JP2004309871A - Ferroelectric liquid crystal display element - Google Patents

Ferroelectric liquid crystal display element Download PDF

Info

Publication number
JP2004309871A
JP2004309871A JP2003104498A JP2003104498A JP2004309871A JP 2004309871 A JP2004309871 A JP 2004309871A JP 2003104498 A JP2003104498 A JP 2003104498A JP 2003104498 A JP2003104498 A JP 2003104498A JP 2004309871 A JP2004309871 A JP 2004309871A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
crystal display
alignment
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003104498A
Other languages
Japanese (ja)
Inventor
Masanori Arima
政典 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Original Assignee
Miyota KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK filed Critical Miyota KK
Priority to JP2003104498A priority Critical patent/JP2004309871A/en
Publication of JP2004309871A publication Critical patent/JP2004309871A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferroelectric liquid crystal display element realizing satisfactory image display by suppressing a zigzag defect generated in a cooling step after a ferroelectric liquid crystal is injected. <P>SOLUTION: A recess is provided at an inner wall of a sealing material of a liquid crystal injection port, a recess is provided in a silicon substrate or a glass substrate, or a non-alignment part is formed at an alignment layer on the silicon or the glass substrate. Thereby, the stress between ferroelectric liquid crystal molecules is concentrated to such a part and the zigzag defect is forcibly generated. Thus, the stress of the whole ferroelectric liquid crystal is relaxed and generation of the zigzag defect in a pixel region is suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、強誘電性液晶表示素子に関する。
【0002】
【従来の技術】
強誘電性液晶は、原理的に高速応答性、メモリ性、広視野角等の特徴を有する事が報告されて以来、次世代の液晶と呼ばれ、精力的に研究がなされ、特性の改良や製品化が行われている。
【0003】
図1は、従来の強誘電性液晶表示素子を示す平面図である。シリコン基板1とガラス基板2がシール材3を介し、オフセットするように貼り合わされており、それぞれの対向する側の面にはITO電極、配向膜等が形成されている。前記シール材3の一部には突出形状を有する液晶注入口4が設けられており、そこから強誘電性液晶が注入され、前記液晶注入口4が封止材により封止されている。尚、ITO電極、配向膜、強誘電性液晶、封止材は、不図示とする。
【0004】
液晶表示素子の製造方法、特に液晶注入方法については幾つか提案されており、その中でも液晶が強誘電性液晶である場合、液晶分子の配向膜への配座が安定して行われるという理由等から毛細管現象を利用した注入方法が用いられている。ここで、毛細管現象を利用して製造される強誘電性液晶表示素子の製造方法について簡単に説明する。まず、絶縁膜、ITO電極を形成したシリコン基板1、及びITO電極を形成したガラス基板2上にそれぞれ配向膜を形成すると共に、ラビング処理を施す。次に、前記ラビング処理を施したシリコン基板1上の画素領域5形成部分を囲むようにシール材3を塗布し、その上から前記ガラス基板2を貼り合わせた後、シール材3を硬化させて強誘電性液晶表示素子の空セルを形成する。尚、通常はシリコンウェーハに複数個同時に形成し、完成後個々の空セルに分断される。前記シール材3の一部は、液晶注入口4として開口されており、そこに強誘電性液晶を塗布する。強誘電性液晶は、常温では粘度が高いため、液晶注入口4に塗布しただけでは注入はされない。そして、真空チャンバ(不図示)内で前記空セルの真空排気を行った後、強誘電性液晶を相転移温度で加熱して粘度を低下させ、シリコン基板1とガラス基板2の狭ギャップ間に毛細管現象により徐々に浸透させて注入を行う。その際、空セル内外の差圧と加熱温度を調節する事により、浸透速度を制御する事も可能であるが、差圧を加えず、純粋に毛細管現象のみで注入を行った方が、注入時間は掛かるが液晶分子の配向膜への配座はより安定して行われる。尚、純粋に毛細管現象のみで液晶注入を行う場合には、空セルに液晶注入口だけではなく排気口も設ける必要がある。この排気口は、パネルの内圧と外圧を等しく保つためのもので、これにより毛細管現象のみでの液晶注入が円滑に進行すると共に、不完全注入による気泡の発生が防止される。ただし、強誘電性液晶表示素子の大きさが十分に小さい場合には、排気口を設けずともよい。そして、強誘電性液晶の注入完了後、温度制御をしつつ常温になるまでセルの冷却を行う。この冷却工程により強誘電性液晶分子の配向がなされ、冷却が完了した時点で液晶注入口に封止材を塗布し、封止を行う。以上の工程で強誘電性液晶表示素子は製造される。(例えば、特許文献1参照)
【0005】
【特許文献1】
特開平7−199202号公報(第4−5頁、第1−2図)
【0006】
【発明が解決しようとする課題】
強誘電性液晶は、その液晶分子の構造上、配向不良であるジグザグ欠陥が生じ易い。ジグザグ欠陥とは、液晶分子の各層構造の間にずれが生じた状態の事で、その発生原因としては幾つか考えられるが、主に液晶注入後の冷却工程中に発生する事が知られている。これは、冷却が進み、徐々に液晶分子の配向が形成される際、各液晶分子間に何らかのストレスが発生するためと考えられる。また、ジグザグ欠陥は、配向膜のラビング方向と垂直な方向に発生し易い。
