JP2000111416A - Method for measuring junction temperature and measuring apparatus for executing the method - Google Patents
Method for measuring junction temperature and measuring apparatus for executing the methodInfo
- Publication number
- JP2000111416A JP2000111416A JP29276198A JP29276198A JP2000111416A JP 2000111416 A JP2000111416 A JP 2000111416A JP 29276198 A JP29276198 A JP 29276198A JP 29276198 A JP29276198 A JP 29276198A JP 2000111416 A JP2000111416 A JP 2000111416A
- Authority
- JP
- Japan
- Prior art keywords
- current
- measurement
- temperature
- junction
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、対象半導体集積回
路装置(ASIC及びMCM)内のデバイス接合温度を
正確に測定する半導体接合温度測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor junction temperature measuring device for accurately measuring a device junction temperature in a target semiconductor integrated circuit device (ASIC and MCM).
【0002】[0002]
【従来の技術】半導体集積回路パッケージの熱抵抗測定
方法については、SEMI規格G38−87で規定され
ている。これは、TSP(Temperature S
ensitive Parameter)法で温度検知
するものである。TSP法は、具体的には、デバイスの
温度に敏感な電気的パラメータとして、P−N接合の順
方向電圧を用いて半導体接合温度を計測するものであ
る。2. Description of the Related Art A method of measuring the thermal resistance of a semiconductor integrated circuit package is specified in SEMI Standard G38-87. This is because TSP (Temperature S)
The temperature is detected by an intrinsic parameter method. Specifically, the TSP method measures a semiconductor junction temperature using a forward voltage of a PN junction as an electrical parameter that is sensitive to device temperature.
【0003】その方法の手順は次のとおりである。 温度の校正 温度を任意に設定可能な恒温槽中に試験するデバイス
(DUT) を入れ、そのデバイスのチップ温度が恒温
槽の温度と等しくなるのに十分な時間をおいた後、測定
電流Is(=センス電流)を流して、P−N接合のダイ
オード順方向電圧Vfを測定する。このような測定を恒
温槽の温度を変化させながら、多数のサンプリング温度
で行うことにより、P−N接合のダイオード順方向電圧
Vfの温度との相関データを採取する(校正)。The procedure of the method is as follows. Temperature calibration A device under test (DUT) is placed in a thermostatic chamber whose temperature can be set arbitrarily. After a sufficient time has passed for the chip temperature of the device to become equal to the temperature of the thermostatic chamber, the measurement current Is ( = Sense current) and measure the diode forward voltage Vf at the PN junction. By performing such measurement at a large number of sampling temperatures while changing the temperature of the thermostat, correlation data with the temperature of the diode forward voltage Vf of the PN junction is collected (calibration).
【0004】電力印加 まず、試験するデバイスを停止状態にして、−の校正過
程で用いられた測定電流Isで順方向電圧VMCを測定
する。次に電力PH[W]を印加した直後、校正過程で
用いられた測定電流Isで順方向電圧VMHを測定す
る。接合温度Tjは、式Tj=Ta+(1/k){VMH
− VMC}により算出する。但し、Taは周囲温度、k
は−で求めたTSP法の温度相関データグラフの傾きで
ある。First, the device to be tested is stopped, and the forward voltage VMC is measured with the measurement current Is used in the calibration process of-. Next, immediately after the application of the power PH [W], the forward voltage VMH is measured with the measurement current Is used in the calibration process. The junction temperature Tj is calculated by the equation: Tj = Ta + (1 / k) {V MH
-Calculated by V MC }. Where Ta is the ambient temperature, k
Is the slope of the temperature correlation data graph of the TSP method obtained by-.
【0005】従ってパッケージ熱抵抗θ[℃/W]は、
式θ=(Tj−Ta )/PH で算出できる。従来この
電力印加から校正過程で用いられた測定電流Isへの切
替えは、マニュアルまたはスイッチャ(マイコン制御ま
たはMOSスイッチで数百ms)で実施していた。Accordingly, the package thermal resistance θ [° C./W] is
It can be calculated by the formula θ = (Tj−Ta) / P H. Conventionally, switching from the application of power to the measurement current Is used in the calibration process has been performed manually or by a switcher (microcomputer control or several hundred ms by a MOS switch).
【0006】[0006]
【発明が解決しようとする課題】電力印加後に、瞬時に
校正過程で用いられた測定電流Isに切替え、その直後
の順方向電圧Vfをモニタリングすることで正確に計測
できる訳であるが、必ず切替え時間が生じるため測定誤
差が大きくなる。これは、電力印加をストップするとT
jは急速に低下するため(例:約5℃/sec)、いち
早くモニタリングしなくてはならないためである。ま
た、1パッケージに複数チップ搭載されたマルチチップ
モジュール(MCM)において、VDDが共通のため実
動作時と同じ消費電力を印加することができず、そのた
め評価する熱抵抗も実動作時とは異なる。つまり、どの
チップにどの程度の消費電力が印可されたかわからず、
チップの接合温度を検証することができない。It is possible to measure accurately by immediately switching to the measurement current Is used in the calibration process and immediately monitoring the forward voltage Vf immediately after the power is applied. Measurement error increases due to time. This is because when power application is stopped, T
This is because j decreases rapidly (eg, about 5 ° C./sec) and must be monitored promptly. Further, in a multi-chip module (MCM) in which a plurality of chips are mounted in one package, the same power consumption as in the actual operation cannot be applied because VDD is common, and therefore, the thermal resistance to be evaluated is different from that in the actual operation. . In other words, it is not known which power consumption was applied to which chip,
Unable to verify chip junction temperature.
【0007】本発明は単体又は複数の発熱体を搭載した
基板又はマルチチップモジュール等の半導体デバイスの
PN接合温度を測定する方法及び装置において、TSP
法を改良して、より正確に接合温度を測定できるように
することを課題とする。The present invention relates to a method and an apparatus for measuring a PN junction temperature of a semiconductor device such as a substrate or a multi-chip module on which a single or a plurality of heating elements are mounted, and a method for measuring the temperature of the TSP.
An object of the present invention is to improve the method so that the junction temperature can be measured more accurately.
【0008】[0008]
【課題を解決するための手段】本発明(請求項1)の接
合温度測定方法は、測定対象の半導体集積回路の電源端
子間に所定電流を流して、前記半導体集積回路の表面温
度を定常状態とし、前記表面温度が定常状態となった
後、前記所定電流を切る直前に半導体集積回路の接合温
度を測定するための前記所定電流より十分小さい検出用
電流を前記電源端子に流し、検出用電流を流したときの
電源端子間電圧に基づいて接合温度を測定することを特
徴とする。According to a first aspect of the present invention, there is provided a method for measuring a junction temperature, wherein a predetermined current is applied between power supply terminals of a semiconductor integrated circuit to be measured, and the surface temperature of the semiconductor integrated circuit is reduced to a steady state. After the surface temperature is in a steady state, immediately before the predetermined current is cut off, a detection current sufficiently smaller than the predetermined current for measuring a junction temperature of the semiconductor integrated circuit is supplied to the power supply terminal, and the detection current is The junction temperature is measured based on the voltage between the power supply terminals when the current flows.
【0009】本発明(請求項2)の接合温度測定装置
は、測定対象の半導体集積回路に、規定の電力印加用電
流を供給する電力印加用電流源と、前記半導体半導体集
積回路に、前記電力印加用電流より十分小さい測定用電
流を供給し、PN接合の順方向電圧を測定する電圧測定
手段と、前記半導体半導体集積回路に、前記電力印加用
電流源を所定の時間接続した後、前記電圧測定手段を接
続する際に、電力印加用電流の供給期間と測定用電流の
供給期間が一部重なるように制御する制御手段と、前記
半導体半導体集積回路について予め測定された接合温度
と順方向電圧の相関を表すデータを保持するテーブル
と、前記電力印加用電流の供給停止の直後の前記電圧測
定手段の測定結果から前記テーブルの内容を参照して接
合温度を算出する算出手段とを備えたことを特徴とす
る。According to a second aspect of the present invention, there is provided a junction temperature measuring apparatus, comprising: a power application current source for supplying a specified power application current to a semiconductor integrated circuit to be measured; A voltage measuring means for supplying a measuring current sufficiently smaller than the applying current and measuring a forward voltage of the PN junction; and connecting the power applying current source to the semiconductor semiconductor integrated circuit for a predetermined time. Control means for controlling the supply period of the power application current and the supply period of the measurement current when connecting the measurement means, and a junction temperature and a forward voltage previously measured for the semiconductor semiconductor integrated circuit. And a table for holding the data representing the correlation of the above and a calculation for calculating the junction temperature by referring to the contents of the table from the measurement result of the voltage measuring means immediately after the supply of the power application current is stopped. Characterized by comprising a stage.
【0010】[0010]
【作用】本発明の接合温度測定方法において、半導体集
積回路に規定の電力を与えて発熱させ、熱的な平衡状態
に達するに必要な時間後に電力の印加を停止させる。そ
の停止時点より少し前の時点からPN接合の順方向電圧
の測定を開始する。順方向電圧の計測値は電力印加電流
が停止した時点の前と後では大幅に異なるので、測定用
電流によるPN接合の順方向電圧のデータは容易に識別
できるので、電力印加停止後における最も早い時点の計
測値を選択して、接合温度の算出をする。従来のよう
に、電力印加を停止し、測定用電流に切り替えるのに人
手で行うようにすると切り替え時間に少なくとも1秒は
かかり、電力印加停止後1秒経た後の計測値しか得られ
ない。これに対して、本発明のように電力印加と順方向
電圧測定を一部重なるようにしたので、切り替え時間な
しに電力印加停止直後から計測値を得ることができる。
例えば、順方向電圧の計測値はサンプリングにより抽出
する場合、短い間隔(例えば0.2秒以下)でサンプリ
ングを行うことが可能であり、最大でもサンプリング間
隔以内での計測値を得ることができる。図7は電力印加
停止後の測定時間と測定された順方向電圧の例を示す
が、この例において、順方向電圧Vfは、0.2秒後の
306mVに対して、1秒後では315mVまで上昇す
る。これを接合温度Tjに換算すると、Tj=69℃と
65℃であり、4℃の差が生じる。つまり本発明を適用
することによって、それだけ誤差を小さくできたことに
なる。このように本発明によれば、より正確な接合温度
を得ることができるので、正確なパッケージ熱抵抗を求
めることができる。その結果、従来は誤差の大きい測定
結果に余分なマージンを加算し過大な放熱対策を実施し
てきたが、本発明は高精度な測定が可能となったことに
より、適切な放熱対策ができ、その分の低コスト化が実
現できる。In the junction temperature measuring method according to the present invention, a predetermined power is applied to the semiconductor integrated circuit to generate heat, and the application of the power is stopped after a time necessary to reach a thermal equilibrium state. The measurement of the forward voltage of the PN junction is started slightly before the stop time. Since the measured value of the forward voltage is significantly different before and after the time when the power application current stops, the data of the forward voltage of the PN junction by the measurement current can be easily identified, so that the earliest value after the power application is stopped The measurement value at the time is selected, and the joining temperature is calculated. If the application of power is stopped and switching to the measurement current is performed manually as in the prior art, the switching time takes at least one second, and only the measured value one second after the stop of power application is obtained. On the other hand, since the power application and the forward voltage measurement are partially overlapped as in the present invention, a measured value can be obtained immediately after the power application is stopped without a switching time.
For example, when the measured value of the forward voltage is extracted by sampling, sampling can be performed at a short interval (for example, 0.2 seconds or less), and a measured value within the sampling interval can be obtained at the maximum. FIG. 7 shows an example of the measurement time after the power application is stopped and the measured forward voltage. In this example, the forward voltage Vf is increased from 306 mV after 0.2 second to 315 mV after 1 second. To rise. When this is converted into the junction temperature Tj, Tj = 69 ° C. and 65 ° C., and there is a difference of 4 ° C. That is, by applying the present invention, the error can be reduced accordingly. As described above, according to the present invention, a more accurate bonding temperature can be obtained, so that an accurate package thermal resistance can be obtained. As a result, in the past, an extra margin was added to the measurement result with a large error to take an excessive heat dissipation measure.However, the present invention has enabled high-precision measurement, so that an appropriate heat dissipation measure can be taken. Cost can be reduced.
【0011】本発明の上記方法を実施するための装置に
おいて、電力印加用電流源は、測定対象の半導体集積回
路に、規定の電力印加用電流を供給して半導体集積回路
に規定の状態での発熱を生じさせる。その印加の期間は
集積回路の温度が定常状態になるのに必要な時間とす
る。電圧測定手段は、前記半導体集積回路に、電力印加
用電流より十分小さい測定用電流を供給しながら、PN
接合の順方向電圧を測定する。制御手段は、電力印加用
電流の供給期間と測定用電流の供給期間が一部重なるよ
うに制御する。テーブルには、前記半導体集積回路につ
いて予め測定された接合温度と順方向電圧の相関を表す
データを保持している。算出手段は、前記電力印加用電
流の供給停止の直後の測定用電流のみが半導体集積回路
に与えられるようになってから得られた順方向電圧の計
測値から前記テーブルの内容を参照して接合温度を算出
する。本発明によれば、電力印加期間の終わりの部分と
測定用電流の印加の期間の始まりの部分が一部重なるよ
うにしたため、従来のように電力印加期間から測定用電
流が印加される期間へ切り替える時間を必要としないの
で、速やかに順方向電圧を得ることができ、高精度の測
定が可能となる。このように本発明によれば、より正確
な接合温度を得ることができるので、正確なパッケージ
熱抵抗を求めることができる。その結果、従来は誤差の
大きい測定結果に余分なマージンを加算し過大な放熱対
策を実施してきたが、本発明は高精度な測定が可能とな
ったことにより、適切な放熱対策ができ、その分の低コ
スト化が実現できる。In the apparatus for carrying out the above method of the present invention, the power supply current source supplies a specified power application current to the semiconductor integrated circuit to be measured, and supplies the specified power to the semiconductor integrated circuit in a specified state. This produces an exotherm. The period of the application is a time required for the temperature of the integrated circuit to reach a steady state. The voltage measuring means supplies the semiconductor integrated circuit with a PN while supplying a measurement current sufficiently smaller than the power application current.
Measure the forward voltage of the junction. The control unit controls the supply period of the power application current and the supply period of the measurement current to partially overlap. The table holds data indicating the correlation between the junction temperature and the forward voltage measured in advance for the semiconductor integrated circuit. The calculation means refers to the contents of the table from the measured value of the forward voltage obtained after only the measurement current immediately after the supply of the power application current is stopped is supplied to the semiconductor integrated circuit and joins. Calculate the temperature. According to the present invention, since the end portion of the power application period and the start portion of the measurement current application period partially overlap, the power application period is changed from the power application period to the period in which the measurement current is applied as in the related art. Since no switching time is required, a forward voltage can be obtained quickly, and high-precision measurement is possible. As described above, according to the present invention, a more accurate bonding temperature can be obtained, so that an accurate package thermal resistance can be obtained. As a result, in the past, an extra margin was added to the measurement result with a large error to take an excessive heat dissipation measure.However, the present invention has enabled high-precision measurement, so that an appropriate heat dissipation measure can be taken. Cost can be reduced.
