystal panel body, its production and producing device therefor
JP2000047225A (en) Liquid crystal display element
JPH06167711A (en) Ferroelectric liquid crystal element
JP2002244138A (en) Method for manufacturing liquid crystal display element having high contrast ratio
JP2624088B2 (en) Liquid crystal display
JPH08304829A (en) Liquid crystal display element and its production
JPH10186340A (en) Manufacture of liquid crystal panel frame and manufacture of liquid crystal panel body
JPH11101969A (en) Liquid crystal panel frame, liquid crystal panel body, and liquid crystal display
JPH08211371A (en) Liquid crystal panel body and its production
JPH07199202A (en) Ferroelectric liquid crystal or antiferroelectric liquid crystal display element and its production
JP4503281B2 (en) Liquid crystal display element
JP2000081625A (en) Substrate for liquid crystal panel body and liquid crystal panel body using the substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040601

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A02