JP2000066176A - Liquid crystal panel body - Google Patents

Liquid crystal panel body

Info

Publication number
JP2000066176A
JP2000066176A JP23279198A JP23279198A JP2000066176A JP 2000066176 A JP2000066176 A JP 2000066176A JP 23279198 A JP23279198 A JP 23279198A JP 23279198 A JP23279198 A JP 23279198A JP 2000066176 A JP2000066176 A JP 2000066176A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
panel body
crystal panel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23279198A
Other languages
Japanese (ja)
Inventor
Mayumi Iguchi
真由美 井口
Takao Minato
孝夫 湊
Katsuhiro Suzuki
克宏 鈴木
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP23279198A priority Critical patent/JP2000066176A/en
Publication of JP2000066176A publication Critical patent/JP2000066176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal panel body which has stable alignment uniform over the entire part and is capable of obtaining a high contrast ratio by solving the problem of the occurrence of liquid crystal crack. SOLUTION: This liquid crystal panel body is constituted by holding liquid crystals having a laminar structure between a pair of substrates 401, having electrodes 402 for driving the liquid crystals on at least one substrate of these substrates and layers subjected to a uniaxial alignment treatment on the surface of the at least one substrate in contact with the liquid crystals. The at least one substrate of a pair of the substrates of the liquid crystal panel body described above has barriers 404 of 20 to 800 μm pitch extending in the direction forming an angle within 50±20 deg. in the layer normal direction of the liquid crystals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用業務用の情
報表示端末としての液晶ディスプレイに係わる。更に詳
しくは、強誘電性液晶もしくは反強誘電性液晶等のスメ
クチック相を用いる液晶ディスプレイの配向の制御に関
係する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display as an information display terminal for home business. More specifically, the present invention relates to controlling the alignment of a liquid crystal display using a smectic phase such as a ferroelectric liquid crystal or an antiferroelectric liquid crystal.

【0002】[0002]

【従来の技術】フラットパネルディスプレイとして液晶
ディスプレイはその軽量性、省スペース・低消費電力な
どの利点からの最も普及が進んでおり、近年の大画面化
と高精細化技術の進展によりCRT に取って替わるものと
して期待されている。
2. Description of the Related Art Liquid crystal displays are becoming more and more popular as flat panel displays because of their advantages such as light weight, space saving and low power consumption. It is expected as a replacement.

【0003】中でも、強誘電及び反強誘電性液晶は高速
応答性・高視野角・メモリー性のため単純マトリックス
駆動が可能である。しかしながら、配向性に関しては強
誘電及び反強誘電性液晶相に特徴的なシェブロン構造が
形成されるため、ジグザグ欠陥や線状の欠陥が発生し表
示品質的には十分とは言い難い。さらに、半固体的なス
メクチック相を利用するため、液体的なネマチック液晶
とは違って、パネルの変形により液晶の層構造が一度破
壊されてしまうと、自己回復性がなく継続使用ができな
いという致命的な欠点があった。
[0003] Above all, ferroelectric and antiferroelectric liquid crystals can be driven by a simple matrix because of their high-speed response, high viewing angle, and memory properties. However, with respect to the orientation, since a chevron structure characteristic of the ferroelectric and antiferroelectric liquid crystal phases is formed, zigzag defects and linear defects occur, and it is hard to say that the display quality is sufficient. Furthermore, unlike the liquid nematic liquid crystal, which uses a semi-solid smectic phase, once the liquid crystal layer structure is destroyed by the deformation of the panel, there is no self-healing property and it cannot be used continuously. Disadvantages.

【0004】この2つの問題点を同時に解決する手段と
して、一対のガラス基板をストライプ状の隔壁部材を介
して完全に接着し、形成される直線状空間にこれらの液
晶を封じ込め、温度勾配冷却法により液晶の配向状態を
改善する技術が本出願人により開示されている(特開平
7―318912号公報、特開平7―159792号公
報等)。
As means for solving these two problems at the same time, a pair of glass substrates are completely bonded via a stripe-shaped partition member, and these liquid crystals are sealed in a linear space formed by a temperature gradient cooling method. The present applicant has disclosed a technique for improving the alignment state of liquid crystal by using the method described in Japanese Patent Application Laid-Open Nos. Hei 7-318912 and Hei 7-159792.