【0012】[0012]
【発明の実施の形態】図1は本発明による半導体接合温
度測定装置の実施例を示す図である。この半導体接合温
度測定装置100は、この装置の制御や、接合温度Tj
の計算、その他の処理を行うCPU101、予め採取し
たTj−Vf特性の構成データを保持するルックアップ
テーブル102、測定対象デバイスへの電力印加時間を
制御するタイマ103、タイマ103の出力から第2リ
レー109のオンの開始点を制御する信号を生成するア
ンド回路104、タイマの出力信号を遅延させ第1のリ
レー107と第2のリレー109とがオーバーラップし
てオンとなる期間を制御する遅延回路105、遅延回路
105の出力を反転させるインバータ106、電力印加
用電流源108を測定対象デバイス120への接続を制
御する第1のリレー107、使用状態における温度環境
を得るために測定対象デバイス120に電力負荷を与え
る電力印加用電流源108、測定対象デバイスに120
に測定電流Isを与えるセンス電流源111、P−N接
合のダイオード順方向電圧Vfを検出する電圧測定部1
12、検出したダイオード順方向電圧Vfをサンプリン
グし、ディジタル化するサンプリング部113を備えて
いる。FIG. 1 is a diagram showing an embodiment of a semiconductor junction temperature measuring apparatus according to the present invention. The semiconductor junction temperature measuring device 100 controls the device and controls the junction temperature Tj.
CPU 101 that performs calculation and other processing, a lookup table 102 that holds configuration data of Tj-Vf characteristics collected in advance, a timer 103 that controls power application time to a device to be measured, and a second relay from the output of the timer 103. An AND circuit 104 for generating a signal for controlling the ON start point of the 109; a delay circuit for delaying the output signal of the timer to control a period during which the first relay 107 and the second relay 109 overlap and are ON; 105, an inverter 106 for inverting the output of the delay circuit 105, a first relay 107 for controlling the connection of the power supply current source 108 to the device under measurement 120, and a first relay 107 for obtaining the temperature environment in use. A current source 108 for applying a power to supply a power load, 120
Current source 111 that supplies a measurement current Is to a voltage measurement unit 1 that detects a diode forward voltage Vf of a PN junction
12. It has a sampling section 113 for sampling the detected diode forward voltage Vf and digitizing it.
【0013】図2は、以上のような構成を有する本実施
例の測定装置を用いた測定の手順を示すものである。、
まず、最初に測定対象のデバイスのVf−Tj相関デー
タすなわち校正データを測定する(ステップS1)。前
述の従来技術において行うものと変わりはない。すなわ
ち、温度を任意に設定可能な恒温槽中に試験するデバイ
ス(DUT)を入れ、そのデバイスのチップ温度が恒温
槽の温度と等しくなるのに十分な時間をおいた後、測定
電流Is(=センス電流)を流して、P−N接合のダイ
オード順方向電圧Vfを測定する。このような測定を恒
温槽の温度を変化させながら、多数のサンプリング温度
で行うことにより、P−N接合のダイオード順方向電圧
Vfの温度との相関データを採取する。図4はVf−T
j相関データの1例を示すものであり、ダイオード順方
向電圧Vfは接合温度Tjに反比例している。採取した
Vf−Tj相関データはメモリ102にルックアップテ
ーブルとして格納する(ステップS2)。FIG. 2 shows a procedure of measurement using the measuring apparatus of the present embodiment having the above-described configuration. ,
First, Vf-Tj correlation data of a device to be measured, that is, calibration data is measured (step S1). There is no difference from what is performed in the above-mentioned conventional technology. That is, a device (DUT) to be tested is placed in a thermostat in which the temperature can be set arbitrarily, and after a sufficient time has passed for the chip temperature of the device to become equal to the temperature of the thermostat, the measured current Is (= (Sense current), and the diode forward voltage Vf at the PN junction is measured. By performing such a measurement at many sampling temperatures while changing the temperature of the thermostat, correlation data with the temperature of the diode forward voltage Vf of the PN junction is collected. FIG. 4 shows Vf-T
This shows one example of j correlation data, and the diode forward voltage Vf is inversely proportional to the junction temperature Tj. The collected Vf-Tj correlation data is stored in the memory 102 as a look-up table (step S2).
【0014】以上のような前準備をした後、PN接合ダ
イオード順方向電圧Vjの自動測定と、接合温度Tjの
算出を行う。すなわち、遅延回路105に測定電流Is
と電力印加電流IFをオーバーラップさせる時間を設定
する(ステップS3)。そのオーバーラップ時間は0.
1ないし1秒程度とすればよい。次に、タイマ103に
電力印加時間を設定する(ステップS4)。図5のタイ
ミングチャートにおいて、タイマ103の出力信号は設
定された時間の間、Hレベルとなる信号部分51を有す
る。その信号部分51が遅延回路105によって遅延さ
れて信号52が出力される。それがインバータ106に
よって反転された信号53により第1リレー107がオ
ンに制御される。時点t1に第1リレー107がオンと
なる。After the above preparations, the automatic measurement of the PN junction diode forward voltage Vj and the calculation of the junction temperature Tj are performed. That is, the measured current Is is supplied to the delay circuit 105.
Is set to overlap the power application current IF with the current (step S3). The overlap time is 0.
The time may be about 1 to 1 second. Next, the power application time is set in the timer 103 (step S4). In the timing chart of FIG. 5, the output signal of the timer 103 has a signal portion 51 which is at H level for a set time. The signal portion 51 is delayed by the delay circuit 105 and a signal 52 is output. The first relay 107 is turned on by the signal 53 inverted by the inverter 106. At time t1, the first relay 107 is turned on.
【0015】第1リレー107がオンとなることによっ
て、電力印加電流IFが測定対象デバイス120の電源
端子VDD、VSS(又はグランド)間に流される(ス
テップS5)。具体的にはこれは、デバイスのVSS又
はグランド端子からVDD端子へ電力印加することを意
味し、デバイスの保護ダイオード(図6(C)の61な
いし63)の順方向に電流を流すものである。When the first relay 107 is turned on, the power application current IF flows between the power supply terminals VDD and VSS (or ground) of the device 120 to be measured (step S5). Specifically, this means that power is applied from the VSS or ground terminal of the device to the VDD terminal, and a current flows in the forward direction of the protection diode (61 to 63 in FIG. 6C) of the device. .
【0016】タイマ103にセットした時間が経過した
時点t2において、図5に示すように第2リレーがオン
となる。これによってセンス電流源111から測定対象
デバイス120に測定用電流が印加され、それによる接
合部の順方向電圧VFが電圧測定部112により検出さ
れる。検出値は、サンプリング部113でサンプリング
され、サンプリングされた電圧値Vfはメモリ102の
測定結果記憶領域に順次に記憶される(ステップS
6)。図5に示すように、サンプリングが開始された時
点t2から遅延回路に設定されたオーバーラップ時間後
の時点t3に第1リレー107がオフとなり、電力印加
用電流源108からデバイス120への電力印加が停止
される(ステップS7)。At time t2 when the time set in the timer 103 has elapsed, the second relay is turned on as shown in FIG. As a result, a measurement current is applied from the sense current source 111 to the device under measurement 120, and the forward voltage VF at the junction is detected by the voltage measurement unit 112. The detected value is sampled by the sampling unit 113, and the sampled voltage value Vf is sequentially stored in the measurement result storage area of the memory 102 (Step S).
6). As shown in FIG. 5, the first relay 107 is turned off at a time point t3 after the overlap time set in the delay circuit from the time point t2 when the sampling is started, and the power is supplied from the power supply current source 108 to the device 120. Is stopped (step S7).
【0017】そして、記憶されたサンプル値はディスプ
レイ表示やプリントアウト出力され、これにより操作者
が電力印加電流源108がオフした直後の順方向電圧を
選択する。サンプリング値は電力印加の終了時点t3の
前後でレベルが大きく変わるので、その選択は容易に行
うことができる。なお、サンプリング値から電力印加電
流源108がオフした直後の順方向電圧を自動的に選択
するように構成することもできる。すなわち、タイマ1
03の設定値及び遅延回路105の設定値が既知である
ので終了時点t3がわかり、計測値のレベルの変化もあ
るので、これらを利用して電力印加電流源108のオフ
直後のサンプル値の自動選択が可能である。例えば、サ
ンプリングの分解能として0.1ないし0.2secと
した場合、電力印加停止後、0.2秒以内に1回目のサ
ンプリングが可能となる。この電力印加停止後の最初の
サンプリングにより得られた順方向電圧の測定値が最も
誤差の少ない測定値である。何故なら、電力印加停止後
に、チップの接合温度Tjは急激に低下するため(例え
ば−5℃/sec)、測定値を得るのには早ければ早い
ほどよいからである。Then, the stored sample values are displayed on a display or printed out, whereby the operator selects a forward voltage immediately after the power supply current source 108 is turned off. Since the level of the sampling value changes largely before and after the end point t3 of the power application, the selection can be easily performed. It should be noted that the forward voltage immediately after the power supply current source 108 is turned off may be automatically selected from the sampling value. That is, timer 1
Since the set value of “03” and the set value of the delay circuit 105 are known, the end point in time t3 is known, and there is a change in the level of the measured value. Choice is possible. For example, when the sampling resolution is set to 0.1 to 0.2 sec, the first sampling can be performed within 0.2 seconds after stopping the power application. The measured value of the forward voltage obtained by the first sampling after the power application is stopped is the measured value with the least error. This is because the junction temperature Tj of the chip rapidly decreases (for example, −5 ° C./sec) after the power supply is stopped, so that it is better to obtain a measured value as soon as possible.
【0018】次に、タイマ103からstop信号が低
レベルになり測定用電流が停止する(ステップS8)。
サンプリングした接合の順方向電圧の電力印加電流の停
止後に最初にサンプリングされた値Vf値とTjないし
Vfテーブル1021から、接合温度TjをCPU10
1により算出する(ステップS9)。Next, the stop signal from the timer 103 goes low, and the measuring current stops (step S8).
The CPU 10 determines the junction temperature Tj from the value Vf first sampled after stopping the power application current of the forward voltage of the sampled junction and the Tj or Vf table 1021.
1 (step S9).
【0019】その算出の一例を挙げると、1Wの電力印
加を停止した直後にサンプリングされた順方向電圧がV
f=280mVとする。Vf=280mVに対応する接
合温度Tjは予めTj−Vf特性を測定したテーブル1
021からTj=72℃と導かれる。求めるパッケージ
熱抵抗θ=(Tj−Ta)/Powerより、(72−
25)/1.0=47[℃/W]となる。As an example of the calculation, the forward voltage sampled immediately after stopping the application of 1 W power is V
Let f = 280 mV. Table 1 in which the Tj-Vf characteristic was measured in advance was used as the junction temperature Tj corresponding to Vf = 280 mV.
021 leads to Tj = 72 ° C. From the required package thermal resistance θ = (Tj−Ta) / Power, (72−
25) /1.0=47 [° C./W].
【0020】なお、以上の実施例の説明では、電力印加
と順方向電圧測定の切り替えタイミングの制御を行う回
路103ないし106、サンプリング測定用の回路11
3、測定ダイオード順方向電圧Vfを測定する装置11
0113は、個別の回路を用いる例を示したが、既存の
ASICテスタの有する機能を利用することもできる。
すなわち、ASICテスタは測定の手順をプログラムす
る機能や、サンプリング測定の機能を有しており、図1
の温度測定装置の機能の主要な部分をプログラムの作成
とCPU101の実行によって実現することが可能であ
る。In the above description of the embodiment, the circuits 103 to 106 for controlling the switching timing between the power application and the forward voltage measurement, and the sampling measurement circuit 11
3. Apparatus 11 for measuring measurement diode forward voltage Vf
[0113] Although the example using the individual circuits is described in the example 0113, the function of the existing ASIC tester can be used.
That is, the ASIC tester has a function of programming a measurement procedure and a function of sampling measurement.
The main part of the function of the temperature measuring device can be realized by creating a program and executing the CPU 101.
【0021】この実施例によれば、タイマ103によっ
て電力印加時間を設定し、遅延回路105により電力印
加と測定用電流印加のオーバーラップ時間を設定するこ
とができる。そして、PN接合の順方向電圧の測定では
測定用電流の印加開始と同時に測定値である順方向電圧
のサンプリングを開始するが、電力印加停止後の最初の
サンプリングの値を有効なデータとするので、サンプリ
ング間隔以内のきわめて迅速な測定が実現されたことと
なり、その迅速な測定に伴って正確な順方向電圧の測定
結果が得られる。According to this embodiment, the timer 103 can set the power application time, and the delay circuit 105 can set the overlap time between the power application and the measurement current application. Then, in the measurement of the forward voltage of the PN junction, the sampling of the forward voltage, which is the measured value, starts simultaneously with the start of the application of the measurement current. Thus, extremely rapid measurement within the sampling interval is realized, and an accurate forward voltage measurement result is obtained with the rapid measurement.
【0022】次に、本発明の測定方法を、複数のチップ
を搭載したMCM又はPWBAについて適用する例を説
明する。複数のデバイスを搭載したモジュールは、電源
の供給線は共通に接続されるのが普通であり、したがっ
て、複数のデバイスに対して個別に電力印加をしたり、
測定用電流を流して接合温度を測定することはできな
い。そこで、各デバイスの接合温度Tjを測定するため
に、図6(a)に示すようにVDD層のみを分離する。
又、各チップは同図(b)に示すように適宜に配置す
る。これによって、複数デバイスが搭載されたモジュー
ルでも個別に電力や測定用電流を供給することができ
る。GND層は(c)に示すように共通でも構わない。Next, an example in which the measuring method of the present invention is applied to an MCM or PWBA on which a plurality of chips are mounted will be described. In a module equipped with a plurality of devices, the power supply lines are generally connected in common, so that power can be individually applied to a plurality of devices,
It is not possible to measure the junction temperature by passing a measuring current. Therefore, in order to measure the junction temperature Tj of each device, only the VDD layer is separated as shown in FIG.
The chips are appropriately arranged as shown in FIG. As a result, power and current for measurement can be individually supplied even to a module on which a plurality of devices are mounted. The GND layer may be common as shown in FIG.
【0023】このように各デバイスを別々に電力印加さ
せる構造とすることにより、内部のダイオード62にも
別々に電力印加することができる。そのためデバイス発
熱量の比率の違いによる接合温度Tjの影響は、各デバ
イスに印加する電力をそれぞれ可変にすることにより、
他の発熱デバイスの影響を考慮したデバイスの接合温度
Tjを測定することができる。さらに、デバイス配置位
置の違いによるTjの影響は、それぞれ目的のデバイス
のみを発熱させ、他のデバイズは電力印加しないこと
で、どこに配置した場合が最もTjが高いかなどを明確
にすることができる。By employing a structure in which power is applied to each device separately, power can be separately applied to the diode 62 inside. Therefore, the influence of the junction temperature Tj due to the difference in the ratio of the calorific value of the device is determined by varying the power applied to each device.
It is possible to measure the junction temperature Tj of the device in consideration of the influence of other heating devices. Further, the influence of Tj due to the difference in the device arrangement position can be clarified as to where Tj is highest when the device is arranged by causing only the target device to generate heat and not applying power to the other devices. .
【0024】図6に示すように電源VDDの配線を分離
することで、電力印加が別々になるだけでなく、実機で
の実動作時の消費電力を測定する場合、このVDD−G
ND間の電流を計測することによりどのデバイスの消費
電力が最も大きいかなど分類することが可能となる。応
用例として、各入力ピンに対して、1本の入力端子の保
護ダイオード特性をモニタリングすることによって同様
の測定装置を構成することができる。By separating the power supply VDD wiring as shown in FIG. 6, not only the power application becomes separate, but also when measuring the power consumption during actual operation in the actual machine, this VDD-G
By measuring the current between NDs, it becomes possible to classify which device has the largest power consumption. As an application example, a similar measuring device can be configured by monitoring the protection diode characteristics of one input terminal for each input pin.
【0025】[0025]
【発明の効果】以上記述した如く本発明の方法及び装置
によれば、電力印加期間の終わりの部分と測定用電流の
印加の期間の始まりの部分を一部重なるようにし、測定
用電流のみが印加される期間への切り替え時間を従来技
術のように必要としないので、速やかに順方向電圧を得
ることができ、高精度の測定が可能となる。このように
本発明によれば、より正確な接合温度を得ることができ
るので、正確なパッケージ熱抵抗を求めることができ
る。その結果、従来は誤差の大きい測定結果に余分なマ
ージンを加算し過大な放熱対策を実施してきたが、本発
明は高精度な測定が可能となったことにより、適切な放
熱対策ができ、その分の低コスト化が実現できる。As described above, according to the method and apparatus of the present invention, the end portion of the power application period and the start portion of the application period of the measurement current are partially overlapped, and only the measurement current is applied. Since a switching time to the applied period is not required unlike the related art, a forward voltage can be obtained quickly, and highly accurate measurement can be performed. As described above, according to the present invention, a more accurate bonding temperature can be obtained, so that an accurate package thermal resistance can be obtained. As a result, in the past, an extra margin was added to the measurement result with a large error to take an excessive heat dissipation measure.However, the present invention has enabled high-precision measurement, so that an appropriate heat dissipation measure can be taken. Cost can be reduced.
【図1】本発明の実施例の装置の構成を示す図、FIG. 1 is a diagram showing a configuration of an apparatus according to an embodiment of the present invention;
【図2】本発明の測定方法の実施例の手順の一例を示す
フロー図、FIG. 2 is a flowchart showing an example of a procedure of an embodiment of the measuring method of the present invention;
【図3】本発明の測定方法における処理のタイミングを
示す図、FIG. 3 is a diagram showing processing timing in the measurement method of the present invention;
【図4】Vf−Tjの相関特性を示す図、FIG. 4 is a diagram showing a correlation characteristic of Vf-Tj.
【図5】コントロール信号のタイミングチャート、FIG. 5 is a timing chart of a control signal,
【図6】(a)は3チップ搭載時のVDDパターンの一
例を示す図、(b)はチップの配置例、(c)はチップ
毎の個別の電源供給の概念を示す図、6A is a diagram illustrating an example of a VDD pattern when three chips are mounted, FIG. 6B is a diagram illustrating an example of chip arrangement, and FIG. 6C is a diagram illustrating the concept of individual power supply for each chip;
【図7】電力印加直後の順方向電圧Vfのモニタリング
結果の一例を示す図。FIG. 7 is a diagram illustrating an example of a monitoring result of a forward voltage Vf immediately after power application.
100…半導体接合温度測定装置、101…CPU、1
02…メモリ、1021…Tj−Vfテーブル、103
…タイマ、104…論理回路、105…遅延回路、10
6…インバータ、107…第1リレー、108…電力印
加用電流源、109…第2リレー、110…順方向電圧
測定部、111…測定用電流源、112…電圧測定部、
113…サンプリング回路、120…半導体チップ。100: semiconductor junction temperature measuring device, 101: CPU, 1
02 memory, 1021 Tj-Vf table, 103
... Timer, 104 ... Logic circuit, 105 ... Delay circuit, 10
6 ... Inverter, 107 ... First relay, 108 ... Power supply current source, 109 ... Second relay, 110 ... Forward voltage measurement unit, 111 ... Measurement current source, 112 ... Voltage measurement unit
113: sampling circuit, 120: semiconductor chip.
Claims (2)
に所定電流を流して、前記半導体集積回路の表面温度を
定常状態とし、 前記表面温度が定常状態となった後、前記所定電流を切
る直前に半導体集積回路の接合温度を測定するための前
記所定電流より十分小さい検出用電流を前記電源端子に
流し、 検出用電流を流したときの電源端子間電圧に基づいて接
合温度を測定することを特徴とする接合温度測定方法。1. A predetermined current is passed between power supply terminals of a semiconductor integrated circuit to be measured to bring a surface temperature of the semiconductor integrated circuit into a steady state, and after the surface temperature becomes a steady state, the predetermined current is cut off. Immediately before, a detection current sufficiently smaller than the predetermined current for measuring the junction temperature of the semiconductor integrated circuit is supplied to the power supply terminal, and the junction temperature is measured based on a voltage between the power supply terminals when the detection current is supplied. A method for measuring a joining temperature.
力印加用電流を供給する電力印加用電流源と、 前記半導体半導体集積回路に、前記電力印加用電流より
十分小さい測定用電流を供給し、PN接合の順方向電圧
を測定する電圧測定手段と、 前記半導体半導体集積回路に、前記電力印加用電流源を
所定の時間接続した後、前記電圧測定手段を接続する際
に、電力印加用電流の供給期間と測定用電流の供給期間
が一部重なるように制御する制御手段と、 前記半導体半導体集積回路について予め測定された接合
温度と順方向電圧の相関を表すデータを保持するテーブ
ルと、 前記電力印加用電流の供給停止の直後の前記電圧測定手
段の測定結果から前記テーブルの内容を参照して接合温
度を算出する算出手段とを備えたことを特徴とする接合
温度測定装置。2. A power supply current source for supplying a prescribed power application current to a semiconductor integrated circuit to be measured, and a measurement current that is sufficiently smaller than the power supply current to the semiconductor semiconductor integrated circuit. A voltage measuring means for measuring a forward voltage of a PN junction; and after connecting the power applying current source to the semiconductor semiconductor integrated circuit for a predetermined period of time, when connecting the voltage measuring means, A control unit that controls the supply period of the measurement current and the supply period of the measurement current to partially overlap; a table that holds data indicating a correlation between a junction temperature and a forward voltage measured in advance for the semiconductor semiconductor integrated circuit; Calculating means for calculating the junction temperature by referring to the contents of the table from the measurement result of the voltage measuring means immediately after the supply of the power application current is stopped. Measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29276198A JP3539231B2 (en) | 1998-10-01 | 1998-10-01 | Bonding temperature measuring method and measuring device for implementing the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29276198A JP3539231B2 (en) | 1998-10-01 | 1998-10-01 | Bonding temperature measuring method and measuring device for implementing the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000111416A true JP2000111416A (en) | 2000-04-21 |
JP3539231B2 JP3539231B2 (en) | 2004-07-07 |
Family
ID=17786003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29276198A Expired - Fee Related JP3539231B2 (en) | 1998-10-01 | 1998-10-01 | Bonding temperature measuring method and measuring device for implementing the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3539231B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113588106A (en) * | 2021-08-10 | 2021-11-02 | 哈尔滨工业大学(深圳) | PN junction temperature measuring method and system and computer readable storage medium |
CN114089144A (en) * | 2021-10-08 | 2022-02-25 | 中国电子科技集团公司第十三研究所 | Method and system for measuring diode junction parameters |
-
1998
- 1998-10-01 JP JP29276198A patent/JP3539231B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113588106A (en) * | 2021-08-10 | 2021-11-02 | 哈尔滨工业大学(深圳) | PN junction temperature measuring method and system and computer readable storage medium |
CN113588106B (en) * | 2021-08-10 | 2023-08-01 | 哈尔滨工业大学(深圳) | PN junction temperature measurement method, system and computer readable storage medium |
CN114089144A (en) * | 2021-10-08 | 2022-02-25 | 中国电子科技集团公司第十三研究所 | Method and system for measuring diode junction parameters |
Also Published As
Publication number | Publication date |
---|---|
JP3539231B2 (en) | 2004-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2962129B2 (en) | Semiconductor test equipment | |
US6786639B2 (en) | Device for sensing temperature of an electronic chip | |
US6552561B2 (en) | Apparatus and method for controlling temperature in a device under test using integrated temperature sensitive diode | |
JPH0688854A (en) | Method and device for heating and temperature control in integrated circuit | |
US6593761B1 (en) | Test handler for semiconductor device | |
US7052179B2 (en) | Temperature detector | |
TWI829657B (en) | Semiconductor device test system | |
JP2000243795A (en) | Power supply current measurement circuit of burn-in tester | |
JP3539231B2 (en) | Bonding temperature measuring method and measuring device for implementing the method | |
US7121721B2 (en) | Apparatus and method for measuring operating temperatures of an electrical component | |
JP2009109314A (en) | Semiconductor device and its inspecting method | |
CN116699352A (en) | Test temperature determining method for high-temperature reverse bias test of power semiconductor module | |
JP2834047B2 (en) | Semiconductor wafer and its test method | |
PL234140B1 (en) | Method and the system for measuring thermal resistance and optical radiation intensity of the LED power diode | |
JP3084857B2 (en) | Method for measuring thermal resistance of power semiconductor device | |
JP2002156402A (en) | Method and apparatus for inspecting characteristic of semiconductor element | |
JPS6196479A (en) | Ic measuring device | |
JP7392533B2 (en) | inspection system | |
JP2003248029A (en) | Testing method for semiconductor device | |
JPH09298222A (en) | System and method for measuring semiconductor device | |
JPH04144248A (en) | Testing method of semiconductor integrated circuit | |
JP2611680B2 (en) | Temperature measurement method and device | |
JPH0579481U (en) | LSI tester | |
JP2000298156A (en) | Method for inspecting semiconductor device | |
JPH0233946A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040226 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20040302 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20040315 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |