JP2000111160A - Bypass mixing system of hot water supplier - Google Patents

Bypass mixing system of hot water supplier

Info

Publication number
JP2000111160A
JP2000111160A JP10283063A JP28306398A JP2000111160A JP 2000111160 A JP2000111160 A JP 2000111160A JP 10283063 A JP10283063 A JP 10283063A JP 28306398 A JP28306398 A JP 28306398A JP 2000111160 A JP2000111160 A JP 2000111160A
Authority
JP
Japan
Prior art keywords
bypass
water
path
valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10283063A
Other languages
Japanese (ja)
Other versions
JP3904742B2 (en
Inventor
Yutaka Aoki
豊 青木
Hiroki Kanazawa
広輝 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP28306398A priority Critical patent/JP3904742B2/en
Publication of JP2000111160A publication Critical patent/JP2000111160A/en
Application granted granted Critical
Publication of JP3904742B2 publication Critical patent/JP3904742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a hot water supplier exhibit its appliance capacity effectively, by enabling the coordination between the bypass percentage and the total quantity of water simply without unnecessary ripple of temperature at the outlet of an inner drum. SOLUTION: The water governor 11 of a water supply pipe 2 is equipped with a mobile valve body 16 which can control the total quantity of water by regulating the aperture of the valve seat 15 of a fixed valve body 14, and a pressure receiver 18 where a water passage hole 19 is made is fixed downstream of the mobile valve body 16. Moreover, the bypass pipe 22 connected between the water supply pipe 2 and a hot water delivery pipe 5 is connected between the pressure receiver 18 and the valve seat 15 of the fixed valve body 14, and the bypass pipe 22 is provided with a bypass throttle valve 25 which operates by the shape memory alloy 27 sensing the temperature of incoming water and changing the load, and varies the aperture of a throttle passage 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器に接続さ
れる給水路と出湯路との間に、熱交換器をバイパスする
バイパス路を接続し、そのバイパス路から出湯路への水
量を制御することで、熱交換器からの内胴出口温度を所
定範囲に制御可能としたバイパスミキシング式給湯器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting a bypass passage for bypassing a heat exchanger between a water supply passage connected to a heat exchanger and a tap water passage, and for controlling the amount of water from the bypass passage to the tap water passage. The present invention relates to a bypass mixing type water heater in which the temperature of an inner body outlet from a heat exchanger can be controlled within a predetermined range by controlling the same.

【0002】[0002]

【従来の技術】上記バイパスミキシング式給湯器は、バ
イパス路内の水量を制御することで、器具へのトータル
水量に対するバイパス路内を流れる水量の比、即ちバイ
パス率を調整して、熱交換器からの湯の温度(以下「内
胴出口温度」という)を、熱交換器にドレンを発生させ
ない下限温度(例えば46℃)から、沸騰を起こさせな
い上限温度(例えば85℃)の範囲内に制御することを
目的としている。このバイパス路内の水量制御の態様と
して、特開平9−222263号公報に開示の如く、バ
イパス路に、入水温度で荷重を変化させる形状記憶合金
バネに連動してバイパス路内の抵抗を可変するバイパス
絞り弁を設けると共に、これを器具内へ供給された水又
は湯の圧力によって動作する受圧体と、その受圧体に連
動して器具内へのトータル水量を可変制御する可動弁体
とからなる定流量弁と組み合わせて、バイパス絞り弁の
ストロークでトータル水量も同時に変化させる水温感応
型定流量弁を採用した発明が知られている。
2. Description of the Related Art The above-described bypass mixing type water heater controls the amount of water in the bypass passage by controlling the amount of water in the bypass passage to adjust the ratio of the amount of water flowing through the bypass passage to the total amount of water supplied to the appliance, that is, the bypass ratio. The temperature of hot water (hereinafter referred to as “inner body outlet temperature”) is controlled within a range from a lower limit temperature (for example, 46 ° C.) at which drainage is not generated in the heat exchanger to an upper limit temperature (for example, 85 ° C.) at which boiling does not occur. It is intended to be. As a mode of controlling the amount of water in the bypass passage, as disclosed in Japanese Patent Application Laid-Open No. 9-222263, the resistance in the bypass passage is varied in conjunction with a shape memory alloy spring that changes the load at the incoming water temperature. In addition to providing a bypass throttle valve, it comprises a pressure receiving body that operates by the pressure of water or hot water supplied into the appliance, and a movable valve body that variably controls the total amount of water into the appliance in conjunction with the pressure receiving body. There is known an invention adopting a water temperature sensitive type constant flow valve in which a total water amount is simultaneously changed by a stroke of a bypass throttle valve in combination with a constant flow valve.

【0003】[0003]

【発明が解決しようとする課題】上記発明によれば、入
水温度が低い場合には、トータル水量とバイパス率とが
低く抑えられる一方、入水温度が高い場合には、トータ
ル水量とバイパス率とが増加される。よって、入水温度
が低く設定温度が高い場合でも内胴出口温度は高くなり
過ぎず、逆に入水温度が高く設定温度が低い場合でも内
胴出口温度は低くなり過ぎない傾向となる。しかし、上
記水温感応型定流量弁においては、バイパス絞り弁の動
作でトータル水量が調整された後で可動弁体による熱交
換器側への水量調整が行われるため、トータル水量が変
化することで熱交換器側への水量も同時に変化して内胴
出口温度が不必要に変動しやすく、適正なバイパス率を
設定しても沸騰限界やドレン限界を超える虞れが生じて
しまう。又、トータル水量の制御はバイパス絞り弁がメ
インとして働くため、トータル水量が少なくなり、器具
能力を十分に発揮できない。更に、バイパス絞り弁と定
流量弁との組み合わせ構造が複雑化して製造コストもか
かるものとなる。
According to the above-mentioned invention, when the incoming water temperature is low, the total water amount and the bypass ratio can be kept low, while when the incoming water temperature is high, the total water amount and the bypass ratio become low. Will be increased. Therefore, even when the incoming water temperature is low and the set temperature is high, the inner trunk outlet temperature does not become too high. Conversely, even when the incoming water temperature is high and the set temperature is low, the inner trunk outlet temperature does not tend to be too low. However, in the above-described water temperature-responsive constant flow valve, since the amount of water to the heat exchanger side is adjusted by the movable valve body after the total amount of water is adjusted by the operation of the bypass throttle valve, the total amount of water changes. The amount of water to the heat exchanger also changes at the same time, and the temperature of the inner body outlet tends to be unnecessarily fluctuated. Even if an appropriate bypass ratio is set, there is a possibility that the temperature exceeds the boiling limit or the drain limit. In addition, the control of the total water amount is performed mainly by the bypass throttle valve, so that the total water amount is reduced, and the tool capacity cannot be sufficiently exhibited. Further, the combination structure of the bypass throttle valve and the constant flow valve becomes complicated, and the manufacturing cost is increased.