【0007】
本発明は、上記問題点に鑑みてなされたものであり、強誘電性液晶注入後の冷却工程において発生するジグザグ欠陥を抑制し、良好な画像品質を実現する強誘電性液晶表示素子を提供する事を目的とする。
【0008】
【課題を解決するための手段】
少なくとも、一対の基板を、突出形状を有する液晶注入口を設けたシール材を介して貼り合わせ、前記液晶注入口より強誘電性液晶を注入してなる強誘電性液晶表示素子において、前記液晶注入口に強誘電性液晶のジグザグ欠陥を誘発させる配向欠陥誘発部を設けた強誘電性液晶表示素子とする。
【0009】
前記配向欠陥誘発部は、前記シール材内側に形成された凹部である強誘電性液晶表示素子とする。
【0010】
前記配向欠陥誘発部は、前記一対の基板上の少なくともどちらか一方に形成された凹部である強誘電性液晶表示素子とする。
【0011】
前記配向欠陥誘発部は、前記一対の基板の対向する面それぞれに形成された配向膜の、少なくともどちらか一方に形成された無配向部である強誘電性液晶表素子とする。
【0012】
【発明の実施の形態】
図2は、請求項2記載による、本発明の第1実施形態である強誘電性液晶表示素子の個々に分断する前の状態(空セル)を示す図である。図3は、前記第1実施形態である強誘電性液晶表示素子を示す図で、(a)は液晶注入口付近の要部拡大図、(b)は平面図である。尚、基本的な製造工程は従来と同様であるため詳しい説明は省略し、本発明に係る部分についてのみ説明する。まず、図2に示すように、凹部6を有するシールパターン(シール材)7をシリコンウェーハ8上に複数個形成する。前記凹部6は、図3(a)に示すように、縦(d)100〜200μm、横(w)100μm、である。シールパターン7の形成は、印刷等により行い、ある程度自由な形状に形成可能である。
【0013】
次に、シールパターン7を形成した前記シリコンウェーハ8を、その対向基板であるマザーガラス基板(不図示)と貼り合わせ、図3(b)に示すような個々の空セルに分断する。分断後、従来の製造工程と同様に、液晶注入口4に強誘電性液晶を塗布し、その状態で真空チャンバ(不図示)内において真空排気を行うと共に、加熱により強誘電性液晶の粘度を低下させ、毛細管現象による液晶注入を行う。尚、本発明の実施形態に係る強誘電性液晶表示素子は、毛細管現象のみで液晶注入が行える大きさのものであり、排気口は設けられていないが、これに限定されるものではない。
【0014】
強誘電性液晶の注入完了後、常温になるまで温度制御をしながら徐々にセルの冷却を行う。これにより、強誘電性液晶の液晶分子がスメクティック相に転移し、特有の層構造を形成する。この時、液晶注入口4のシール材7内壁には、凹部6が形成されているため、そこに強誘電性液晶に対するストレスに急激な変化が起こる。これにより、前記凹部6にジグザグ欠陥が誘発され、結果的に注入された強誘電性液晶全体に対するストレスが緩和される事となる。つまり、液晶表示素子において重要である画素領域5でジグザグ欠陥が発生しないように、それ以外の部分で強制的にジグザグ欠陥を発生させるのである。
【0015】
図4は、請求項3記載による、本発明の第2実施形態である強誘電性液晶表示素子を示す図で、(a)は平面図、(b)は液晶注入口付近の要部断面図である。基本的な構成は、第1実施形態と同様である。この構成の特徴としては、シリコン基板1上に、ジグザグ欠陥を誘発するための凹部9を設けた事である。前記凹部9は、(b)に示すように、縦(d)100〜200μm、深さ(h)0.2〜1μmであり、横幅は、注入口の幅に合わせて適宜選択する。この凹部9は、第1実施形態において形成したシール材7内壁の凹部6と同じ効果を奏する。つまり、前記凹部9に強誘電性液晶に対するストレスの急激な変化を引き起こし、そこにジグザグ欠陥を誘発させるのである。尚、本明細書で用いた図面は、説明をし易くするため模式的に表したもので、凹部9のサイズ等は、比例尺ではない。また、前記凹部9は、シリコン基板1自体に直接形成するわけではなく、シリコン基板1上の堆積膜(絶縁膜、電極膜等)を加工する事により形成する。
【0016】
以下、図5〜8を参照し、シリコン基板1上に前記凹部9を形成する方法について説明する。図5は、第1の凹部形成方法を示す液晶注入口付近の要部断面図である。シリコン基板1上に絶縁膜10、反射電極層(Al)11、保護膜12が順次積層されており、凹部9を形成する際には、前記反射電極層11の凹部形成部分をドライエッチングにより除去した後、上から保護膜12を形成する。この場合、精確な凹部ではなく、窪みといった形状になるが、配向欠陥誘発部としての機能に特に影響は無い。
【0017】
図6は、第2の凹部形成方法を示す液晶注入口付近の要部断面図である。この場合においては、絶縁膜10上に反射電極層11を形成した後、その上に保護膜12を形成し、該保護膜12の凹部形成部分をドライエッチングにより除去する事により、凹部9を形成する。
【0018】
図7は、第3の凹部形成方法を示す液晶注入口付近の要部断面図である。この場合においては、シリコン基板1上に絶縁膜10を形成した後、反射電極層11、保護膜12を順次形成すると共に、該反射電極層11と保護膜12の凹部形成部分をドライエッチングにより除去し、凹部9を形成する。
【0019】
また、その他の方法として、下層に形成される配線に、配線密度の低い部分を形成し、平坦化処理(CMP)の配線密度による研磨速度の違い(配線密度が低い部分ほど早く研磨される)を利用し、その部分を凹部として形成する事等も可能であり、前記実施形態に限定されるものではない。
【0020】
図8は、シリコン基板1上ではなく、ガラス基板2上に凹部9を形成する、第1の凹部形成方法を示す液晶注入口付近の要部断面図である。尚、凹部9の大きさは、シリコン基板1上に形成する場合と同じである。この場合、まず、ガラス基板2上に電極となるITO膜13を形成し、その後、ガラス基板2とITO膜13の凹部形成部分をドライエッチングにより除去する事により、凹部9を形成する。
【0021】
図9は、ガラス基板2上に凹部9を形成する、第2の凹部形成方法を示す液晶注入口付近の要部断面図である。まず、ガラス基板2の凹部形成部分をドライエッチングにより除去し、その後、ITO膜13を形成する。尚、この場合も、図5に示したものと同じように精確な凹部ではなく、窪みといった形状になるが、配向欠陥誘発部としての機能に特に影響は無い。
【0022】
図10は、請求項4記載による、本発明の第3実施形態を示す液晶注入口付近の平面図である。特徴としては、第2実施形態において形成したシリコン基板1、又はガラス基板2上の凹部9の代わりに、配向膜の無配向部14を配向欠陥誘発部として形成した事である。これにより、配向膜の配向部15と無配向部14との間で状態の差を作り、そこに強誘電性液晶に対するストレスの急激な変化を生じさせる事により、前記凹部9と同じ機能を持たせる。
【0023】
前記無配向部14の形成方法としては、シリコン基板、又はガラス基板に配向膜を形成した後、その配向膜の無配向部14を形成する部分に紫外線、又はレーザーを照射し、配向膜に損傷を与える方法やシリコン基板、又はガラス基板に配向膜を形成した後、その配向膜の無配向部14を形成する部分を機械的に擦り、配向膜表面に微小な傷をつける、若しくは配向膜を除去する等の方法が考えられる。前者の紫外線、又はレーザーを用いる方法は、配向膜形成後、ラビング後、又は強誘電性液晶注入後の、どの工程においても実施可能であるが、ラビング直後に行うのが効果的である。尚、強誘電性液晶注入後に行うのは、強誘電性液晶自体に損傷を与える可能性があるため望ましくはない。