【0005】この方法において、液晶パネル体は、図1
に示すように、一対の基板101の少なくとも一方の基
板上に電極102とその上に配向制御用の配向膜103
が形成され、さらにストライプ状の隔壁部材104が定
法のフォトリソ法によりスペーサーとして形成される。
この隔壁部材104の幅は電極間の幅程度で5〜30ミ
クロン程度の範囲で選定され、厚みはセルギャップとほ
ぼ同じであり、1〜2ミクロンの範囲で所望の値に設定
される。ピッチは電極ピッチあるいは複数ピッチで30
〜300ミクロン程度である。このような隔壁部材10
4を介して上下の基板を加熱圧着により接着すること
で、開口部以外は実質的に密閉された細長い空間が得ら
れこの内部に液晶105を封入保持する。なお、前記配
向膜103は、隔壁とほぼ平行方向にラビング処理、UV
照射などの一軸配向性を有するものであり、有機配向膜
の他に二酸化珪素の斜方蒸着膜で一軸配向性を付与され
てもかまわない。
In this method, the liquid crystal panel is constructed as shown in FIG.
As shown in FIG. 3, an electrode 102 is formed on at least one of a pair of substrates 101 and an alignment film 103 for controlling alignment is formed thereon.
Are formed, and a stripe-shaped partition member 104 is formed as a spacer by a conventional photolithography method.
The width of the partition member 104 is selected in the range of about 5 to 30 microns, which is about the width between electrodes, and the thickness is almost the same as the cell gap, and is set to a desired value in the range of 1 to 2 microns. The pitch is 30 electrode pitches or multiple pitches.
About 300 microns. Such a partition member 10
By bonding the upper and lower substrates by heat and pressure bonding via 4, an elongated space that is substantially closed except for the opening is obtained, and the liquid crystal 105 is sealed and held therein. The alignment film 103 is rubbed in a direction substantially parallel to the partition walls,
It has a uniaxial orientation such as irradiation, and the uniaxial orientation may be given by an obliquely deposited silicon dioxide film in addition to the organic orientation film.

【0006】この構造の液晶パネル体にスメクチック液
晶を液体状態もしくはコレステリック相で封入し、パネ
ル体を高温の恒温槽から室温程度の恒温槽に漸次移動さ
せる温度勾配冷却を行う。移動方向は隔壁とほぼ平行方
向に行われ、これにより、個々の直線状空間には図2に
示すように温度勾配が生じ、内部の液晶は空間の一端か
ら他端に向かって順次冷却される。この温度勾配冷却に
より液晶の体積収縮が低温側から順次起こり、それに伴
い一定方向への液晶の流動が誘起される。こうすること
によりスメクチックA相の配向性が向上し、その結果ジ
グザグ欠陥と線状欠陥のないカイラルスメクチック相が
形成される。
[0006] A smectic liquid crystal is sealed in a liquid state or a cholesteric phase in a liquid crystal panel body having this structure, and a temperature gradient cooling is performed to gradually move the panel body from a high temperature constant temperature bath to a room temperature constant temperature bath. The moving direction is substantially parallel to the partition walls, whereby a temperature gradient is generated in each linear space as shown in FIG. 2, and the liquid crystal inside is cooled sequentially from one end of the space to the other end. . Due to the temperature gradient cooling, the volume shrinkage of the liquid crystal occurs sequentially from the low temperature side, and the flow of the liquid crystal in a certain direction is thereby induced. By doing so, the orientation of the smectic A phase is improved, and as a result, a chiral smectic phase free of zigzag defects and linear defects is formed.

【0007】なお、この温度勾配冷却法において効果的
な液晶の流動をスメクチックA相で誘導するためには隔
壁部材と上下基板に囲まれた細長い空間の断面積をある
臨界値より小さくする必要がある。このためには大きく
変えることのできないセルギャップではなく隔壁部材の
ピッチを最適化する。この値は概ね800ミクロン程度
以下である。
In order to induce effective liquid crystal flow in the smectic A phase in this temperature gradient cooling method, it is necessary to make the cross-sectional area of the elongated space surrounded by the partition member and the upper and lower substrates smaller than a certain critical value. is there. For this purpose, the pitch of the partition member is optimized, not the cell gap which cannot be largely changed. This value is about 800 microns or less.