【0004】そこで、請求項1に記載の発明は、内胴出
口温度の不必要な変動なくバイパス率とトータル水量と
の調整を簡単な構成で可能とするのに加え、トータル水
量を有効に制御可能として器具能力を効果的に発揮でき
るバイパスミキシング式給湯器を提供することを目的と
したものである。
[0004] In view of the above, the first aspect of the present invention allows the bypass ratio and the total water amount to be adjusted with a simple configuration without unnecessary fluctuation of the inner body outlet temperature, and effectively controls the total water amount. It is an object of the present invention to provide a bypass mixing-type water heater that can effectively exert the appliance capability as much as possible.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、前記受圧体を、前記可動
弁体より前記熱交換器側に配置すると共に、前記受圧体
に透孔を設けて前記熱交換器への水量を固定する一方、
前記バイパス路を、前記受圧体と前記可動弁体による前
記トータル水量の制御位置との間に接続すると共に、前
記バイパス路に、前記バイパス路内の水量を制御可能な
バイパス絞り弁と、前記バイパス路を流れる水の温度に
応じて動作し、前記バイパス絞り弁を連動させる熱応動
部材とを設け、前記バイパス絞り弁による前記バイパス
路内の水量制御によって前記受圧体への圧力を変化さ
せ、前記トータル水量の制御を可能としたことを特徴と
するものである。請求項2に記載の発明は、請求項1の
目的に加えて、より広いバイパス率の調整範囲を確保し
てドレン防止、沸騰防止性能を向上させると共に、トー
タル水量をより多く制御可能とするために、バイパス路
に所定の設定温度で開閉動作する電磁弁を設けたもので
ある。
According to a first aspect of the present invention, the pressure receiving member is disposed closer to the heat exchanger than the movable valve element, and the pressure receiving member is disposed on the pressure receiving member. While providing a through hole to fix the amount of water to the heat exchanger,
A bypass throttle valve that connects the bypass passage between the pressure receiving body and the control position of the total water amount by the movable valve body, and that is capable of controlling a water amount in the bypass passage; A heat responsive member that operates in accordance with the temperature of the water flowing through the passage and interlocks the bypass throttle valve, and changes the pressure on the pressure receiving body by controlling the amount of water in the bypass passage by the bypass throttle valve; It is characterized in that the total water volume can be controlled. In addition to the object of the first aspect, the invention described in claim 2 ensures a wider range of adjustment of the bypass ratio to improve drain prevention and boiling prevention performance, and also enables the total water amount to be controlled more. In addition, an electromagnetic valve that opens and closes at a predetermined set temperature is provided in the bypass passage.

【0006】請求項3に記載の発明は、請求項1の目的
に加えて、より広いバイパス率の調整範囲を確保してド
レン防止、沸騰防止性能を向上させると共に、トータル
水量をより多く制御可能とするために、バイパス路にバ
イパス絞り弁を迂回する並列路を設け、前記並列路に、
所定の設定温度で開閉動作する電磁弁を設けたものであ
る。請求項4に記載の発明は、請求項1の目的に加え
て、より広いバイパス率の調整範囲を確保してドレン防
止、沸騰防止性能を向上させると共に、トータル水量を
略器具能力最大まで制御可能とするために、バイパス路
に、熱交換器を通過する湯又は水の流れに合流する戻し
通路を設け、バイパス絞り弁に設けた第二弁体で前記戻
し通路の流量も可変制御させる一方、前記バイパス路
に、前記バイパス絞り弁の両弁体の間に開口する並列路
を並設し、その並列路に所定の設定温度で開閉動作する
電磁弁を設けたものである。
According to the third aspect of the present invention, in addition to the object of the first aspect, it is possible to secure a wider adjustment range of the bypass ratio, improve the drain prevention and the boiling prevention performance, and control the total water amount more. To provide a parallel path bypassing the bypass throttle valve in the bypass path, in the parallel path,
An electromagnetic valve that opens and closes at a predetermined set temperature is provided. According to the invention of claim 4, in addition to the object of claim 1, it is possible to secure a wider adjustment range of the bypass ratio, improve drain prevention and boiling prevention performance, and control the total water amount to almost the maximum equipment capacity. In order to provide a return passage that joins the flow of hot water or water passing through the heat exchanger in the bypass passage, the flow rate of the return passage is also variably controlled by a second valve body provided in the bypass throttle valve, A parallel path that opens between both valve bodies of the bypass throttle valve is provided in parallel with the bypass path, and an electromagnetic valve that opens and closes at a predetermined set temperature is provided in the parallel path.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。 《形態1》図1は、バイパスミキシング式給湯器(以下
「給湯器」と略称する)の概略を示すもので、給湯器1
は、上水道に接続されて給水路を内設する給水管2と、
給水管2から導かれる水をガスバーナ3により加熱する
熱交換器4と、その熱交換器4で加熱された湯を送り出
す出湯路を内設する出湯管5とを備えている。又、給水
管2には、水量を検出する水量センサ6と、入水温度を
検出する入水温センサ7とが、出湯管5には、出湯温度
を検出する出湯温センサ8が夫々設けられて、コントロ
ーラ9に電気的接続されている。このコントローラ9
は、入水温センサ7や出湯温センサ8から得られる検出
信号に基いて、リモコン10でユーザーが選択する設定
温度で出湯されるように、ガスバーナ3へのガス流路に
設けられた比例制御弁(図示せず)の開度を制御する等
周知の出湯温制御を行うものである。
Embodiments of the present invention will be described below with reference to the drawings. << Mode 1 >> FIG. 1 schematically shows a bypass mixing type water heater (hereinafter abbreviated as “water heater”).
Is a water supply pipe 2 connected to the water supply and having a water supply channel therein,
The heat exchanger 4 includes a heat exchanger 4 for heating water guided from the water supply pipe 2 by a gas burner 3, and a tapping pipe 5 internally provided with a tapping path for sending out hot water heated by the heat exchanger 4. In addition, the water supply pipe 2 is provided with a water amount sensor 6 for detecting a water amount, a water temperature sensor 7 for detecting an incoming water temperature, and the tap water pipe 5 is provided with a tap water temperature sensor 8 for detecting a tap water temperature. It is electrically connected to the controller 9. This controller 9
Is a proportional control valve provided in a gas flow path to the gas burner 3 so that hot water is discharged at a set temperature selected by a user with the remote controller 10 based on detection signals obtained from the incoming water temperature sensor 7 and the outgoing water temperature sensor 8. A known hot water temperature control such as controlling an opening degree (not shown) is performed.