【0024】
図11は、液晶注入口の形成位置を説明するための平面図である。前述したように、ジグザグ欠陥は、ラビング方向と垂直な方向に発生し易く、図中矢印で示すようにラビングを施した場合、液晶注入口16内側のシール材3の角部17周辺において、図中点線Aに沿って発生し易い。これは、前記角部17に強誘電性液晶のストレスが集中し易いためと考えられる。このため、本発明に係る配向欠陥誘発部においてジグザグ欠陥を完全に抑制し切れなかった場合、前記角部17でジグザグ欠陥が発生し、強誘電性液晶表示素子の画素領域5に影響を及ぼす、つまり前記点線Aが画素領域5に重なる可能性がある。従って、液晶注入口16は、前記点線Aが画素領域5に重ならない位置に形成するのが望ましい。即ち、液晶注入口16内側のシール材3の角部17で発生したジグザグ欠陥が画素領域5に接触しないよう、角部17をそこから遠ざけるのである。
【0025】
以上、本発明の実施形態について説明したが、配向欠陥誘発部の形状等は、本実施形態で説明したものに限定されないと共に、本発明の各構成は、それぞれ組み合わせて実施可能な事は言うまでも無い。
【0026】
【発明の効果】
以上説明したように、本発明によれば、液晶注入口付近のシール材、又は基板上に凹部を設ける、若しくは基板上の配向膜に無配向部を設ける事により、強誘電性液晶の各液晶分子間に働くストレスをそこに集中させ、強制的にジグザグ欠陥を発生させる事により、強誘電性液晶全体のストレスを緩和させ、画像領域でのジグザグ欠陥の発生を抑制する事が出来る。
【図面の簡単な説明】
【図1】従来の強誘電性液晶表示素子を示す平面図
【図2】本発明の第1実施形態である強誘電性液晶表示素子の個々に分断する前の状態を示す図
【図3】本発明の第1実施形態である強誘電性液晶表示素子示す図で、(a)は液晶注入口付近の要部拡大図、(b)は平面図である。
【図4】本発明の第2実施形態である強誘電性液晶表示素子を示す図で、(a)は平面図、(b)は液晶注入口付近の要部断面図である。
【図5】シリコン基板上に凹部を形成する、第1の凹部形成方法を示す液晶注入口付近の要部断面図
【図6】シリコン基板上に凹部を形成する、第2の凹部形成方法を示す液晶注入口付近の要部断面図
【図7】シリコン基板上に凹部を形成する、第3の凹部形成方法を示す液晶注入口付近の要部断面図
【図8】ガラス基板上に凹部を形成する、第1の凹部形成方法を示す液晶注入口付近の要部断面図
【図9】ガラス基板上に凹部を形成する、第2の凹部形成方法を示す液晶注入口付近の要部断面図
【図10】本発明の第3実施形態を示す液晶注入口付近の平面図
【図11】液晶注入口の形成位置を説明するための平面図
【符号の説明】
1 シリコン基板
2 ガラス基板
3 シール材
4 液晶注入口
5 画素領域
6 凹部(シール材内壁)
7 シールパターン(シール材)
8 シリコンウェーハ
9 凹部(基板上)
10 絶縁膜
11 反射電極層(Al)
12 保護膜
13 ITO膜
14 無配向部
15 配向部
16 液晶注入口
17 角部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ferroelectric liquid crystal display device.
[0002]
[Prior art]
Ferroelectric liquid crystal has been called the next generation liquid crystal since it was reported in principle to have characteristics such as high-speed response, memory properties, and a wide viewing angle. It is being commercialized.
[0003]
FIG. 1 is a plan view showing a conventional ferroelectric liquid crystal display device. The silicon substrate 1 and the glass substrate 2 are bonded so as to be offset via the sealing material 3, and an ITO electrode, an alignment film, and the like are formed on the opposite surfaces. A liquid crystal injection port 4 having a protruding shape is provided in a part of the sealing material 3, from which ferroelectric liquid crystal is injected, and the liquid crystal injection port 4 is sealed with a sealing material. The ITO electrode, alignment film, ferroelectric liquid crystal, and sealing material are not shown.
[0004]
Several methods for manufacturing a liquid crystal display element, particularly a liquid crystal injection method, have been proposed. Among them, when the liquid crystal is a ferroelectric liquid crystal, the reason that the conformation of the liquid crystal molecules to the alignment film is stably performed. An injection method utilizing capillary action has been used. Here, a method of manufacturing a ferroelectric liquid crystal display device manufactured by utilizing the capillary phenomenon will be briefly described. First, an alignment film is formed on each of an insulating film, a silicon substrate 1 on which an ITO electrode is formed, and a glass substrate 2 on which an ITO electrode is formed, and a rubbing process is performed. Next, a sealing material 3 is applied