JP2000111314A - Reception light quantity stabilizer for laser type position locating device - Google Patents

Reception light quantity stabilizer for laser type position locating device

Info

Publication number
JP2000111314A
JP2000111314A JP10284432A JP28443298A JP2000111314A JP 2000111314 A JP2000111314 A JP 2000111314A JP 10284432 A JP10284432 A JP 10284432A JP 28443298 A JP28443298 A JP 28443298A JP 2000111314 A JP2000111314 A JP 2000111314A
Authority
JP
Japan
Prior art keywords
light
laser
position locating
locating device
type position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10284432A
Other languages
Japanese (ja)
Inventor
Tomio Aoyama
富夫 青山
Masaru Taniguchi
優 谷口
Yoshikatsu Takeda
義勝 武田
Kunio Shibaike
国雄 芝池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10284432A priority Critical patent/JP2000111314A/en
Publication of JP2000111314A publication Critical patent/JP2000111314A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly detect a position by effectively adjusting light quantity in laser type position locating device according to the attenuation of laser light. SOLUTION: A reception light quantity stabilizer 60 for a laser type position locating device has a circular glass substrate 61 and a rotation motor 63 rotating the substrate around an axis by forming chromium evaporation part 67a to 67l with intervals along the periphery of the glass substrate 61 to form ND (neutral density) filter separated in a plurality, and varies step by step the light transmittance of a plurality of ND filters which laser light for position location transmits.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遠隔的に操作され
る移動自在のロボットの位置標定用レーザ測長装置に関
し、特にレーザ式位置標定装置用受光量安定化装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser length measuring device for locating a remotely operated movable robot, and more particularly to a light receiving amount stabilizing device for a laser type position locating device.

【0002】[0002]

【従来の技術】人間が近寄り難い場所で作業をするため
に、遠隔操作されるロボットの使用が提案されている。
図6に加圧水型原子炉の格納容器内で移動するロボット
1の状態が概念的に示されている。このようなロボット
1は移動しつつ作業するので、その正確な位置の測定が
必要であり、次のように3次元の位置が標定される。即
ち、ロボット1から遠く離れた位置に設けられたセンサ
ヘッド3から発射されたレーザ光5がロボット1の反射
鏡7に反射し、反射したレーザ光5がセンサヘッド3に
戻り位置が求められる。更に詳述すれば、センサヘッド
3は垂直駆動軸9及び旋回駆動軸11に取り付けられい
て、反射鏡7を追尾してその方位角、ふ仰角及び距離、
即ち3次元位置が測定される。そして、センサヘッド3
には、垂直駆動軸9及び旋回駆動軸11の制御やセンサ
ヘッド3内の駆動部の制御を行う制御装置13、前述の
角度や距離を計測する計測装置15及び関連する計算を
行う計算器17が電気的に接続されている。
2. Description of the Related Art The use of remotely controlled robots has been proposed for working in places where humans are difficult to access.
FIG. 6 conceptually shows the state of the robot 1 moving in the containment vessel of the pressurized water reactor. Since such a robot 1 works while moving, it is necessary to accurately measure its position, and a three-dimensional position is located as follows. That is, the laser light 5 emitted from the sensor head 3 provided at a position far away from the robot 1 is reflected on the reflecting mirror 7 of the robot 1, and the reflected laser light 5 returns to the sensor head 3 to determine the position. More specifically, the sensor head 3 is attached to the vertical drive shaft 9 and the turning drive shaft 11, and tracks the reflecting mirror 7 to control its azimuth, elevation, distance, and the like.
That is, the three-dimensional position is measured. And the sensor head 3
The control device 13 controls the vertical drive shaft 9 and the turning drive shaft 11 and the drive unit in the sensor head 3, the measuring device 15 measures the angle and the distance, and the calculator 17 performs related calculations. Are electrically connected.

【0003】このようにロボット1の位置はレーザ光5
を利用して計測されるのであるが、そのための光学的構
成が図7に示されている。図において、レーザ発振装置
21から出たレーザ光は光ファイバ23を通ってレンズ
25に至り、ここで平行なレーザ光5とされ、ミラー2
7を透過して反射鏡7に出射される。反射鏡7で反射さ
れたレーザ光5は、ミラー27及びレンズ29を通って
受光素子31に入り、更にアンプ33を通して距離計測
装置35に入る。前述の出射前のレーザ光も受光素子3
7及びアンプ33を通って距離計測装置35に入ってい
るから、レーザ光5の戻り時間から距離が計測され、距
離出力となる。
In this way, the position of the robot 1 is
The optical configuration for the measurement is shown in FIG. In the figure, a laser beam emitted from a laser oscillation device 21 passes through an optical fiber 23 and reaches a lens 25, where it is converted into a parallel laser beam 5,
The light is transmitted to the mirror 7 and emitted to the reflecting mirror 7. The laser light 5 reflected by the reflecting mirror 7 enters the light receiving element 31 through the mirror 27 and the lens 29, and further enters the distance measuring device 35 through the amplifier 33. The above-mentioned laser beam before emission is also received by the light receiving element
7, the distance is measured from the return time of the laser beam 5, and the distance is output.

【0004】反射鏡7とセンサヘッド3との相対的角度
関係即ち方位角とふ仰角とを求めるには、まず粗精度位
置合わせとして、半反射のミラー27,39で偏光した
後、反射鏡7をCCDカメラ41で撮像し、画像(画
面)の中央付近に反射鏡7が来るように垂直軸駆動軸9
及び旋回駆動軸11を調整駆動する。次に、精確な位置
合わせを行うために、ミラー39で分割(分岐)された
レーザ光5をレンズ43を介して位置検出センサ45で
受光し、レーザ位置検出装置47上でレーザ光位置を計
測しながら、垂直軸駆動軸9及び旋回駆動軸11を微調
整駆動して位置合わせを行う。この位置合わせ完了時の
垂直軸駆動軸9及び旋回駆動軸11の角度から方位角及
びふ仰角が得られる。このようにして求められた角度と
距離は、所謂球座標の座標に相当するから、ロボット1
の3次元位置が演算される。
In order to determine the relative angular relationship between the reflecting mirror 7 and the sensor head 3, that is, the azimuth angle and the elevation angle, first, as coarse alignment, the light is polarized by the semi-reflecting mirrors 27 and 39, and then the reflecting mirror 7 is rotated. Is captured by the CCD camera 41, and the vertical axis driving shaft 9 is moved so that the reflecting mirror 7 comes near the center of the image (screen).
And the turning drive shaft 11 is adjusted and driven. Next, in order to perform accurate positioning, the laser beam 5 split (branched) by the mirror 39 is received by the position detection sensor 45 via the lens 43, and the laser beam position is measured on the laser position detection device 47. Meanwhile, the vertical drive shaft 9 and the turning drive shaft 11 are finely adjusted to perform alignment. An azimuth angle and an elevation angle are obtained from the angles of the vertical drive shaft 9 and the turning drive shaft 11 at the time of completion of the alignment. Since the angle and distance obtained in this way correspond to so-called spherical coordinates, the robot 1
Are calculated.

【0005】従来のレーザを利用した位置標定用測長装
置の基本的構造は上述の通りであるが、ロボット1が水
中にあってレーザ光5の光路が水中を貫くと、レーザ光
5は大きく減衰し、反射戻り光量が不十分となって適切
な計測結果が得られないことがある。又、減衰量を見込
んで受光素子31の感度を高く設定すると、光路中の減
衰量が少ない場合は、受光素子31が飽和するという別
の問題を生ずる。このような問題に対処するため、図8
に示すようにセンサヘッド3の中において、投光レンズ
25とミラー27との間に光量減衰用のNDフィルタ
(neutraldensity filter)49とこれを回転制御する
モータ51とを取り付けて、受光素子31の出力をモニ
ターし、この部分での受光量を安定化(一定化)するよ
うにしている。図9にNDフィルタ49とモータ51の
構造がより具体的に示されている。即ち、円形のNDフ
ィルタ49は、回転角度に応じた濃度を持っていて、適
切な濃度になるようにモータ51で回転角度が制御され
る。
[0005] The basic structure of a conventional position-measuring length-measuring device using a laser is as described above. However, when the robot 1 is underwater and the optical path of the laser light 5 passes through the water, the laser light 5 becomes large. In some cases, the amount of reflected light is insufficient and the amount of reflected return light is insufficient, so that an appropriate measurement result cannot be obtained. Further, if the sensitivity of the light receiving element 31 is set high in consideration of the amount of attenuation, another problem occurs that the light receiving element 31 is saturated when the amount of attenuation in the optical path is small. To deal with such a problem, FIG.
In the sensor head 3, an ND filter (neutraldensity filter) 49 for attenuating the amount of light and a motor 51 for controlling the rotation of the ND filter 49 are attached between the light projecting lens 25 and the mirror 27 in the sensor head 3, as shown in FIG. The output is monitored, and the amount of light received at this portion is stabilized (stabilized). FIG. 9 shows the structure of the ND filter 49 and the motor 51 more specifically. That is, the circular ND filter 49 has a density corresponding to the rotation angle, and the rotation angle is controlled by the motor 51 so as to obtain an appropriate density.

【0006】[0006]

【発明が解決しようとする課題】前述のNDフィルタ4
9のレーザ光の減衰(透過率)特性は、図10(a)に
示すように透過率が回転角に対し無段階で変化するよう
になっている。しかしながら、NDフィルタ49を用い
て受光量調整を行うと、透過前のレーザ光ビーム内の光
量分布は、図10(b)に示すように左右対称のガウシ
アン分布となるが、NDフィルタ49を透過した後のレ
ーザ光ビーム内の光量分布は、図10(c)に示すよう
に左右非対称の分布となる。而して、前述の位置検出セ
ンサ45は、図11に示すような4分割のフォトセンサ
53を用い、それぞれの出力をa,b,c,dとしてX
座標値及びY座標値を次式で求めている。 X座標値={(a+b)−(c+d)}/(a+b+c+d) Y座標値={(b+d)−(a+c)}/(a+b+c+d) このため、前述のような左右対称性が崩れるNDフィル
タ49を用いると、距離の測定には影響が無いが、位置
の計測値に悪影響を及ぼすことになる。この問題に対処
するため、レーザ光ビームの外径より大きい外径を有し
且つ全面で透過率が一様な円形のNDフィルタを複数種
類用意し、これらを回転円板に円周方向に間隔を置いて
埋め込んで構成した減衰調整用NDフィルタの使用が提
案されている。しかしながら、このような組み込み型構
造のNDフィルタでは、各フィルタの取り付け精度のば
らつきが避け難く、フィルタ板の傾斜に基づく屈折率の
差が生じ、これ又位置検出の計測誤差の原因となってい
る。従って、本発明は、レーザを利用した移動物体の3
次元位置標定装置において、位置検出誤差が生じない受
光量安定化装置を提供することを目的とする。
The above-mentioned ND filter 4
As shown in FIG. 10A, the attenuation (transmittance) characteristic of the laser light of No. 9 is such that the transmittance changes steplessly with respect to the rotation angle. However, when the amount of received light is adjusted using the ND filter 49, the light amount distribution in the laser light beam before transmission becomes a bilaterally symmetric Gaussian distribution as shown in FIG. The light amount distribution in the laser light beam after the above becomes asymmetrical distribution as shown in FIG. Thus, the above-described position detection sensor 45 uses a four-divided photo sensor 53 as shown in FIG. 11 and outputs X, X and X, respectively, as a, b, c, and d.
The coordinate value and the Y coordinate value are obtained by the following equations. X-coordinate value = {(a + b)-(c + d)} / (a + b + c + d) Y-coordinate value = {(b + d)-(a + c)} / (a + b + c + d) If used, there is no effect on the distance measurement, but it will have an adverse effect on the position measurement. To cope with this problem, a plurality of circular ND filters having an outer diameter larger than the outer diameter of the laser beam and having uniform transmittance over the entire surface are prepared, and these are arranged on the rotating disk in the circumferential direction. There has been proposed the use of an ND filter for attenuation adjustment, which is configured by embedding with a. However, in such an ND filter having a built-in structure, a variation in mounting accuracy of each filter is unavoidable, and a difference in refractive index occurs due to the inclination of the filter plate, which also causes a measurement error in position detection. . Therefore, the present invention provides a method for moving objects using a laser.
It is an object of the present invention to provide a light receiving amount stabilizing device in which a position detection error does not occur in a three-dimensional position locating device.

【0007】[0007]

【課題を解決するための手段】如上の目的を達成するた
め、本発明によれば、レーザ式位置標定装置用受光量安
定化装置は、円形のガラス基板とこのガラス基板を軸芯
回りに回転する回転モータとを有し、前記ガラス基板の
外周に沿って間隔を置いてクロム膜を蒸着して複数の分
離されたNDフィルタを形成し、位置標定用レーザ光が
透過するその複数の前記NDフィルタの光透過率が段階
的に変えられている。
According to the present invention, in order to achieve the above object, according to the present invention, a light receiving amount stabilizing apparatus for a laser type position locating apparatus comprises a circular glass substrate and a glass substrate rotated around an axis. A plurality of separated ND filters formed by depositing a chromium film at intervals along the outer periphery of the glass substrate, and the plurality of ND filters through which a laser beam for position location is transmitted. The light transmittance of the filter is changed stepwise.

【0008】[0008]

【発明の実施の形態】以下、添付の図面を参照して本発
明の実施形態を説明する。先ず図1及び図2を参照する
に、受光量安定化装置60は、円形のガラス基板61と
この中心軸部に出力軸が連結された回転モータ63とこ
れら全体を支持するマウント65から構成されている。
そして、位置標定用レーザ光が通る部分に対応してク
ロム蒸着部67a〜67lが形成される。クロム蒸着部
67aとガラス基板61との関係は図3に示すとおり
で、クロム蒸着部67a〜67lの蒸着されたクロム膜
の厚さは順次段階的に変えられている。このようにする
と、レーザ光69が通るときの透過率が異なる。即ち、
クロム蒸着部67a〜67lは、NDフィルタをそれぞ
れ形成している。このようなクロム蒸着部67a〜67
lを形成するには、図4乃至図5に示すような治具乃至
金属マスク板71をガラス基板61に取り付けてクロム
蒸着を行えば良い。即ち、金属マスク板71はクロム蒸
着部67a〜67lの大きさに対応する窓73を有して
いて、これで被ったガラス基板61を蒸着雰囲気に曝露
することにより、それぞれの位置にクロム蒸着部67a
〜67lが形成される。このようなクロム蒸着部67a
〜67lは、それぞれ蒸着クロム膜厚が異なるけれど
も、1個のクロム蒸着部67aでは、全面にわたって膜
厚が一様であるので、透過後の光量分布も左右対称のガ
ウシアン分布となる。従って、これを位置標定用の位置
検出センサに導入しても精確な位置を計測することがで
きる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, referring to FIG. 1 and FIG. 2, the light-receiving amount stabilizing device 60 includes a circular glass substrate 61, a rotation motor 63 having an output shaft connected to a central shaft thereof, and a mount 65 for supporting the whole. ing.
Then, chromium vapor deposition sections 67a to 67l are formed corresponding to the portions through which the laser beam for position location passes. The relationship between the chromium deposition section 67a and the glass substrate 61 is as shown in FIG. 3, and the thickness of the chromium film deposited on the chromium deposition sections 67a to 67l is sequentially changed stepwise. In this case, the transmittance when the laser beam 69 passes differs. That is,
The chromium deposition sections 67a to 67l form ND filters, respectively. Such chromium deposition sections 67a to 67
In order to form l, a jig or a metal mask plate 71 as shown in FIGS. 4 and 5 may be attached to the glass substrate 61 and chromium deposition may be performed. That is, the metal mask plate 71 has a window 73 corresponding to the size of the chromium vapor deposition sections 67a to 67l. By exposing the glass substrate 61 covered with this to the vapor deposition atmosphere, the chromium vapor deposition sections 67a
~ 67l are formed. Such a chromium deposition section 67a
6767l have different thicknesses of deposited chromium, but in one chrome deposited portion 67a, since the thickness is uniform over the entire surface, the light quantity distribution after transmission is also a symmetric Gaussian distribution. Therefore, even if this is introduced into the position detecting sensor for position locating, accurate position can be measured.

【0009】[0009]

【発明の効果】以上説明したように、本発明によれば、
一枚の円形ガラス基板に膜厚の異なるクロム蒸着部を複
数形成してフィルタとしたので、製作誤差による屈折率
の変動や光量分布の非対称性を生ずることなく、レーザ
光の減衰を調整して安定化することができる。
As described above, according to the present invention,
Since a filter is formed by forming a plurality of chromium vapor-deposited sections with different film thicknesses on a single circular glass substrate, the attenuation of laser light can be adjusted without causing fluctuations in the refractive index or asymmetry in the light quantity distribution due to manufacturing errors. Can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す正面図である。FIG. 1 is a front view showing an embodiment of the present invention.

【図2】前記実施形態の側面図である。FIG. 2 is a side view of the embodiment.

【図3】前記実施形態の要部を示す部分拡大断面図であ
る。
FIG. 3 is a partially enlarged sectional view showing a main part of the embodiment.

【図4】前記実施形態のガラス基板の製作に用いられる
治具の正面図である。
FIG. 4 is a front view of a jig used for manufacturing the glass substrate of the embodiment.

【図5】前記治具の断面図である。FIG. 5 is a sectional view of the jig.

【図6】本発明に係る装置が使用されるレーザ式位置標
定装置の概念図である。
FIG. 6 is a conceptual diagram of a laser type position locating device in which the device according to the present invention is used.

【図7】前記レーザ式位置標定装置の光路構成の基本図
である。
FIG. 7 is a basic diagram of an optical path configuration of the laser type position locating device.

【図8】従来のレーザ式位置標定装置の光路構成を示す
部分系統図である。
FIG. 8 is a partial system diagram showing an optical path configuration of a conventional laser type position locating device.

【図9】従来の受光量安定化装置の外形図である。FIG. 9 is an external view of a conventional light reception amount stabilizing device.

【図10】従来の受光量安定化装置の作用説明図であ
る。
FIG. 10 is a diagram illustrating the operation of a conventional light reception amount stabilizing device.

【図11】従来装置の問題点を説明するための説明図で
ある。
FIG. 11 is an explanatory diagram for explaining a problem of the conventional device.

【符号の説明】[Explanation of symbols]

60 受光量安定化装置 61 ガラス基板 63 回転モータ 65 マウント 67a〜67l クロム蒸着部 Reference Signs List 60 light reception amount stabilization device 61 glass substrate 63 rotation motor 65 mount 67a to 67l chrome deposition section

フロントページの続き (72)発明者 武田 義勝 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 芝池 国雄 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 Fターム(参考) 2F065 AA04 AA06 BB15 FF23 GG04 LL16 LL25 NN03 UU01 2H048 AA01 AA07 AA11 AA19 AA22 AA26 Continued on the front page. (72) Inventor Yoshikatsu Takeda 1-1-1, Wadazakicho, Hyogo-ku, Kobe City, Hyogo Prefecture Inside the Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Kunio Shibaike 2-1-1, Araimachi, Araimachi, Takasago-shi, Hyogo Prefecture No. 1 F term in Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (reference) 2F065 AA04 AA06 BB15 FF23 GG04 LL16 LL25 NN03 UU01 2H048 AA01 AA07 AA11 AA19 AA22 AA26

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円形のガラス基板と同ガラス基板を軸芯
回りに回転する回転モータとを有し、前記ガラス基板の
外周に沿って間隔を置いてクロム膜を蒸着して複数の分
離されたNDフィルタを形成し、位置標定用レーザ光が
透過する前記複数のNDフィルタの光透過率を段階的に
変えていることを特徴とするレーザ式位置標定装置用受
光量安定化装置。
A plurality of separated chromium films formed by depositing a chrome film at intervals along the outer periphery of the glass substrate; A light receiving amount stabilizing device for a laser type position locating device, wherein an ND filter is formed, and the light transmittance of the plurality of ND filters through which the position locating laser light passes is changed stepwise.
JP10284432A 1998-10-06 1998-10-06 Reception light quantity stabilizer for laser type position locating device Withdrawn JP2000111314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10284432A JP2000111314A (en) 1998-10-06 1998-10-06 Reception light quantity stabilizer for laser type position locating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10284432A JP2000111314A (en) 1998-10-06 1998-10-06 Reception light quantity stabilizer for laser type position locating device

Publications (1)

Publication Number Publication Date
JP2000111314A true JP2000111314A (en) 2000-04-18

Family

ID=17678485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10284432A Withdrawn JP2000111314A (en) 1998-10-06 1998-10-06 Reception light quantity stabilizer for laser type position locating device

Country Status (1)

Country Link
JP (1) JP2000111314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1800791A1 (en) * 2005-12-21 2007-06-27 EO Technics Co., Ltd. Method of forming via hole using laser beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1800791A1 (en) * 2005-12-21 2007-06-27 EO Technics Co., Ltd. Method of forming via hole using laser beam

Similar Documents

Publication Publication Date Title
US3989385A (en) Part locating, mask alignment and mask alignment verification system
EP0880674B1 (en) A system for point-by-point measuring of spatial coordinates
JPS6127682B2 (en)
JPH03233925A (en) Automatic focus adjustment and control apparatus
WO1989000674A1 (en) An optical angle-measuring device
JP2000111314A (en) Reception light quantity stabilizer for laser type position locating device
US4725146A (en) Method and apparatus for sensing position
US5600123A (en) High-resolution extended field-of-view tracking apparatus and method
JP2002206915A (en) Abscissa calibration method for facial shape measuring device and facial shape measuring device
US6407806B2 (en) Angle compensation method
JPH09145320A (en) Three-dimensional input camera
JPH10332327A (en) Stage structure
JPH06258182A (en) Method and apparatus for measuring eccentricity of aspherical lens
JP2536059B2 (en) Object surface condition measuring device and surface height measuring device
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JP2000121340A (en) Face inclination angle measuring apparatus
RU2540065C2 (en) Method of making diffractive optical element
JPH0566976B2 (en)
US20240093993A1 (en) Monitoring arrangement for an optical system
JPH047803B2 (en)
JPH11281319A (en) Position setting apparatus of optical element and position setting method of optical element
JP2753545B2 (en) Shape measurement system
JP4493077B2 (en) Image recording apparatus and light beam intensity correction method
JP3239682B2 (en) Segment position measurement method
JPH1194700A (en) Measuring device and method for lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110