【0008】温度勾配に関してはスメクチックA 相にお
いて1mmあたり2℃以上が必要である。コレステリック
相のない反強誘電性液晶では望ましい温度勾配は1mmあ
たり4℃以上である。温度勾配をかける方法としては2
種類の温度雰囲気の恒温槽間を液晶パネル体を移動させ
るものであり、その恒温槽は液体、固体、気体のいずれ
かから選択される。このような強い温度勾配は上述した
接着型液晶パネル体にしか印加できない。接着していな
い場合はガラス基板の収縮が激しく、ガラス表面で液晶
がこすられスメクチック層は砂状になり望ましい配向状
態は得られない。
[0008] Regarding the temperature gradient, the smectic A phase needs to be at least 2 ° C per mm. In an antiferroelectric liquid crystal having no cholesteric phase, a desirable temperature gradient is 4 ° C. or more per 1 mm. There are two methods for applying a temperature gradient.
The liquid crystal panel is moved between thermostats of different temperature atmospheres, and the thermostat is selected from liquid, solid, and gas. Such a strong temperature gradient can be applied only to the above-mentioned adhesive liquid crystal panel body. If not adhered, the glass substrate shrinks sharply, the liquid crystal is rubbed on the glass surface, and the smectic layer becomes sandy, so that a desirable alignment state cannot be obtained.

【0009】温度勾配冷却法には前述のように、隔壁部
材を有する接着型パネルを使用するが、これにより、ス
メクチック液晶の配向制御だけではなく耐衝撃性の問題
も解決する事ができる。前記隔壁部材により、液晶パネ
ル体は頑強になり、100N/cm2程度までの押圧衝撃に耐え
ることができる。更に別の利点はセルギャップが隔壁に
より非常に高精度で制御できることである。更に別の利
点は隔壁で仕切られているので液晶の浸透方向が直線的
に制限され蛇行しなくなることである。
As described above, the adhesive type panel having the partition member is used for the temperature gradient cooling method. This can solve not only the problem of controlling the alignment of the smectic liquid crystal but also the problem of impact resistance. Due to the partition member, the liquid crystal panel body becomes robust and can withstand a pressing impact up to about 100 N / cm 2 . Yet another advantage is that the cell gap can be controlled with very high precision by the partition walls. Still another advantage is that since the liquid crystal is partitioned by the partition walls, the direction of permeation of the liquid crystal is linearly restricted and does not meander.

【0010】上述の隔壁部材による接着型パネルと温度
勾配冷却法を併用することにより、液晶パネル体の耐衝
撃性を大幅に向上させるだけではなく、強誘電性液晶に
関してはほぼ無欠陥の配向層を安定して製造できる。反
強誘電性液晶でもこれまでにない配向性が得られる。
The combined use of the above-mentioned adhesive panel with the partition member and the temperature gradient cooling method not only significantly improves the impact resistance of the liquid crystal panel body, but also provides a substantially defect-free alignment layer for the ferroelectric liquid crystal. Can be manufactured stably. An unprecedented orientation can be obtained even with an antiferroelectric liquid crystal.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、一軸配
向処理を隔壁の延長方向に平行とした場合(図3A参
照)、パネル冷却時や温度勾配冷却時に隔壁と平行方向
すなわち液晶の層法線方向301に液晶割れ302(ク
ラック)が生じることがあるという問題があった。この
問題は、隔壁ピッチが250 μm程度以下の場合に生じる
ものである。これは、収縮率の大きい層内方向303の
距離が短く限定されることにより、液晶の体積収縮分を
層内で収容しきれなくなるためと考えられる。ここで使
用している層構造を有する液晶では、液晶の流動が層内
よりも層間で起こりにくいため、層間での移動はある程
度までしか起こり得ない。層間移動で補いきれなかった
密度変化分は、層内で賄うしかないわけだが、隔壁によ
り層内方向の距離が短く限定されてしまうと、これがで
きなくなり、液晶割れが発生するものと考えられた。さ
らに、液晶パネル体に冷熱サイクルを施すことでパネル
体の端部の液晶に気泡が生じるという問題もあった。こ
れも隔壁の存在するパネル体に特徴的なもので、液晶割
れと同様な原因で発生すると考えられる。
However, when the uniaxial alignment treatment is performed in parallel with the direction in which the partition walls extend (see FIG. 3A), the direction parallel to the partition walls, that is, the normal direction 301 of the liquid crystal layer during panel cooling or temperature gradient cooling. There is a problem that a liquid crystal crack 302 (crack) may occur. This problem occurs when the partition pitch is about 250 μm or less. This is presumably because the distance in the in-layer direction 303 where the shrinkage ratio is large is limited to be short, so that the volume shrinkage of the liquid crystal cannot be accommodated in the layer. In the liquid crystal having the layer structure used here, the flow of the liquid crystal is less likely to occur between the layers than in the layer, so that the movement between the layers can occur only to a certain extent. The density change that could not be compensated for by the interlayer movement had to be covered in the layer, but if the distance in the layer direction was limited short by the partition, this could not be done, and it was thought that liquid crystal cracking would occur . In addition, there is a problem that bubbles are generated in the liquid crystal at the edge of the panel body by subjecting the liquid crystal panel body to a cooling / heating cycle. This is also characteristic of the panel body having the partition walls, and is considered to be caused by the same cause as the liquid crystal crack.

【0012】これに対して、一軸配向処理を隔壁の延長
方向と垂直とした場合(図3B参照)、スメクチック層
構造が隔壁と平行に形成されて層内方向303の距離が
非常に長くなるために、流動を妨げるものがなく、密度
の不均一が生じにくいために液晶割れが生じないという
利点があったが、しかしながら、初期配向だけでなく温
度勾配冷却後においても隔壁の近傍でジグザグ欠陥や線
状欠陥が発生するという悪影響が生じた。リブ際で層法
線方向の流動が乱れるためと考えられる。さらに、温度
勾配冷却法の効果が、パネル全体で、一軸配向処理を隔
壁の延長方向と平行とした場合に比べて小さいという欠
点があった。これも層法線方向に温度勾配をかけて配向
制御を行う際に、この方向が隔壁によりさえぎられてい
るために流動が妨げられたことが原因であると考えられ
る。さらに、一軸配向処理の方向を隔壁と垂直にした場
合の別の問題としては、隔壁が流動方向に存在しないた
めに層内方向の流動能が高すぎ、パネル内に液晶の不均
一が生じることがあるというものもあった。
On the other hand, when the uniaxial orientation treatment is perpendicular to the direction in which the partition walls extend (see FIG. 3B), the smectic layer structure is formed parallel to the partition walls and the distance in the in-layer direction 303 becomes very long. In addition, there was an advantage that there was nothing that hindered the flow and that liquid crystal cracking did not occur because non-uniform density was unlikely to occur.However, not only the initial alignment but also the zigzag defects and There was an adverse effect that linear defects occurred. It is considered that the flow in the layer normal direction is disturbed at the rib side. Further, there is a drawback that the effect of the temperature gradient cooling method is smaller in the whole panel than in the case where the uniaxial orientation treatment is performed in parallel with the extending direction of the partition walls. This is also considered to be due to the fact that when a temperature gradient is applied in the layer normal direction to control the orientation, the flow is hindered because the direction is blocked by the partition walls. Another problem when the direction of the uniaxial alignment treatment is perpendicular to the partition walls is that the partition walls do not exist in the flow direction, so that the flow ability in the in-layer direction is too high, and the liquid crystal becomes uneven in the panel. There was something that there was.

【0013】本発明は上述の液晶割れ発生の問題を解決
して、全体的に均一で安定な配向を有し、かつ高いコン
トラスト比を得ることのできる液晶パネル体を提供する
ことを目的とする。
An object of the present invention is to solve the above-mentioned problem of occurrence of liquid crystal cracks and to provide a liquid crystal panel having uniform and stable alignment as a whole and capable of obtaining a high contrast ratio. .

【0014】[0014]

【課題を解決するための手段】本発明は上記の課題を解
決するために、請求項1の発明は、液晶駆動用の電極と
前記電極の表面に一軸配向処理を施した層を有する一対
の基板間に、層構造を有する液晶を保持する液晶パネル
体において、一対の基板の少なくとも一方の基板に、前
記液晶の層放線方向と50±20°以内の角度をなす方向に
のびる、20〜800 μmピッチの隔壁を有することを特徴
とする液晶パネル体である。請求項2の発明は、前記隔
壁を媒介にして上下の基板が接着していることを特徴と
する請求項1に記載の液晶パネル体である。請求項3の
発明は、前記液晶が強誘電性液晶か反強誘電性液晶であ
ることを特徴とする請求項1または請求項2のいずれか
に記載の液晶パネル体である。
In order to solve the above-mentioned problems, the present invention is directed to a liquid crystal driving electrode and a pair of layers each having a layer on which a uniaxial alignment treatment is applied to the surface of the electrode. In a liquid crystal panel body holding a liquid crystal having a layered structure between substrates, at least one of a pair of substrates extends in a direction at an angle of 50 ± 20 ° or less with a layer radiation direction of the liquid crystal, 20 to 800. A liquid crystal panel body having partition walls with a pitch of μm. The invention according to claim 2 is the liquid crystal panel body according to claim 1, wherein the upper and lower substrates are bonded to each other through the partition wall. The invention according to claim 3 is the liquid crystal panel according to claim 1 or 2, wherein the liquid crystal is a ferroelectric liquid crystal or an antiferroelectric liquid crystal.

【0015】本出願人は前述の、一軸配向処理の方向と
隔壁の延長方向のなす角度による、欠陥・液晶割れの発
生やコントラストの低下などを、層内方向・層法線方向
の液晶の流動能を考慮し、前記角度を一定の範囲で調節
することで、前記角度が0 °及び90°のときの双方の長
所を取り入れ、短所を押さえることが可能であることを
見いだした。
The applicant of the present invention considers the occurrence of defects and liquid crystal cracks and a decrease in contrast due to the angle between the direction of the uniaxial alignment treatment and the direction of extension of the partition walls. In consideration of the performance, it has been found that by adjusting the angle within a certain range, it is possible to take advantage of both the angles when the angle is 0 ° and 90 ° and to suppress the disadvantages.

【0016】スメクチック液晶では上述のように層内方
向と層法線方向での流動能は、一般に層法線方向よりも
層内方向の方が流動能が大きい。一軸配向処理の方向が
隔壁の延長方向に平行な場合は、液晶の流動能の高い層
内方向が隔壁により短くさえぎられてしまうために体積
収縮分を補えず液晶割れが発生するが、一軸配向処理の
方向が隔壁の延長方向に垂直な場合はこのようなことが
ないために層内での流動によって体積収縮を補うことが
でき液晶割れが発生しないものと考えられる。しかしな
がら、隔壁と垂直方向に一軸配向処理を施すと、逆に層
法線方向が隔壁により短くさえぎられてしまうため液晶
の流動により配向制御を行う温度勾配冷却法の効果が減
少してしまう。そこで請求項1に示したような角度で隔
壁と一軸配向処理方向が斜めになるよう設定すると、層
内および層法線方向のどちらにも隔壁間の一定以上の距
離を持たせることができ、流動もかなりの程度可能とな
り、液晶割れおよび配向の問題が生じないようにする事
ができる。
As described above, in the smectic liquid crystal, the fluidity in the in-layer direction and the layer normal direction is generally larger in the in-layer direction than in the layer normal direction. If the direction of the uniaxial alignment treatment is parallel to the direction in which the partition walls extend, the direction in the layer where the liquidity of the liquid crystal is high is interrupted by the partition walls, so that the volume shrinkage cannot be compensated for and the liquid crystal cracks. When the processing direction is perpendicular to the direction in which the partition walls extend, it is considered that such a phenomenon does not occur, so that volumetric shrinkage can be compensated for by flow in the layer, and no liquid crystal cracking occurs. However, when the uniaxial orientation treatment is performed in a direction perpendicular to the partition walls, the layer normal direction is shortly interrupted by the partition walls, so that the effect of the temperature gradient cooling method for controlling the alignment by the flow of the liquid crystal decreases. Therefore, when the partition and the uniaxial orientation treatment direction are set to be oblique at the angle shown in claim 1, a certain distance or more between the partitions can be provided both in the layer and in the layer normal direction. Fluidity is also possible to a considerable extent, and liquid crystal cracking and alignment problems can be avoided.

【0017】また、一軸配向処理の方向を隔壁と平行に
した場合の別の問題としては、気泡と呼ばれる液晶欠損
部分が生じることがあるが、これもクラックと同様の原
因で発生すると考えられ、請求項1に示した方法により
解決できる。
Another problem when the direction of the uniaxial orientation treatment is made parallel to the partition wall is that a liquid crystal defect portion called a bubble may occur, which is also considered to be caused by the same cause as a crack. The problem can be solved by the method described in claim 1.

【0018】さらに、一軸配向処理の方向を隔壁と垂直
にした場合の別の問題としては、隔壁近傍で配向が乱れ
るという問題があったが、これも、層法線方向の流動が
妨げられていることが原因であるので、請求項1および
2に示した液晶パネル枠を用いて温度勾配冷却を施すこ
とによりパネル全体で均一な良配向を得ることができ
る。さらに、一軸配向処理の方向を隔壁と垂直にした場
合の別の問題としては、隔壁が流動方向にないために層
内方向の流動能が高すぎ、パネル内に液晶の不均一が生
じることがあるというものもあったが、隔壁と一軸配向
処理方向を斜めに設定することで層内方向距離もある程
度の長さで隔壁により区切られ、この不均一も抑えるこ
とが可能である。
Another problem when the direction of the uniaxial orientation treatment is perpendicular to the partition walls is that the alignment is disturbed in the vicinity of the partition walls. Therefore, by performing the temperature gradient cooling using the liquid crystal panel frame according to the first and second aspects, it is possible to obtain a uniform good alignment over the entire panel. Another problem when the direction of the uniaxial alignment treatment is perpendicular to the partition walls is that the partition walls are not in the flow direction, so that the flowability in the in-layer direction is too high, and non-uniformity of liquid crystal occurs in the panel. Although there was a case, the distance between the partition and the uniaxial alignment treatment direction was set diagonally, so that the in-layer distance was separated by the partition with a certain length, and this non-uniformity could be suppressed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態特に構
成上の特徴について説明する。本発明における代表的な
パネルの形態の一例を図4に示す。この液晶パネル体は
液晶駆動用電極402の形成された一対の基板401表
面に、例えば有機膜を塗布しラビングを施すといったよ
うな一軸配向処理を施した層403を有し、この基板間
にストライプ状の隔壁404を、一軸配向処理方向と隔
壁のなす角θを50°±20°の範囲内で形成した構造を有
する。さらにこのようなパネル体の基板間に層構造を有
する液晶405を挟持するものである。望ましくは前記
隔壁により、前記一対の基板が接着されているものであ
り、前記液晶が強誘電性液晶か反強誘電性液晶であるも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention, particularly, structural features will be described. FIG. 4 shows an example of a typical panel configuration according to the present invention. The liquid crystal panel has a pair of substrates 401 on which liquid crystal driving electrodes 402 are formed, and a layer 403 on which a uniaxial alignment process such as applying an organic film and performing rubbing is performed. The partition wall 404 has a structure in which the angle θ between the uniaxial orientation direction and the partition wall is within a range of 50 ° ± 20 °. Further, a liquid crystal 405 having a layer structure is sandwiched between substrates of such a panel body. Preferably, the pair of substrates are bonded by the partition walls, and the liquid crystal is a ferroelectric liquid crystal or an antiferroelectric liquid crystal.

【0020】前記隔壁は請求項1に指定されている角度
内で、20〜800 ミクロンピッチのストライプ状のものと
して形成される。この範囲で隔壁ピッチを最適化すると
液晶の浸透直進性を向上しかつ温度勾配冷却時の移動能
を増大させる。該隔壁はこの機能を損なわない程度で切
れ切れでも構わない。更に望ましい形態としてこの隔壁
により一対の前記基板が接着されている場合には耐衝撃
性が格段に向上し、温度勾配冷却法の効果が著しい。
The partition walls are formed as stripes having a pitch of 20 to 800 microns within the angle specified in claim 1. By optimizing the partition pitch in this range, the liquid crystal permeation straightness is improved and the mobility at the time of temperature gradient cooling is increased. The partition may be cut off to the extent that this function is not impaired. In a more desirable form, when the pair of substrates are bonded by the partition walls, the impact resistance is remarkably improved, and the effect of the temperature gradient cooling method is remarkable.

【0021】[0021]

【実施例】用いた液晶パネル体の構成は図4と同様のも
のである。一対の電極付き基板に配向膜としてポリイミ
ド(日立化成(株)HL1110)を塗布し、その一方の基板
にポジ型レジスト(シプレイファーイースト(株)MP14
00-25 )にて高さ1.5 μmのストライプ状の隔壁(ピッ
チ100 μmおよび300 μm)を形成した。この一対の基
板に、隔壁とのなす角θ°(θ= 0, 15, 30, 45, 60, 7
5, 90 )としてラビング処理を施した後、ラビング方向
が反平行となるように2枚を貼り合わせて液晶パネルと
した。
The structure of the liquid crystal panel used was the same as that shown in FIG. Polyimide (Hitachi Chemical Co., Ltd. HL1110) is applied to a pair of substrates with electrodes as an alignment film, and one of the substrates is a positive resist (MP14, Shipley Far East Co., Ltd.)
00-25), stripe-shaped partitions having a height of 1.5 μm (pitches of 100 μm and 300 μm) were formed. This pair of substrates is provided with an angle θ ° (θ = 0, 15, 30, 45, 60, 7
After a rubbing treatment was performed as in (5, 90), the two substrates were bonded together so that the rubbing directions were antiparallel to form a liquid crystal panel.

【0022】このパネル体に強誘電性液晶( チッソ
(株) CS1014)を封入し、初期および温度勾配冷却後の
配向と液晶割れおよび気泡の発生率を調べた。配向に関
しては定性的な評価を、液晶割れおよび気泡の発生に関
しては隔壁で仕切られた多数のトンネルのうちそれらの
発生しているものの割合をまとめた(表1参照)。な
お、発生率は初期状態でも温度勾配冷却後でも大きな変
化がなかったため、平均を示した。この結果より、隔壁
ピッチによらず液晶割れがなくかつ配向が良好であるの
は、θ=30, 45, 60でラビングを施した場合であった。
A ferroelectric liquid crystal (CS1014, Chisso Corporation) was sealed in the panel body, and the orientation, the liquid crystal cracking rate and the generation rate of bubbles at the initial stage and after cooling with a temperature gradient were examined. The orientation was qualitatively evaluated, and the generation of liquid crystal cracks and bubbles was summarized in terms of the number of the tunnels among the many tunnels partitioned by partition walls (see Table 1). Since the occurrence rate did not change significantly in the initial state and after the temperature gradient cooling, the average was shown. From these results, it was found that rubbing was performed at θ = 30, 45, and 60 without liquid crystal cracking and good orientation regardless of the partition pitch.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】以上説明したとおり、本発明によればラ
ビング方向と隔壁の延長方向のなす角を適切に定めるこ
とにより、隔壁が層内方向を短くさえぎることにより発
生すると考えられる、液晶の割れ(クラック)・気泡の
発生を抑えることができる。また、逆に層内方向を隔壁
でさえぎらない場合に生じる液晶の不均一も抑えること
ができる。さらに隔壁が層法線方向を短くさえぎること
によって生じる配向の乱れも解消することができ、隔壁
を有するパネルの利点である温度勾配冷却による配向制
御の効果も十分に発揮できる。
As described above, according to the present invention, by appropriately setting the angle between the rubbing direction and the extension direction of the partition wall, it is considered that the partition wall breaks in the direction of the layer, and the liquid crystal breakage occurs. (Crack)-Generation of air bubbles can be suppressed. Conversely, the non-uniformity of the liquid crystal, which occurs when the inside of the layer is not blocked by the partition, can also be suppressed. Further, it is possible to eliminate the disturbance of the orientation caused by the partition wall interrupting the layer normal direction, thereby sufficiently exerting the effect of the orientation control by the temperature gradient cooling which is an advantage of the panel having the partition wall.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術におけるパネル体の斜方断面図。FIG. 1 is an oblique sectional view of a panel body according to a conventional technique.

【図2】温度勾配冷却法におけるパネル内の層構造変化
を示す説明図。
FIG. 2 is an explanatory view showing a layer structure change in a panel in a temperature gradient cooling method.

【図3】隔壁の延長方向とラビング方向に関するパネル
体の斜方断面図。
FIG. 3 is an oblique sectional view of the panel body with respect to the extending direction and the rubbing direction of the partition.

【図4】本発明に関わるパネル体の斜方断面図。FIG. 4 is an oblique sectional view of a panel body according to the present invention.

【符号の説明】[Explanation of symbols]

101 基板 102 液晶駆動用電極 103 配向膜 104 隔壁部材 105 液晶 301 層法線方向 302 液晶割れ(クラック) 303 層内方向 401 基板 402 液晶駆動用電極 403 配向膜 404 隔壁部材 405 液晶 DESCRIPTION OF SYMBOLS 101 Substrate 102 Liquid crystal drive electrode 103 Alignment film 104 Partition member 105 Liquid crystal 301 Layer normal direction 302 Liquid crystal crack (crack) 303 In-layer direction 401 Substrate 402 Liquid crystal drive electrode 403 Alignment film 404 Partition member 405 Liquid crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 章二 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 Fターム(参考) 2H089 HA15 LA09 QA02 QA15 QA16 RA13 RA14 SA17 TA04 2H090 HD14 KA14 KA15 LA02 MA05 MB01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shoji Higuchi 1-5-1, Taito, Taito-ku, Tokyo Toppan Printing Co., Ltd. F-term (reference) 2H089 HA15 LA09 QA02 QA15 QA16 RA13 RA14 SA17 TA04 2H090 HD14 KA14 KA15 LA02 MA05 MB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一対の基板の少なくとも一方の基板に液晶
駆動用の電極と、少なくとも一方の基板の液晶と触れる
面に一軸配向処理を施した層を有する一対の基板間に、
層構造を有する液晶を保持する液晶パネル体において、
一対の基板の少なくとも一方の基板に、前記液晶の層法
線方向と50±20°以内の角度をなす方向にのびる、20〜
800 μmピッチの隔壁を有することを特徴とする液晶パ
ネル体。
An electrode for driving liquid crystal is provided on at least one of a pair of substrates, and a pair of substrates having a layer which has been subjected to a uniaxial alignment treatment on a surface of at least one of the substrates which is in contact with liquid crystal is provided.
In a liquid crystal panel body holding a liquid crystal having a layer structure,
At least one of the pair of substrates extends in a direction at an angle within 50 ± 20 ° with the layer normal direction of the liquid crystal, 20 to
A liquid crystal panel having 800 μm pitch partition walls.
【請求項2】前記隔壁を媒介にして上下の基板が接着し
ていることを特徴とする請求項1に記載の液晶パネル
体。
2. The liquid crystal panel according to claim 1, wherein the upper and lower substrates are adhered to each other through the partition.
【請求項3】前記液晶が強誘電性液晶か反強誘電性液晶
であることを特徴とする請求項1または請求項2のいず
れかに記載の液晶パネル体。
3. The liquid crystal panel according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal or an antiferroelectric liquid crystal.
JP23279198A 1998-08-19 1998-08-19 Liquid crystal panel body Pending JP2000066176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23279198A JP2000066176A (en) 1998-08-19 1998-08-19 Liquid crystal panel body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23279198A JP2000066176A (en) 1998-08-19 1998-08-19 Liquid crystal panel body

Publications (1)

Publication Number Publication Date
JP2000066176A true JP2000066176A (en) 2000-03-03

Family

ID=16944818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23279198A Pending JP2000066176A (en) 1998-08-19 1998-08-19 Liquid crystal panel body

Country Status (1)

Country Link
JP (1) JP2000066176A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292347A (en) * 2004-03-31 2005-10-20 Fujitsu Ltd Liquid crystal display device and manufacturing method of liquid crystal display device
JP2006039519A (en) * 2004-06-21 2006-02-09 Dainippon Printing Co Ltd Liquid crystal display element
US8014139B2 (en) 2007-10-18 2011-09-06 Lenovo (Singapore) Pte. Ltd. Compact and light computer casing structure
KR20220004571A (en) * 2020-07-03 2022-01-11 주식회사 엘지화학 Light modulating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292347A (en) * 2004-03-31 2005-10-20 Fujitsu Ltd Liquid crystal display device and manufacturing method of liquid crystal display device
JP4480443B2 (en) * 2004-03-31 2010-06-16 富士通株式会社 Liquid crystal display device and method of manufacturing liquid crystal display device
JP2006039519A (en) * 2004-06-21 2006-02-09 Dainippon Printing Co Ltd Liquid crystal display element
JP4699100B2 (en) * 2004-06-21 2011-06-08 大日本印刷株式会社 Liquid crystal display element
US8014139B2 (en) 2007-10-18 2011-09-06 Lenovo (Singapore) Pte. Ltd. Compact and light computer casing structure
KR20220004571A (en) * 2020-07-03 2022-01-11 주식회사 엘지화학 Light modulating device
KR102522184B1 (en) * 2020-07-03 2023-04-14 주식회사 엘지화학 Light modulating device

Similar Documents

Publication Publication Date Title
EP0724182B1 (en) Liquid crystal panel including antiferroelectric liquid crystal and process for producing the same
JP2562569B2 (en) Liquid crystal device manufacturing method
KR20020078897A (en) Ferroelectric liquid crystal display element and fabricating method thereof
JP2008281752A (en) Liquid crystal display device
JP2000066176A (en) Liquid crystal panel body
JP2000111884A (en) Liquid crystal panel frame and liquid crystal panel body
JP2006189771A (en) In-plane switching liquid crystal display device and its manufacturing method
JP3189955B2 (en) Liquid crystal display device and method of manufacturing the same
JPH1026761A (en) Method and device for orienting liquid crystal, and liquid crystal display element
JPH0519267A (en) Liquid crystal display element
JPH10123529A (en) Production for ferroelectric liquid crystal display device
JP3114549B2 (en) Liquid crystal panel body and method of manufacturing the same
JPH06324339A (en) Ferroelectric liquid crystal element
JP2000081625A (en) Substrate for liquid crystal panel body and liquid crystal panel body using the substrate
JP2002268088A (en) Lateral electric field type liquid crystal element and manufacturing method therefor
JP2000047225A (en) Liquid crystal display element
JPH06202122A (en) Liquid crystal device
JPH0829788A (en) Liquid crystal display element
JP2738330B2 (en) Method and apparatus for manufacturing liquid crystal panel
JP2002244138A (en) Method for manufacturing liquid crystal display element having high contrast ratio
JP3329721B2 (en) Liquid crystal display
JPH11212122A (en) Production of liquid crystal panel body
JPH07159792A (en) Liquid crystal panel body, its production and producing device therefor
JP2004309871A (en) Ferroelectric liquid crystal display element
JPH08328014A (en) Ferroelectric smectic liquid crystal electro-optic device