so as to surround a portion where the pixel region 5 is formed on the silicon substrate 1 on which the rubbing process has been performed, and the glass substrate 2 is bonded thereon, and then the sealing material 3 is cured. An empty cell of a ferroelectric liquid crystal display element is formed. Normally, a plurality of silicon cells are simultaneously formed on a silicon wafer, and after completion, are divided into individual empty cells. A part of the sealing material 3 is opened as a liquid crystal injection port 4, and a ferroelectric liquid crystal is applied thereto. Since the ferroelectric liquid crystal has a high viscosity at room temperature, it is not injected only by applying it to the liquid crystal injection port 4. Then, after evacuating the empty cell in a vacuum chamber (not shown), the ferroelectric liquid crystal is heated at a phase transition temperature to reduce the viscosity, and the gap between the silicon substrate 1 and the glass substrate 2 is narrowed. The injection is performed by gradually penetrating by capillary action. At this time, it is possible to control the permeation rate by adjusting the differential pressure between the inside and outside of the empty cell and the heating temperature.However, it is better to perform the injection purely by capillary action without applying a differential pressure. Although it takes time, the conformation of the liquid crystal molecules to the alignment film is performed more stably. If liquid crystal injection is performed purely by capillary action only, it is necessary to provide not only a liquid crystal injection port but also an exhaust port in an empty cell. This exhaust port is for keeping the internal pressure and the external pressure of the panel equal, whereby the liquid crystal injection only by the capillary phenomenon proceeds smoothly and the generation of bubbles due to incomplete injection is prevented. However, when the size of the ferroelectric liquid crystal display element is sufficiently small, the exhaust port may not be provided. Then, after the injection of the ferroelectric liquid crystal is completed, the cell is cooled down to room temperature while controlling the temperature. In this cooling step, the ferroelectric liquid crystal molecules are oriented. When the cooling is completed, a sealing material is applied to the liquid crystal injection port to perform sealing. Through the above steps, a ferroelectric liquid crystal display device is manufactured. (For example, see Patent Document 1)
[0005]
[Patent Document 1]
JP-A-7-199202 (page 4-5, FIG. 1-2)
[0006]
[Problems to be solved by the invention]
In the ferroelectric liquid crystal, zigzag defects, which are poor alignment, are likely to occur due to the structure of the liquid crystal molecules. A zigzag defect is a state in which there is a shift between the layer structures of liquid crystal molecules, and there are several possible causes, but it is known that the defect mainly occurs during a cooling process after liquid crystal injection. I have. This is considered to be because some cooling occurs between the liquid crystal molecules when the cooling proceeds and the alignment of the liquid crystal molecules is gradually formed. In addition, zigzag defects easily occur in a direction perpendicular to the rubbing direction of the alignment film.
[0007]
The present invention has been made in view of the above problems, and provides a ferroelectric liquid crystal display device that suppresses zigzag defects generated in a cooling step after ferroelectric liquid crystal injection and realizes good image quality. For the purpose.
[0008]
[Means for Solving the Problems]
At least a pair of substrates are bonded via a sealing material provided with a liquid crystal injection port having a protruding shape, and a ferroelectric liquid crystal display element in which a ferroelectric liquid crystal is injected from the liquid crystal injection port. A ferroelectric liquid crystal display device provided with an alignment defect inducing portion for inducing a zigzag defect of a ferroelectric liquid crystal at an entrance.
[0009]
The alignment defect inducing section is a ferroelectric liquid crystal display element that is a recess formed inside the sealing material.
[0010]
The alignment defect inducing section is a ferroelectric liquid crystal display element that is a recess formed in at least one of the pair of substrates.
[0011]
The alignment defect inducing section is a ferroelectric liquid crystal display element that is a non-alignment section formed on at least one of the alignment films formed on the opposing surfaces of the pair of substrates.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 is a view showing a state (empty cell) of the ferroelectric liquid crystal display element according to the first embodiment of the present invention before being divided into individual elements. 3A and 3B are views showing the ferroelectric liquid crystal display device according to the first embodiment, wherein FIG. 3A is an enlarged view of a main part near a liquid crystal injection port, and FIG. 3B is a plan view. Since the basic manufacturing process is the same as the conventional one, detailed description is omitted, and only the portion according to the present invention will be described. First, as shown in FIG. 2, a plurality of seal patterns (seal materials) 7 having concave portions 6 are formed on a silicon wafer 8. As shown in FIG. 3A, the recess 6 has a length (d) of 100 to 200 μm and a width (w) of 100 μm. The formation of the seal pattern 7 is performed by printing or the like, and can be formed to any shape.
[0013]
Next, the silicon wafer 8 on which the seal pattern 7 is formed is bonded to a mother glass substrate (not shown), which is the opposite substrate, and cut into individual empty cells as shown in FIG. After the division, a ferroelectric liquid crystal is applied to the liquid crystal injection port 4 in the same manner as in the conventional manufacturing process, and in this state, a vacuum is exhausted in a vacuum chamber (not shown), and the viscosity of the ferroelectric liquid crystal is reduced by heating. The liquid crystal is injected by capillary action. The ferroelectric liquid crystal display device according to the embodiment of the present invention is of a size that allows liquid crystal injection only by capillary action, and is not provided with an exhaust port, but is not limited thereto.
[0014]
After the injection of the ferroelectric liquid crystal is completed, the cell is gradually cooled while controlling the temperature until the temperature reaches room temperature. As a result, the liquid crystal molecules of the ferroelectric liquid crystal transition to the smectic phase, forming a unique layer structure. At this time, since the concave portion 6 is formed on the inner wall of the sealing material 7 of the liquid crystal injection port 4, a sudden change occurs in the stress on the ferroelectric liquid crystal. As a result, a zigzag defect is induced in the concave portion 6, and as a result, stress on the entire injected ferroelectric liquid crystal is reduced. That is, the zigzag defect is forcibly generated in other portions so that the zigzag defect does not occur in the pixel region 5 which is important in the liquid crystal display element.
[0015]
FIGS. 4A and 4B are views showing a ferroelectric liquid crystal display device according to a second embodiment of the present invention, wherein FIG. 4A is a plan view, and FIG. It is. The basic configuration is the same as in the first embodiment. The feature of this configuration is that a concave portion 9 for inducing a zigzag defect is provided on the silicon substrate 1. The concave portion 9 has a length (d) of 100 to 200 μm and a depth (h) of 0.2 to 1 μm, as shown in (b), and the width is appropriately selected according to the width of the injection port. The recess 9 has the same effect as the recess 6 on the inner wall of the sealing material 7 formed in the first embodiment. In other words, a sudden change in stress on the ferroelectric liquid crystal is caused in the concave portion 9, and a zigzag defect is induced there. The drawings used in this specification are schematically shown for ease of explanation, and the size and the like of the concave portion 9 are not to scale. Further, the concave portion 9 is not formed directly on the silicon substrate 1 itself, but is formed by processing a deposited film (insulating film, electrode film, etc.) on the silicon substrate 1.
[0016]
Hereinafter, a method of forming the concave portion 9 on the silicon substrate 1 will be described with reference to FIGS. FIG. 5 is a cross-sectional view of a main part near a liquid crystal injection port, showing a first concave portion forming method. An insulating film 10, a reflective electrode layer (Al) 11, and a protective film 12 are sequentially laminated on a silicon substrate 1. When forming the concave portion 9, the concave portion of the reflective electrode layer 11 is removed by dry etching. After that, the protective film 12 is formed from above. In this case, the shape is not an accurate concave portion but a concave portion, but does not particularly affect the function as the alignment defect inducing portion.
[0017]
FIG. 6 is a cross-sectional view of a main part near a liquid crystal injection port showing a second method of forming a concave portion. In this case, after the reflective electrode layer 11 is formed on the insulating film 10, the protective film 12 is formed thereon, and the concave portion 9 of the protective film 12 is removed by dry etching to form the concave portion 9. I do.
[0018]
FIG. 7 is a cross-sectional view of a main part near a liquid crystal injection port showing a third method of forming a concave portion. In this case, after the insulating film 10 is formed on the silicon substrate 1, the reflective electrode layer 11 and the protective film 12 are sequentially formed, and the recessed portions of the reflective electrode layer 11 and the protective film 12 are removed by dry etching. Then, the concave portion 9 is formed.
[0019]
Further, as another method, a portion having a low wiring density is formed in a wiring formed in a lower layer, and a difference in polishing rate depending on the wiring density in the planarization process (CMP) (a portion having a lower wiring density is polished faster). It is also possible to form such a portion as a concave portion by utilizing the method described above, and the present invention is not limited to the above embodiment.
[0020]
FIG. 8 is a cross-sectional view of a main part near a liquid crystal injection port showing a first method for forming a concave portion, in which a concave portion 9 is formed not on the silicon substrate 1 but on the glass substrate 2. Incidentally, the size of the concave portion 9 is the same as that when the concave portion 9 is formed on the silicon substrate 1. In this case, first, an ITO film 13 serving as an electrode is formed on the glass substrate 2, and then the concave portion 9 of the glass substrate 2 and the ITO film 13 is removed by dry etching to form the concave portion 9.
[0021]
FIG. 9 is a cross-sectional view of a main part near a liquid crystal injection port showing a second method for forming a concave portion, in which the concave portion 9 is formed on the glass substrate 2. First, the concave portion forming portion of the glass substrate 2 is removed by dry etching, and then the ITO film 13 is formed. In this case as well, as in the case shown in FIG. 5, the shape is not a precise concave portion but a concave shape, but does not particularly affect the function as the alignment defect inducing portion.
[0022]
FIG. 10 is a plan view showing the vicinity of a liquid crystal injection port according to a third embodiment of the present invention. The feature is that, instead of the concave portion 9 on the silicon substrate 1 or the glass substrate 2 formed in the second embodiment, the non-aligned portion 14 of the alignment film is formed as an alignment defect inducing portion. As a result, a state difference is created between the alignment portion 15 and the non-alignment portion 14 of the alignment film, and a sharp change in stress on the ferroelectric liquid crystal is caused there, thereby having the same function as the concave portion 9. Let
[0023]
As a method of forming the non-oriented portion 14, after forming an oriented film on a silicon substrate or a glass substrate, the portion of the oriented film on which the non-oriented portion 14 is formed is irradiated with ultraviolet light or laser to damage the oriented film. After forming an alignment film on a silicon substrate or a glass substrate, a portion of the alignment film on which the non-aligned portion 14 is to be formed is mechanically rubbed, and a fine scratch is formed on the alignment film surface, or the alignment film is formed. Methods such as removal are conceivable. The former method using an ultraviolet ray or a laser can be performed in any step after forming an alignment film, after rubbing, or after injecting a ferroelectric liquid crystal. However, it is effective to perform the method immediately after rubbing. It is not desirable to perform the process after injecting the ferroelectric liquid crystal because the ferroelectric liquid crystal itself may be damaged.
[0024]
FIG. 11 is a plan view for explaining the formation position of the liquid crystal injection port. As described above, zigzag defects are likely to occur in the direction perpendicular to the rubbing direction. It easily occurs along the middle dotted line A. This is considered to be because the stress of the ferroelectric liquid crystal easily concentrates on the corners 17. For this reason, if the zigzag defect cannot be completely suppressed in the alignment defect inducing section according to the present invention, a zigzag defect occurs at the corner portion 17 and affects the pixel region 5 of the ferroelectric liquid crystal display element. That is, the dotted line A may overlap the pixel region 5. Therefore, it is desirable that the liquid crystal injection port 16 is formed at a position where the dotted line A does not overlap the pixel region 5. That is, the corner 17 is moved away from the pixel region 5 so that the zigzag defect generated at the corner 17 of the sealing material 3 inside the liquid crystal inlet 16 does not contact the pixel region 5.
[0025]
As described above, the embodiment of the present invention has been described. However, the shape and the like of the alignment defect inducing section are not limited to those described in the present embodiment. Not even.
[0026]
【The invention's effect】
As described above, according to the present invention, by providing a sealing material near the liquid crystal injection port, providing a concave portion on the substrate, or providing a non-aligned portion on the alignment film on the substrate, each liquid crystal of the ferroelectric liquid crystal By concentrating the stress acting between the molecules therein and forcibly generating the zigzag defect, the stress of the entire ferroelectric liquid crystal can be reduced, and the generation of the zigzag defect in the image area can be suppressed.
[Brief description of the drawings]
FIG. 1 is a plan view showing a conventional ferroelectric liquid crystal display device. FIG. 2 is a diagram showing a state of a ferroelectric liquid crystal display device according to a first embodiment of the present invention before being divided individually. 1A and 1B are diagrams illustrating a ferroelectric liquid crystal display element according to a first embodiment of the present invention, in which FIG. 1A is an enlarged view of a main part near a liquid crystal injection port, and FIG.
FIGS. 4A and 4B are views showing a ferroelectric liquid crystal display element according to a second embodiment of the present invention, wherein FIG. 4A is a plan view and FIG.
FIG. 5 is a cross-sectional view of a main portion near a liquid crystal injection port showing a first concave portion forming method for forming a concave portion on a silicon substrate. FIG. 6 shows a second concave portion forming method for forming a concave portion on a silicon substrate. FIG. 7 is a cross-sectional view of a main part near a liquid crystal injection port shown in FIG. 7; FIG. 8 is a cross-sectional view of a main part near a liquid crystal injection port showing a third method for forming a concave part on a silicon substrate; FIG. 9 is a cross-sectional view of a main part near a liquid crystal injection port showing a first method of forming a concave portion. FIG. 9 is a cross-sectional view of a main part near a liquid crystal injection port showing a second method of forming a concave portion. FIG. 10 is a plan view showing the vicinity of a liquid crystal injection port according to a third embodiment of the present invention. FIG. 11 is a plan view for explaining the formation position of the liquid crystal injection port.
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Glass substrate 3 Sealing material 4 Liquid crystal injection port 5 Pixel area 6 Concave part (Inner wall of sealing material)
7 Seal pattern (seal material)
8 silicon wafer 9 recess (on substrate)
10 Insulating film 11 Reflective electrode layer (Al)
12 Protective film 13 ITO film 14 Non-oriented part 15 Aligned part 16 Liquid crystal injection port 17 Corner

Claims (4)

少なくとも、一対の基板を、突出形状を有する液晶注入口を設けたシール材を介して貼り合わせ、前記液晶注入口より強誘電性液晶を注入してなる強誘電性液晶表示素子において、前記液晶注入口に強誘電性液晶のジグザグ欠陥を誘発させる配向欠陥誘発部を設けた事を特徴とする強誘電性液晶表示素子。At least a pair of substrates are bonded via a sealing material provided with a liquid crystal injection port having a protruding shape, and a ferroelectric liquid crystal display element in which a ferroelectric liquid crystal is injected from the liquid crystal injection port. A ferroelectric liquid crystal display device characterized in that an alignment defect inducing section for inducing a zigzag defect of a ferroelectric liquid crystal is provided at an entrance. 前記配向欠陥誘発部は、前記シール材内壁に形成された凹部である事を特徴とする請求項1記載の強誘電性液晶表示素子。2. The ferroelectric liquid crystal display device according to claim 1, wherein the alignment defect inducing portion is a concave portion formed on the inner wall of the sealing material. 前記配向欠陥誘発部は、前記一対の基板上の少なくともどちらか一方に形成された凹部である事を特徴とする請求項1記載の強誘電性液晶表示素子。2. The ferroelectric liquid crystal display device according to claim 1, wherein the alignment defect inducing section is a recess formed in at least one of the pair of substrates. 前記配向欠陥誘発部は、前記一対の基板の対向する面それぞれに形成された配向膜の、少なくともどちらか一方に形成された無配向部であることを特徴とする請求項1記載の強誘電性液晶表素子。2. The ferroelectric substance according to claim 1, wherein the alignment defect inducing section is a non-alignment section formed on at least one of alignment films formed on opposing surfaces of the pair of substrates. 3. Liquid crystal surface element.
JP2003104498A 2003-04-08 2003-04-08 Ferroelectric liquid crystal display element Pending JP2004309871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104498A JP2004309871A (en) 2003-04-08 2003-04-08 Ferroelectric liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104498A JP2004309871A (en) 2003-04-08 2003-04-08 Ferroelectric liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2004309871A true JP2004309871A (en) 2004-11-04

Family

ID=33467309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104498A Pending JP2004309871A (en) 2003-04-08 2003-04-08 Ferroelectric liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2004309871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206098A (en) * 2006-01-30 2007-08-16 Optrex Corp Liquid crystal display panel
JP2012163771A (en) * 2011-02-07 2012-08-30 Mitsubishi Electric Corp Liquid crystal display device, and manufacturing method of liquid crystal panel used therefor
JP2019174574A (en) * 2018-03-27 2019-10-10 シチズンファインデバイス株式会社 Liquid crystal panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206098A (en) * 2006-01-30 2007-08-16 Optrex Corp Liquid crystal display panel
JP2012163771A (en) * 2011-02-07 2012-08-30 Mitsubishi Electric Corp Liquid crystal display device, and manufacturing method of liquid crystal panel used therefor
JP2019174574A (en) * 2018-03-27 2019-10-10 シチズンファインデバイス株式会社 Liquid crystal panel
JP7058534B2 (en) 2018-03-27 2022-04-22 シチズンファインデバイス株式会社 LCD panel

Similar Documents

Publication Publication Date Title
JPH09138392A (en) Manufacture of composite substrate
US6573968B2 (en) Seal pattern for liquid crystal display device and related method
JP2007183540A (en) Method for cutting liquid crystal display panel and method for manufacturing liquid crystal display panel using the same
US9323067B2 (en) Display apparatus and method of manufacturing the same
KR100771949B1 (en) Seal Pattern for Ultra-Thin type Liquid Crystal Display Device
US20050088603A1 (en) Seal pattern for liquid crystal display device
KR20070060810A (en) Method for manufacturing liquid crystal display panel
JP2004309871A (en) Ferroelectric liquid crystal display element
US6456355B1 (en) Liquid crystal panel having a plurality of ribs for a liquid crystal display device
KR20050049393A (en) Liquid crystal device, electronic apparatus, and method for fabricating liquid crystal device
JP2007322693A (en) Method of manufacturing display device
JP2007101647A (en) Liquid crystal display element
KR20020042243A (en) seal pattern for liquid crystal display device and forming method thereof
JP2000305069A (en) Manufacture of panel for liquid crystal display
JP3171844B2 (en) Semiconductor single crystal thin film substrate liquid crystal light valve device
JP3788256B2 (en) Manufacturing method of liquid crystal device
JP2006276372A (en) Liquid crystal display panel and its manufacturing method
KR100800326B1 (en) Fabricating Apparatus Of Liquid Crystal Display Panel
KR100769172B1 (en) Method For Fabricating A Multi-Domain Liquid Crystal Display Device
CN116018550A (en) Method for manufacturing liquid crystal device including an interstitial substrate
JP2007101657A (en) Ferroelectric liquid crystal display element
JPH0850294A (en) Production of liquid crystal element
TW202341543A (en) Mask and method for producing mask
KR101496753B1 (en) Liquid crystal display device and Method of fabricating the same
JP2019174574A (en) Liquid crystal panel