【0008】そして、給水管2には定流量弁として水ガ
バナ11が設けられる。水ガバナ11には、水量センサ
6の下流側にガバナ本体12が形成され、このガバナ本
体12内に、水通路13,13を形成したカップ状の固
定弁体14が固着されており、固定弁体14の内側に、
固定弁体14の弁座15との間の開度を変更可能なカッ
プ状の可動弁体16が、固定弁体14と開口を逆向きに
した格好で配置されている。この可動弁体16は、固定
弁体14の下流側でガバナ本体12内にシール部材17
を介してスライド可能に設けられたリング状の受圧体1
8の中央に固着されており、受圧体18とその下流側の
バネ押え20との間に配したコイルバネ21によって、
上流側へ付勢される。尚、受圧体18には複数の通水孔
19,19が形成され、ここでの給水管2は、受圧体1
8の下流側に接続されている。
The water supply pipe 2 is provided with a water governor 11 as a constant flow valve. A governor body 12 is formed in the water governor 11 on the downstream side of the water amount sensor 6, and a cup-shaped fixed valve body 14 in which water passages 13 are formed is fixed in the governor body 12. Inside the body 14,
A cup-shaped movable valve body 16 capable of changing the degree of opening between the fixed valve body 14 and the valve seat 15 is arranged in a manner that the opening of the cup-shaped movable body 16 is opposite to that of the fixed valve body 14. The movable valve body 16 is provided with a sealing member 17 in the governor body 12 on the downstream side of the fixed valve body 14.
Ring-shaped pressure receiving body 1 slidably provided through
8 and a coil spring 21 disposed between the pressure receiving body 18 and a spring retainer 20 on the downstream side thereof.
It is urged upstream. The pressure receiving body 18 has a plurality of water passage holes 19 formed therein.
8 is connected to the downstream side.

【0009】一方、給水管2と出湯管5との間には、熱
交換器4をバイパスするバイパス路を内設するバイパス
管22が接続される。このバイパス管22は、給水管2
側では水ガバナ11における受圧体18と固定弁体14
の弁座15との間に接続されて連通路23を形成してい
る。又、バイパス管22には、バルブガイド24に遊嵌
してスライド可能なバイパス絞り弁25が、バイパス管
22内の絞り通路26の開度を変更可能に設けられてい
る。バイパス絞り弁25は、その下流側に配置された熱
応動部材としての形状記憶合金バネ27と、バルブガイ
ド24との間で形状記憶合金バネ27と対向状に配置さ
れた普通のコイルバネであるバイアスバネ28とのバラ
ンスにより、ストロークが決定される。即ち、バイパス
管22への入水温度を感知した形状記憶合金バネ27
が、入水温度が高くなる程荷重を増加させて絞り通路2
6の開度を大きくするものであるが、具体的には、入水
温度1℃〜30℃の範囲でバイパス率を最大27%まで
変化させる設定となっている。
On the other hand, between the water supply pipe 2 and the tapping pipe 5, a bypass pipe 22 having a bypass passage for bypassing the heat exchanger 4 is connected. This bypass pipe 22 is connected to the water supply pipe 2.
On the side, the pressure receiving body 18 and the fixed valve body 14 in the water governor 11
To form a communication passage 23. The bypass pipe 22 is provided with a bypass throttle valve 25 which is loosely fitted to the valve guide 24 and is slidable so that the opening degree of the throttle passage 26 in the bypass pipe 22 can be changed. The bypass throttle valve 25 is a bias which is a normal coil spring disposed opposite to the shape memory alloy spring 27 between the valve guide 24 and the shape memory alloy spring 27 as a thermally responsive member disposed downstream thereof. The stroke is determined by the balance with the spring 28. That is, the shape memory alloy spring 27 that senses the temperature of water entering the bypass pipe 22
However, as the incoming water temperature increases, the load increases and the throttle passage 2
Although the opening degree of No. 6 is increased, specifically, the setting is such that the bypass ratio is changed to a maximum of 27% in the range of the inlet water temperature of 1 ° C to 30 ° C.

【0010】以上の如く構成された給湯器1において
は、水ガバナ11から連通路23を介してバイパス管2
2内へ流れる入水温度に形状記憶合金バネ27が反応
し、バイパス絞り弁25のストロークを制御して絞り通
路26の開度を可変すると、この開度の変更による抵抗
の変化に伴って、受圧体18へ加わる水圧が変化し、コ
イルバネ21とのバランスで可動弁体16のストロー
ク、即ち、可動弁体16による固定弁体14の弁座15
の開度が決定され、給湯器1へ流れるトータル水量が決
定されることになる。この関係を、トータル水量をQ、
受圧体18の面積をA、通水孔19,19の面積をa、
絞り通路26の面積をb、コイルバネ21のバネ荷重を
Wとすると、以下の数1で示すことができる。
In the water heater 1 configured as described above, the bypass pipe 2 is connected from the water governor 11 through the communication passage 23.
When the shape memory alloy spring 27 reacts to the incoming water temperature flowing into the inside 2 to control the stroke of the bypass throttle valve 25 to vary the opening of the throttle passage 26, the pressure change is caused by the change in resistance due to the change in the opening. The water pressure applied to the body 18 changes, and the stroke of the movable valve body 16 in balance with the coil spring 21, that is, the valve seat 15 of the fixed valve body 14 by the movable valve body 16.
Is determined, and the total amount of water flowing to the water heater 1 is determined. This relationship is expressed as follows:
The area of the pressure receiving body 18 is A, the area of the water holes 19 and 19 is a,
Assuming that the area of the throttle passage 26 is b and the spring load of the coil spring 21 is W, the following expression 1 can be obtained.

【0011】[0011]

【数1】 (Equation 1)

【0012】このように給湯器1においては、受圧体1
8の通水孔19,19により熱交換器4への流量は固定
で、バイパス絞り弁25で絞り通路26の面積bが増加
することで、バイパス率と共にトータル水量Qが増加す
る。即ち、水ガバナ11の構造とそれに対するバイパス
管22の接続位置の設定により、熱交換器4への流量を
変えずにバイパス率とトータル水量とを可変できる構造
となって、内胴出口温度の不必要な変動を防止できる。
又、水ガバナ11は基本的にバイパス絞り弁25と別構
成となって構造が簡略化するため、製造コストの軽減に
繋がる。又、図2は、給湯器1において、出湯温度に対
するトータル水量Qの最小値(左の曲線)と最大値(右
の曲線)とを示すグラフで、例えば出湯温度60℃の場
合のトータル水量Q(バイパス管22がない場合)は、
入水温度に対して、Q=400/(60−入水温度)の
式によって表される。「400」は、ガスバーナ3の最
大火力の熱出力値(kcal/分)である。よって、入水温
度が5℃の場合のQは7.3リットル/分となる。しかし、
ここでは、入水温度25℃でバイパス絞り弁25がバイ
パス率を27%に増加して抵抗を減少させるため、同図
下側のグラフのように、水ガバナ11によるトータル水
量を10リットル/分まで増加させることができ、器具能力
を有効に発揮できる。尚、ここでは、バイパス率を最大
27%まで可変することで、熱交換器4の内胴出口温度
を出湯温度より上昇させることができるため、ドレンの
発生防止性能の向上にも繋がる。
As described above, in the water heater 1, the pressure receiver 1
8, the flow rate to the heat exchanger 4 is fixed by the water flow holes 19, 19, and the area b of the throttle passage 26 is increased by the bypass throttle valve 25, so that the total water amount Q increases together with the bypass rate. That is, by setting the structure of the water governor 11 and the setting of the connection position of the bypass pipe 22 to the structure, the bypass ratio and the total water amount can be changed without changing the flow rate to the heat exchanger 4. Unnecessary fluctuations can be prevented.
In addition, the water governor 11 is basically different in configuration from the bypass throttle valve 25 to simplify the structure, leading to a reduction in manufacturing cost. FIG. 2 is a graph showing the minimum value (left curve) and the maximum value (right curve) of the total water amount Q with respect to the tap water temperature in the water heater 1. For example, the total water amount Q when the tap water temperature is 60 ° C. (When there is no bypass pipe 22)
For the incoming water temperature, it is represented by the equation Q = 400 / (60-incoming water temperature). “400” is the heat output value (kcal / min) of the maximum thermal power of the gas burner 3. Therefore, when the incoming water temperature is 5 ° C., Q is 7.3 liter / min. But,
Here, since the bypass throttle valve 25 increases the bypass ratio to 27% and reduces the resistance at the inlet water temperature of 25 ° C., the total water amount by the water governor 11 is reduced to 10 liter / min as shown in the lower graph of FIG. It can be increased, and the tool ability can be exhibited effectively. Here, by varying the bypass ratio up to a maximum of 27%, the temperature of the inner body outlet of the heat exchanger 4 can be raised above the temperature of the hot water, which leads to an improvement in the performance of preventing generation of drainage.

【0013】上記形態1においては、バイパス絞り弁2
5が殆ど開弁状態であるため、ドレン対策のためにバイ
パス率を増大させ過ぎると、高温出湯時に沸騰発生の虞
れがあり、バイパス率を27%までしか設定できない。
よって、入水温度が高い場合、例えば25℃では、計算
上のトータル水量Qは11.43リットル/分でありなが
ら、器具能力を十分発揮できていないことになる。そこ
で、トータル水量をより多くして能力を向上できる実施
の形態を以下形態2〜形態4として説明する。尚、給湯
器の主な構成は上記形態1と同じであるため、バイパス
管22の内部構造のみ示し、又、同じ符号は同じ構成部
を示すため、説明は省略する。 《形態2》図3に示す如く、バイパス管22におけるバ
イパス絞り弁25の下流側には、電磁弁29が設けられ
ている。この電磁弁29は、ダイヤフラム弁30を有す
るプランジャ31を、常態でバイパス管22を閉塞する
ようにコイルバネ32で付勢すると共に、プランジャ3
1を動作させる電磁コイル33を配したもので、コント
ローラ9による電磁コイル33への通電制御で、プラン
ジャ31がコイルバネ32の付勢に抗して後退し、ダイ
ヤフラム弁30がバイパス管22を開放するものとな
る。但し、この開弁動作は、リモコン10による設定温
度が50℃未満の場合にのみ行われ、設定温度50℃以
上では、バイパス絞り弁25のストロークに拘わらず、
電磁弁29は閉弁状態にあってバイパス率は常に0%と
なる。
In the first embodiment, the bypass throttle valve 2
Since the valve 5 is almost in the open state, if the bypass ratio is excessively increased for drainage countermeasures, there is a possibility that boiling will occur at the time of hot water supply, and the bypass ratio can be set only to 27%.
Therefore, when the incoming water temperature is high, for example, at 25 ° C., the calculated total water amount Q is 11.43 liters / min, but the appliance performance is not sufficiently exhibited. Therefore, embodiments in which the capacity can be improved by increasing the total amount of water will be described below as Embodiments 2 to 4. Since the main configuration of the water heater is the same as that of the first embodiment, only the internal structure of the bypass pipe 22 is shown, and the same reference numerals denote the same components, and a description thereof will be omitted. << Embodiment 2 >> As shown in FIG. 3, an electromagnetic valve 29 is provided downstream of the bypass throttle valve 25 in the bypass pipe 22. The solenoid valve 29 urges a plunger 31 having a diaphragm valve 30 with a coil spring 32 so as to close the bypass pipe 22 in a normal state.
The plunger 31 is retracted against the bias of the coil spring 32 and the diaphragm valve 30 opens the bypass pipe 22 by controlling the energization of the electromagnetic coil 33 by the controller 9. It will be. However, this valve opening operation is performed only when the set temperature by the remote controller 10 is lower than 50 ° C., and when the set temperature is 50 ° C. or higher, regardless of the stroke of the bypass throttle valve 25,
The solenoid valve 29 is in a closed state and the bypass ratio is always 0%.

【0014】よって、この形態2によれば、沸騰発生の
虞れのない設定温度50℃未満ではバイパス率を最大で
50%確保でき、入水温度1℃〜30℃の範囲において
バイパス率を20%〜50%まで可変することで、図4
の如く、入水温度5℃の場合でトータル水量を9.1リッ
トル/分に、入水温度25℃の場合でトータル水量を1
4.6リットル/分まで増加させることができ、形態1に比
べて特に50℃未満の出湯温度域でトータル水量が増
え、使い勝手が向上する。尚、図5は、設定温度に対し
てドレン防止、沸騰防止を達成できるバイパス率の限界
値を示すグラフで、グラフaは、入水温度1℃で内胴出
口温度を46℃以上に維持できるドレン限界ライン、グ
ラフbは、入水温度1℃で内胴出口温度を85℃以下に
維持できる沸騰限界ラインを示し、又、グラフcは、入
水温度30℃で内胴出口温度を46℃以上に維持できる
ドレン限界ライン、グラフdは、入水温度30℃で内胴
出口温度を85℃以下に維持できる沸騰限界ラインを示
す。よって、グラフaとbの間と、グラフcとdとの間
の重複領域(同図の斜線A部分)でバイパス率を設定す
れば、入水温度1℃〜30℃及び設定温度38℃〜70
℃の範囲に亘ってドレン防止、沸騰防止を共に達成でき
ることになるが、この形態2では、電磁弁29が開弁す
る48℃以下の場合でバイパス率が20%〜50%の範
囲での可変、48℃を超えると0%となるから、当該範
囲内でバイパス率を設定することでドレン防止と沸騰防
止とを略満足させることができる。
Therefore, according to the second embodiment, a bypass ratio of 50% can be secured at a maximum below a set temperature of 50 ° C. at which there is no risk of occurrence of boiling, and a bypass ratio of 20% can be secured in a range of an inlet water temperature of 1 ° C. to 30 ° C. By changing it up to 50%, FIG.
The total water volume is 9.1 liter / min when the water temperature is 5 ° C, and the total water volume is 1 when the water temperature is 25 ° C.
It can be increased to 4.6 liters / minute, and the total amount of water increases, especially in the tapping temperature range of less than 50 ° C., as compared with mode 1, and the usability is improved. FIG. 5 is a graph showing a limit value of a bypass ratio at which the prevention of drainage and the prevention of boiling can be achieved with respect to a set temperature. The limit line, graph b, shows a boiling limit line that can maintain the inner body outlet temperature at 85 ° C or less at an inlet water temperature of 1 ° C, and graph c maintains the inner body outlet temperature at 46 ° C or more at an inlet water temperature of 30 ° C. A possible drain limit line, graph d, shows a boiling limit line at which the inner body outlet temperature can be maintained at 85 ° C. or less at an inlet water temperature of 30 ° C. Therefore, if the bypass ratio is set in the overlap region between the graphs a and b and the graph c and d (the hatched portion A in the figure), the incoming water temperature is 1 ° C. to 30 ° C. and the set temperature is 38 ° C. to 70 ° C.
Although both the prevention of drainage and the prevention of boiling can be achieved over the range of ° C, in the second embodiment, the bypass ratio is variable in the range of 20% to 50% when the solenoid valve 29 is opened at 48 ° C or lower. , And 48 ° C., it becomes 0%. Therefore, by setting the bypass ratio within the range, it is possible to substantially satisfy the prevention of drainage and the prevention of boiling.

【0015】《形態3》上記形態2においては、電磁弁
29が開弁する50℃未満の設定温度域でのみトータル
水量を増加でき、50℃以上では入水温度の変化に拘わ
らず電磁弁29が閉弁してトータル水量が変化しない。
そこで、図6の如く、バイパス管22にバイパス絞り弁
25を迂回する並列路34を並設し、この並列路34に
電磁弁29を設ける構成とするのが望ましい。例えば、
電磁弁29の開弁による並列路34のバイパス率を23
%に固定し、バイパス絞り弁25によるバイパス率を入
水温度1℃〜30℃に応じて最大27%まで可変させれ
ば、設定温度50℃以上で電磁弁29が閉弁しても、図
7の如く、バイパス絞り弁25側の設定によってトータ
ル水量を7.3〜10リットル/分まで確保でき、設定温度
50℃未満では、バイパス率23%〜50%の可変によ
り、トータル水量を9.5〜14.6リットル/分まで確保
できる。特に、この形態3では、図5のグラフに示すよ
うに、電磁弁29が開弁する48℃以下の場合でバイパ
ス率が23%〜50%の範囲(斜線B)、50℃以上で
は0%〜27%の範囲(斜線C)の可変であるから、当
該範囲内でバイパス率を設定することでドレン防止と沸
騰防止とを共に満足させることができる(各斜線の重複
部分)。
<Embodiment 3> In the above-described embodiment 2, the total water amount can be increased only in a set temperature range of less than 50 ° C. at which the solenoid valve 29 is opened. The valve closes and the total water volume does not change.
Therefore, as shown in FIG. 6, it is preferable that a parallel path 34 bypassing the bypass throttle valve 25 is provided in the bypass pipe 22 in parallel, and the solenoid valve 29 is provided in the parallel path 34. For example,
The bypass ratio of the parallel path 34 due to the opening of the solenoid valve 29 is set to 23.
If the solenoid valve 29 is closed at a set temperature of 50 ° C. or higher by setting the bypass rate by the bypass throttle valve 25 to a maximum of 27% in accordance with the incoming water temperature of 1 ° C. to 30 ° C., FIG. As described above, the total water amount can be secured from 7.3 to 10 liters / min by setting the bypass throttle valve 25 side. When the set temperature is less than 50 ° C., the total water amount is 9.5 by changing the bypass ratio from 23% to 50%.ま で 14.6 l / min. In particular, in the third embodiment, as shown in the graph of FIG. 5, the bypass ratio is in the range of 23% to 50% when the solenoid valve 29 is opened at 48 ° C. or lower (shaded line B), and 0% at 50 ° C. or higher. Since it is variable within the range of 27% (hatched line C), it is possible to satisfy both drain prevention and boiling prevention by setting the bypass ratio within the range (overlapping portion of each hatched line).

【0016】《形態4》形態3においても、入水温度が
高くなると、ある程度の水量増加が見込めるものの、器
具能力の最大限発揮には至らない。そこで、図8のよう
に、バイパス絞り弁25により制御される水量を、水ガ
バナ11における受圧体18の下流で熱交換器4側へ合
流させる戻し通路35を形成し、バイパス絞り弁には、
バイパス管22側への第一絞り通路26aとの間でバイ
パス水量を制御する第一絞り弁25aと、第二絞り通路
26bとの間で戻し通路35への水量を制御する第二絞
り弁25bとを形成する。一方、第一絞り通路26aと
第二絞り通路26bとの間からバイパス管22に並列路
36を並設して、この並列路36に電磁弁29を設ける
形態とするのが望ましい。ここで、戻し通路35の面積
をb、第一絞り弁25aと第一絞り通路26aとによる
通路面積をc、電磁弁29による並列路36の面積を
c′とすると、数1によるトータル水量Qは、以下の数
2の式の関係となり、トータル水量は図9及び表1のよ
うになる。
<Embodiment 4> Also in Embodiment 3, when the incoming water temperature increases, a certain amount of increase in water volume can be expected, but the tool capacity cannot be maximized. Therefore, as shown in FIG. 8, a return passage 35 is formed to join the amount of water controlled by the bypass throttle valve 25 to the heat exchanger 4 downstream of the pressure receiving body 18 in the water governor 11, and the bypass throttle valve includes:
A first throttle valve 25a for controlling the amount of bypass water between the first throttle passage 26a to the bypass pipe 22 and a second throttle valve 25b for controlling the amount of water to the return passage 35 between the second throttle passage 26b. And are formed. On the other hand, it is preferable that a parallel path 36 is arranged in parallel with the bypass pipe 22 from between the first throttle path 26a and the second throttle path 26b, and the solenoid valve 29 is provided in the parallel path 36. Here, assuming that the area of the return passage 35 is b, the passage area by the first throttle valve 25a and the first throttle passage 26a is c, and the area of the parallel passage 36 by the solenoid valve 29 is c ', Has the relationship of the following equation (2), and the total water amount is as shown in FIG. 9 and Table 1.

【0017】[0017]

【数2】 (Equation 2)

【0018】[0018]

【表1】 [Table 1]

【0019】よって、この形態4によれば、戻し通路3
5による熱交換器4側への水量補助で更にトータル水量
を増加させることができ、入水温度が高くても出湯温度
の略全範囲で略器具能力最大までトータル水量を確保可
能となる。従って、使い勝手に優れた給湯器が得られる
のである。尚、本形態4のバイパス率も(c+c′)で
決定されるが、表1で示すように、設定温度50℃以上
ではバイパス率は0%〜27%、設定温度50℃未満で
はバイパス率は23%〜50%で夫々決定されるため、
形態3で説明した図7と同様に、ドレン防止と沸騰防止
とを共に満足させることがわかる。
Therefore, according to the fourth embodiment, the return passage 3
With the aid of the amount of water to the heat exchanger 4 side by 5, the total amount of water can be further increased, and even when the incoming water temperature is high, the total amount of water can be secured to almost the maximum equipment capacity in almost the entire range of the tap water temperature. Therefore, a water heater excellent in usability can be obtained. The bypass ratio of the fourth embodiment is also determined by (c + c ′). As shown in Table 1, the bypass ratio is 0% to 27% when the set temperature is 50 ° C. or higher, and the bypass ratio is lower than the set temperature 50 ° C. Since each is determined at 23% to 50%,
As in FIG. 7 described in the third embodiment, it is understood that both the prevention of drainage and the prevention of boiling are satisfied.

【0020】尚、上記形態1〜4においては、定流量弁
として水ガバナ11を利用しているが、図10の如く、
水ガバナ11に代えてバイパス管22と出湯管5との間
に湯ガバナ37を設けても同様の効果が得られる。即
ち、固定弁体38の弁座39の開度を調整可能な可動弁
体40の熱交換器4寄りに、通水孔42,42を形成し
た受圧体41を連設して、可動弁体40をコイルバネ4
3で上流側へ付勢する一方、弁座39と受圧体41との
間にバイパス管22を接続するもので、バイパス管22
内のバイパス絞り弁25や形状記憶合金バネ27等の配
置は同図で簡略して示すように他の形態と同じである。
In the first to fourth embodiments, the water governor 11 is used as a constant flow valve, but as shown in FIG.
The same effect can be obtained by providing a hot water governor 37 between the bypass pipe 22 and the tapping pipe 5 instead of the water governor 11. That is, a pressure receiving member 41 having water passage holes 42, 42 is continuously connected to the movable valve body 40, which can adjust the opening of the valve seat 39 of the fixed valve body 38, near the heat exchanger 4. 40 is the coil spring 4
3, the bypass pipe 22 is connected between the valve seat 39 and the pressure receiving body 41.
The arrangement of the bypass throttle valve 25, the shape memory alloy spring 27, and the like in the inside is the same as that of the other embodiments as schematically shown in FIG.

【0021】[0021]

【発明の効果】請求項1に記載の発明によれば、定流量
弁とそれに対するバイパス路の接続位置の設定とによ
り、熱交換器への流量を変えずにバイパス率とトータル
水量とを可変できる構造となるため、内胴出口温度の不
必要な変動を防止でき、トータル水量を増加させて器具
能力を有効に発揮できる。更に、定流量弁は基本的にバ
イパス絞り弁と別構成となって構造が簡略化するため、
製造コストの軽減に繋がる。請求項2に記載の発明によ
れば、請求項1の効果に加えて、バイパス路に所定の設
定温度で開閉動作する電磁弁を設けたことで、より広い
バイパス率の調整範囲を確保してドレン防止、沸騰防止
性能を向上させ、トータル水量をより多く制御可能とな
る。
According to the first aspect of the present invention, the bypass ratio and the total water amount can be varied without changing the flow rate to the heat exchanger by setting the connection position of the constant flow valve and the bypass path to the constant flow valve. Because of this structure, unnecessary fluctuations in the inner body outlet temperature can be prevented, and the total water volume can be increased to effectively exert the instrument capability. Furthermore, since the constant flow valve is basically different from the bypass throttle valve to simplify the structure,
This leads to a reduction in manufacturing costs. According to the second aspect of the invention, in addition to the effect of the first aspect, by providing the solenoid valve that opens and closes at a predetermined set temperature in the bypass path, a wider adjustment range of the bypass ratio is secured. Drain prevention and boiling prevention performance are improved, and the total amount of water can be controlled more.

【0022】請求項3に記載の発明によれば、請求項1
の効果に加えて、バイパス路にバイパス絞り弁を迂回す
る並列路を設け、前記並列路に、所定の設定温度で開閉
動作する電磁弁を設けたことで、より広いバイパス率の
調整範囲を確保してドレン防止、沸騰防止性能を向上さ
せ、トータル水量をより多く制御可能となる。請求項4
に記載の発明によれば、請求項1の効果に加えて、バイ
パス路に、熱交換器を通過する湯又は水の流れに合流す
る戻し通路を設け、バイパス絞り弁に設けた第二弁体で
前記戻し通路の流量も可変制御させる一方、前記バイパ
ス路に、前記バイパス絞り弁の両弁体の間に開口する並
列路を並設し、その並列路に所定の設定温度で開閉動作
する電磁弁を設けたことで、より広いバイパス率の調整
範囲を確保してドレン防止、沸騰防止性能を向上させ、
トータル水量を略器具能力最大まで制御可能となる。
According to the third aspect of the present invention, the first aspect is provided.
In addition to the effect of the above, a parallel path bypassing the bypass throttle valve is provided in the bypass path, and a solenoid valve that opens and closes at a predetermined set temperature is provided in the parallel path, thereby securing a wider adjustment range of the bypass ratio. As a result, the performance of preventing drainage and boiling can be improved, and the total amount of water can be controlled more. Claim 4
According to the invention described in (1), in addition to the effect of the first aspect, the bypass valve is provided with a return passage that joins the flow of hot water or water passing through the heat exchanger, and the second valve body provided in the bypass throttle valve. While the flow rate of the return passage is also variably controlled, a parallel path that opens between both valve bodies of the bypass throttle valve is provided in parallel with the bypass path, and the parallel path opens and closes at a predetermined set temperature. By providing a valve, a wider range of bypass ratio adjustment is ensured to improve drain prevention and boiling prevention performance.
It is possible to control the total water volume to almost the maximum equipment capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バイパスミキシング式給湯器の概略図である。FIG. 1 is a schematic view of a bypass mixing type water heater.

【図2】形態1における出湯温度とトータル水量との関
係を示すグラフである。
FIG. 2 is a graph showing a relationship between a tapping temperature and a total water amount in Embodiment 1.

【図3】形態2における水ガバナとバイパス管との内部
構造を示す説明図である。
FIG. 3 is an explanatory diagram showing an internal structure of a water governor and a bypass pipe according to a second embodiment.

【図4】形態2における出湯温度とトータル水量との関
係を示すグラフである。
FIG. 4 is a graph showing a relationship between a tapping temperature and a total water amount in a second embodiment.

【図5】バイパス率と設定温度との関係を示すグラフで
ある。
FIG. 5 is a graph showing a relationship between a bypass ratio and a set temperature.

【図6】形態3における水ガバナとバイパス管との内部
構造を示す説明図である。
FIG. 6 is an explanatory diagram showing an internal structure of a water governor and a bypass pipe according to a third embodiment.

【図7】形態3における出湯温度とトータル水量との関
係を示すグラフである。
FIG. 7 is a graph showing a relationship between a tapping temperature and a total water amount in Embodiment 3.

【図8】形態4における水ガバナとバイパス管との内部
構造を示す説明図である。
FIG. 8 is an explanatory diagram showing an internal structure of a water governor and a bypass pipe according to a fourth embodiment.

【図9】形態4における出湯温度とトータル水量との関
係を示すグラフである。
FIG. 9 is a graph showing a relationship between a tapping temperature and a total water amount in mode 4.

【図10】湯ガバナの説明図である。FIG. 10 is an explanatory diagram of a hot water governor.

【符号の説明】[Explanation of symbols]

1・・バイパスミキシング式給湯器、2・・給水管、3
・・ガスバーナ、4・・熱交換器、5・・出湯管、9・
・コントローラ、10・・リモコン、11・・水ガバ
ナ、12・・ガバナ本体、14・・固定弁体、16・・
可動弁体、18・・受圧体、19・・通水孔、21・・
コイルバネ、22・・バイパス管、25・・バイパス絞
り弁、26・・絞り通路、27・・形状記憶合金バネ、
28・・バイアスバネ、29・・電磁弁。
1. Bypass mixing type water heater, 2. Water pipe, 3
..Gas burners, 4. heat exchangers, 5. hot water pipes, 9.
-Controller, 10-Remote control, 11-Water governor, 12-Governor body, 14-Fixed valve body, 16-
Movable valve body, 18 ... pressure receiving body, 19 ... water hole, 21 ...
Coil spring, 22 bypass pipe, 25 bypass throttle valve, 26 throttle passage, 27 shape memory alloy spring,
28 .. bias spring, 29 .. solenoid valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バーナを備えた熱交換器と、その熱交換
器へ水を供給する給水路と、前記熱交換器から湯を送出
する出湯路とを備える一方、前記給水路と出湯路との間
に、前記熱交換器をバイパスするバイパス路を接続し、
更に、前記給水路又は出湯路の何れか一方の通路内に、
器具内へ供給された水又は湯の圧力によって動作する受
圧体と、その受圧体に連動して前記器具内へのトータル
水量を可変制御する可動弁体とからなる定流量弁を設け
たバイパスミキシング式給湯器であって、 前記受圧体を、前記可動弁体より前記熱交換器側に配置
すると共に、前記受圧体に透孔を設けて前記熱交換器へ
の水量を固定する一方、前記バイパス路を、前記受圧体
と前記可動弁体による前記トータル水量の制御位置との
間に接続すると共に、前記バイパス路に、前記バイパス
路内の水量を制御可能なバイパス絞り弁と、前記バイパ
ス路を流れる水の温度に応じて動作し、前記バイパス絞
り弁を連動させる熱応動部材とを設け、前記バイパス絞
り弁による前記バイパス路内の水量制御によって前記受
圧体への圧力を変化させ、前記トータル水量の制御を可
能としたことを特徴とするバイパスミキシング式給湯
器。
1. A heat exchanger having a burner, a water supply path for supplying water to the heat exchanger, and a hot water path for sending hot water from the heat exchanger, while the water supply path and the hot water path Between, connecting a bypass to bypass the heat exchanger,
Further, in any one of the water supply path and the hot water path,
Bypass mixing provided with a constant flow valve comprising a pressure receiving body that operates by the pressure of water or hot water supplied into the appliance, and a movable valve body that variably controls the total amount of water into the appliance in conjunction with the pressure receiving body. A water heater, wherein the pressure receiving body is disposed closer to the heat exchanger than the movable valve body, and a through hole is provided in the pressure receiving body to fix the amount of water to the heat exchanger, while the bypass is provided. A path is connected between the pressure receiving body and the control position of the total water amount by the movable valve body, and the bypass path includes a bypass throttle valve capable of controlling a water amount in the bypass path, and a bypass path. A heat responsive member that operates in accordance with the temperature of the flowing water and interlocks the bypass throttle valve, and changes the pressure on the pressure receiving body by controlling the amount of water in the bypass passage by the bypass throttle valve; A bypass mixing type water heater characterized in that the total water volume can be controlled.
【請求項2】 バイパス路に所定の設定温度で開閉動作
する電磁弁を設けた請求項1に記載のバイパスミキシン
グ式給湯器。
2. The bypass mixing type water heater according to claim 1, wherein a solenoid valve that opens and closes at a predetermined set temperature is provided in the bypass passage.
【請求項3】 バイパス路にバイパス絞り弁を迂回する
並列路を設け、前記並列路に、所定の設定温度で開閉動
作する電磁弁を設けた請求項1に記載のバイパスミキシ
ング式給湯器。
3. The bypass mixing type water heater according to claim 1, wherein a parallel path that bypasses the bypass throttle valve is provided in the bypass path, and an electromagnetic valve that opens and closes at a predetermined temperature is provided in the parallel path.
【請求項4】 バイパス路に、熱交換器を通過する湯又
は水の流れに合流する戻し通路を設け、バイパス絞り弁
に設けた第二弁体で前記戻し通路の流量も可変制御させ
る一方、前記バイパス路に、前記バイパス絞り弁の両弁
体の間に開口する並列路を並設し、その並列路に所定の
設定温度で開閉動作する電磁弁を設けた請求項1に記載
のバイパスミキシング式給湯器。
4. A return passage which joins a flow of hot water or water passing through a heat exchanger in a bypass passage, and a flow rate of the return passage is variably controlled by a second valve body provided in a bypass throttle valve. 2. The bypass mixing according to claim 1, wherein a parallel path that opens between both valve bodies of the bypass throttle valve is provided in parallel with the bypass path, and an electromagnetic valve that opens and closes at a predetermined set temperature is provided in the parallel path. Water heater.
JP28306398A 1998-10-05 1998-10-05 Bypass mixing water heater Expired - Fee Related JP3904742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28306398A JP3904742B2 (en) 1998-10-05 1998-10-05 Bypass mixing water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28306398A JP3904742B2 (en) 1998-10-05 1998-10-05 Bypass mixing water heater

Publications (2)

Publication Number Publication Date
JP2000111160A true JP2000111160A (en) 2000-04-18
JP3904742B2 JP3904742B2 (en) 2007-04-11

Family

ID=17660732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28306398A Expired - Fee Related JP3904742B2 (en) 1998-10-05 1998-10-05 Bypass mixing water heater

Country Status (1)

Country Link
JP (1) JP3904742B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917182A (en) * 2018-07-20 2018-11-30 樱花卫厨(中国)股份有限公司 Facilitate the gas heater for adjusting bypass pipe inflow
CN113041150A (en) * 2021-02-26 2021-06-29 高小明 Traditional Chinese medicine decocting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917182A (en) * 2018-07-20 2018-11-30 樱花卫厨(中国)股份有限公司 Facilitate the gas heater for adjusting bypass pipe inflow
CN113041150A (en) * 2021-02-26 2021-06-29 高小明 Traditional Chinese medicine decocting device
CN113041150B (en) * 2021-02-26 2022-10-18 河北安国振宇药业有限公司 Traditional Chinese medicine decocting device

Also Published As

Publication number Publication date
JP3904742B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP2000111160A (en) Bypass mixing system of hot water supplier
JPS6336528B2 (en)
JP2911989B2 (en) Hot water supply temperature control device
JP3932226B2 (en) Bypass mixing water heater
JP2000088350A (en) Bypass mixing type hot water supply device
JP2000121155A (en) Bypass mixing type hot water supply device
JPH11108447A (en) Bypass mixing type hot water feeder
JP3836953B2 (en) Water heater
JPH102609A (en) Hot-water supply apparatus
JP3539046B2 (en) Gas water heater of bypass mixing type and water temperature sensitive type constant flow valve for bypass mixing used therein
JP3862830B2 (en) Water heater
JP2529763B2 (en) Water heater
JP3577652B2 (en) Bypass mixing water heater
JPS6361839A (en) Instantaneous water heater
JP3783168B2 (en) Bypass mixing water heater
JP3129035B2 (en) Water heater
JPH0830609B2 (en) Bypass mixing control method
JPH0241466Y2 (en)
JPH04340050A (en) By-pass control valve of hot water supply device
KR950009264B1 (en) Gas boiler
JP3824400B2 (en) Bypass mixing type gas water heater
JP2000121154A (en) Bypass mixing type hot water supply device
JP3932228B2 (en) Bypass mixing water heater
JP3769658B2 (en) Bypass mixing water heater
JP2858346B2 (en) Fluid control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees