JP2000111015A - Method and facility for waste melting treatment - Google Patents

Method and facility for waste melting treatment

Info

Publication number
JP2000111015A
JP2000111015A JP10279066A JP27906698A JP2000111015A JP 2000111015 A JP2000111015 A JP 2000111015A JP 10279066 A JP10279066 A JP 10279066A JP 27906698 A JP27906698 A JP 27906698A JP 2000111015 A JP2000111015 A JP 2000111015A
Authority
JP
Japan
Prior art keywords
furnace
gas
waste
char
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10279066A
Other languages
Japanese (ja)
Other versions
JP3977939B2 (en
Inventor
Hachiro Harajiri
八郎 原尻
Morihiro Osada
守弘 長田
So Ono
創 小野
Hideo Nishimura
秀生 西村
Takafumi Kawamura
隆文 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27906698A priority Critical patent/JP3977939B2/en
Publication of JP2000111015A publication Critical patent/JP2000111015A/en
Application granted granted Critical
Publication of JP3977939B2 publication Critical patent/JP3977939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive to raise the calorific value of a refined combustible gas by effectively utilizing part of the combustible gas recovered and refined after a top waste gas of a shaft type direct melting furnace is subjected to gas- reforming. SOLUTION: In a waste melting treatment method wherein waste 2, coke 3 and limestone 4 are charged into a shaft type direct melting furnace 10 and oxygen is blown for drying thermal decomposition, combustion and melting, a top waste gas 12 of the shaft type direct melting furnace 10 is separated into a fly ash-containing char 25 and a waste gas 26, and the separated fly ash containing char 25 is gasified and melted in a char gasifying-melting furnace 28 and a char-gasified gas 30 thus produced is reformed together with the waste gas 26 in a gasification reforming furnace 31 so as to recover a crude combustible gas 32, which is then refined, and part 36a of a refined combustible gas 36 thus obtained is blown into the shaft type direct melting furnace 10 so as to raise the calorific value of the refined combustible gas 36.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般廃棄物、産業
廃棄物等の廃棄物をシャフト炉型直接溶融炉で処理する
廃棄物溶融処理方法及び処理設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste melting treatment method and a treatment facility for treating waste such as general waste and industrial waste in a shaft furnace type direct melting furnace.

【0002】[0002]

【従来の技術】一般廃棄物、産業廃棄物等の廃棄物の処
理方法の一つとして、廃棄物をシャフト炉型直接溶融炉
の炉頂から装入し、乾燥・予熱、熱分解、燃焼・溶融し
て、廃棄物中の不燃物をスラグとメタルとして炉下部よ
り、また可燃物を炉頂よりガスとして取り出す廃棄物溶
融処理方法がある。この処理方法では、ガス化機能+高
温灰溶融機能により廃棄物の一括処理が可能である。
2. Description of the Related Art As one of the disposal methods of general waste, industrial waste, etc., waste is charged from the top of a shaft furnace type direct melting furnace, and dried / preheated, pyrolyzed, burned, and decomposed. There is a waste melting treatment method in which non-combustible substances in waste are melted as slag and metal from the lower part of the furnace, and combustibles are extracted as gas from the furnace top. In this treatment method, the waste can be treated collectively by the gasification function and the high-temperature ash melting function.

【0003】シャフト炉型直接溶融炉による廃棄物処理
プロセスは、廃棄物のもつ熱エネルギーの回収利用形態
から次の2タイプに大別される。一つは、シャフト炉型
直接溶融炉の炉頂排ガスを完全燃焼し、その排ガス顕熱
をボイラーで回収して蒸気発電による電力や熱エネルギ
ーの形態で利用する従来の廃熱回収利用タイプであり、
他の一つは、前者とはコンセプトを異にするもので、炉
頂排ガスを可燃性ガスの形態へ変換して回収する可燃ガ
ス回収利用タイプで、エネルギーの回収効率が高く、ガ
ス発電の燃料の他、化学工業原料等への多角的利用展開
を図るプロセスである。
[0003] Waste treatment processes using a shaft furnace type direct melting furnace are roughly classified into the following two types based on the mode of recovery and utilization of thermal energy possessed by the waste. One is a conventional waste heat recovery type in which the exhaust gas from the top of a shaft furnace type direct melting furnace is completely burned, and the exhaust gas sensible heat is recovered by a boiler and used in the form of electric power or thermal energy by steam power generation. ,
The other one has a different concept from the former, which is a combustible gas recovery type that converts the furnace top exhaust gas into flammable gas and recovers it. In addition to this, it is a process that aims to develop diversified use for chemical industry raw materials.

【0004】図2は、従来の廃熱回収利用タイプの設備
例を示すプロセスフロー説明図である。シャフト炉型直
接溶融炉10には、廃棄物2、コークス3、石灰石4お
よび循環飛灰5等が炉頂装入物1として炉上部より装入
される。この循環飛灰5は後流の燃焼室14、廃熱回収
ボイラー16及び排ガス温度調整器19等から回収した
飛灰5である。一方、炉下部からは酸素発生装置8から
の酸素9と空気7を混合した酸素富化空気が単独か、も
しくはその上方に空気6が並行して吹き込まれる。単独
か、並行かの選択は主として処理廃棄物の性状(水分、
灰分、発熱量等)と処理規模を考慮して選定される。
FIG. 2 is a process flow explanatory diagram showing an example of a conventional waste heat recovery and utilization type facility. In the shaft furnace type direct melting furnace 10, waste 2, coke 3, limestone 4, circulating fly ash 5 and the like are charged as furnace top charge 1 from the furnace upper part. The circulating fly ash 5 is fly ash 5 collected from the downstream combustion chamber 14, the waste heat recovery boiler 16, the exhaust gas temperature controller 19 and the like. On the other hand, oxygen-enriched air obtained by mixing oxygen 9 and air 7 from the oxygen generator 8 is blown from the lower part of the furnace alone, or air 6 is blown in parallel above it. Single or parallel selection mainly depends on the nature of the treated waste (moisture,
Ash, calorific value, etc.) and treatment scale.

【0005】炉下部では吹き込みガス中の酸素とコーク
ス、後述する一部の熱分解残渣等が反応して高温場を形
成し、生成した高温ガスが炉内を上昇して廃棄物他の装
入物を炉内降下とともに乾燥・予熱し、熱分解する。廃
棄物中の可燃物は熱分解によってガス(タール、乾留ガ
ス、乾留水分等の混合物)と固形残渣(飛灰含有チャ
ー)を生成し、熱分解ガスと熱分解残渣の一部が炉下部
からの前記上昇ガスおよび炉上部での蒸発水分とともに
排ガス12として炉頂より排出される。熱分解残渣の残
部は炉内を降下して前記高温場で燃焼、ソリューション
反応(C+CO2=2CO)等によりガス化し上昇する
が、反応残渣の含有灰分、コークス、石灰石等の灰分お
よび廃棄物中の不燃物は炉下部の発熱によって溶融・流
動化し溶融物(スラグ、メタル)11として排出され、
資源として活用される。
[0005] In the lower part of the furnace, oxygen in the blown gas and coke, a part of the pyrolysis residue described later, and the like react to form a high-temperature field, and the generated high-temperature gas rises in the furnace to charge waste and other materials. The material is dried and preheated as it descends in the furnace, and pyrolyzed. Combustible materials in waste produce gas (mixture of tar, carbonized gas, carbonized moisture, etc.) and solid residue (char containing fly ash) by pyrolysis, and a part of pyrolysis gas and pyrolysis residue from bottom of furnace Is discharged from the furnace top together with the ascending gas and the moisture evaporated at the furnace upper part as an exhaust gas 12. The remainder of the pyrolysis residue descends in the furnace, burns in the high-temperature field, gasifies and rises by the solution reaction (C + CO 2 = 2CO), etc., but the ash content of the reaction residue, ash such as coke and limestone, and waste Is melted and fluidized by the heat generated in the lower part of the furnace, and is discharged as a molten material (slag, metal) 11.
Used as a resource.

【0006】炉頂から排出される排ガス12は、燃焼室
14に導入され、吹き込まれる燃焼用空気13により通
常850℃以上で完全燃焼させる。次いで、高温の燃焼
排ガス15は廃熱回収ボイラー16により通常200℃
程度の出口温度まで冷却し、入出口温度間の排ガスの顕
熱を蒸気17として回収する。回収蒸気の大半はタービ
ン・発電設備18の付帯設備により電気エネルギーに変
換し、一部は直接的な熱エネルギーとして利用される。
Exhaust gas 12 discharged from the furnace top is introduced into a combustion chamber 14 and is completely burned at 850 ° C. or higher, usually by combustion air 13 to be blown. Next, the high temperature flue gas 15 is usually heated to 200 ° C. by the waste heat recovery boiler 16.
The outlet gas is cooled to about the outlet temperature, and the sensible heat of the exhaust gas between the inlet and outlet temperatures is recovered as steam 17. Most of the recovered steam is converted into electric energy by ancillary equipment of the turbine / power generation equipment 18, and a part is used as direct thermal energy.

【0007】廃熱回収ボイラー16の出口排ガスは、水
噴霧冷却等排ガス温度調整器19により通常170℃程
度の集じん適正温度まで調整冷却され、バグフィルター
等集じん器20によって排ガス中の飛灰、有害ガス等を
除去し、清浄排ガスとした上で煙突23より大気放散さ
れる。また、集じん器20での捕集飛灰は飛灰無害化処
理設備21で無害化した後、搬出灰22として埋立処分
される。
The exhaust gas from the waste heat recovery boiler 16 is cooled to an appropriate temperature of about 170 ° C. by an exhaust gas temperature controller 19 such as water spray cooling, and is cooled by a dust collector 20 such as a bag filter. After removing harmful gases and the like, the exhaust gas is purified and discharged to the atmosphere from the chimney 23. Further, the collected fly ash in the dust collector 20 is rendered harmless by the fly ash detoxification treatment equipment 21, and then is disposed as landfill ash 22.

【0008】図3は、従来の可燃ガス回収利用タイプの
設備例を示すプロセスフロー説明図である。シャフト炉
型直接溶融炉10は、必要により廃プラスチック27が
炉下部の高温域に吹き込まれる点を除いて前記と同様で
あり、説明は省略する。
FIG. 3 is an explanatory diagram of a process flow showing an example of a conventional flammable gas recovery type facility. The shaft furnace type direct melting furnace 10 is the same as the above except that the waste plastic 27 is blown into a high temperature region at the lower part of the furnace if necessary, and the description is omitted.

【0009】炉頂排ガス12は、サイクロン等固気分離
器24に入り排ガス12から飛灰含有チャー25が分離
される。分離した飛灰含有チャー25及び後述するガス
急冷装置33、ガス精製装置34等から回収した排出灰
5はチャーガス化溶融炉28に導入し、酸素発生装置8
からの供給酸素9と反応させ、チャーの発熱を利用して
通常1300℃以上の高温場を形成する。この高温によ
り、灰分は溶融・流動化して溶融スラグ29として排出
し、飛灰の減容、灰中重金属のスラグへの補足が可能と
なる。同時に、チャーはCO、H2分を含むガスに変換
され、生成した高温のチャーガス化ガス30と一部の飛
散灰は流出し、連接したガス化改質炉31に導入され
る。
The furnace top exhaust gas 12 enters a solid-gas separator 24 such as a cyclone, and the fly ash-containing char 25 is separated from the exhaust gas 12. The separated fly ash-containing char 25 and the discharged ash 5 collected from a gas quenching device 33, a gas purifying device 34, and the like, which will be described later, are introduced into a char gasification and melting furnace 28, and the oxygen generator 8
And reacts with oxygen 9 supplied from the furnace to form a high-temperature field of usually 1300 ° C. or higher by utilizing the heat generated by the char. Due to this high temperature, the ash is melted and fluidized and discharged as a molten slag 29, which makes it possible to reduce the volume of fly ash and to supplement heavy metal in the ash to the slag. At the same time, the char is converted into a gas containing CO and H 2 , and the generated high-temperature char gasification gas 30 and some fly ash flow out and are introduced into the connected gasification and reforming furnace 31.

【0010】ガス化改質炉31には、前記固気分離器2
4を通過した排ガス26が導入され、両ガスを酸素発生
装置8からの供給酸素9と反応させて通常800℃以上
の温度場を形成し、主として排ガス26中に含まれるタ
ール、チャー等をCO、H2分を含むガスに改質する。
すなわち、ガス化改質炉31によりシャフト炉型直接溶
融炉10から排出された廃棄物中の全可燃分が、最終的
に一部飛灰を含む粗製可燃ガス32に変換される。
The gasification and reforming furnace 31 includes the solid-gas separator 2
Exhaust gas 26 that has passed through 4 is introduced, and both gases react with oxygen 9 supplied from oxygen generator 8 to form a temperature field of usually 800 ° C. or higher. to reform the gas containing 2 minutes H.
That is, all combustibles in the waste discharged from the shaft furnace type direct melting furnace 10 by the gasification reforming furnace 31 are finally converted into the crude combustible gas 32 partially containing fly ash.

【0011】生成した粗製可燃ガス32は、水噴霧冷却
等ガス急冷装置33で通常100℃以下まで短時間で冷
却し、ダイオキシンの再合成を抑制するとともに、洗浄
等ガス精製装置34により飛灰、重金属、有害ガス成
分、過剰水分等を除去して清浄度の高い可燃ガス36に
精製し、ガスホルダー35に貯留される。精製可燃ガス
36はガスエンジン等発電設備37により電気エネルギ
ーに効率的に変換して利用され、クリーンな排気ガスが
煙突23から大気放散される。この他、精製可燃ガス3
6はメタノール合成など化学工業原料としてケミカルリ
サイクルへの展開も期待される。なお、必要によりチャ
ーガス化溶融炉28、ガス化改質炉31等に廃プラスチ
ック27を吹き込み、補助燃料として活用することも可
能である。
The generated crude combustible gas 32 is cooled in a short time to usually 100 ° C. or less in a gas quenching device 33 such as water spray cooling to suppress re-synthesis of dioxin, and fly ash is removed by a gas purification device 34 such as washing. Heavy metals, harmful gas components, excess moisture, and the like are removed, purified into a highly clean combustible gas 36, and stored in a gas holder 35. The purified combustible gas 36 is efficiently converted into electric energy by a power generation facility 37 such as a gas engine and used, and clean exhaust gas is released from the chimney 23 to the atmosphere. In addition, purified combustible gas 3
6 is also expected to be applied to chemical recycling as a raw material for chemical industry such as methanol synthesis. If necessary, the waste plastic 27 can be blown into the char gasification melting furnace 28, the gasification reforming furnace 31, and the like, and can be used as an auxiliary fuel.

【0012】[0012]

【発明が解決しようとする課題】廃棄物の処理技術は、
昨今の社会的要請を背景とする「ダイオキシンの削減に
象徴される環境性能の向上」、「環境汚染の少ない飛灰
処理」、「資源リサイクル型処理」、「廃棄物エネルギ
ーの高度回収利用」等の諸課題に対応可能なものでなけ
ればならない。
SUMMARY OF THE INVENTION Waste treatment techniques are:
Against the background of recent social demands, "improvement of environmental performance symbolized by dioxin reduction", "fly ash treatment with less environmental pollution", "resource recycling type treatment", "advanced recovery and use of waste energy", etc. Must be able to respond to the various issues.

【0013】この観点からすると、前述の従来の廃熱回
収利用プロセスは、排ガス顕熱の蒸気回収利用方式のた
めエネルギーの回収と利用効率が低く、ボイラー部での
ダイオキシン再合成、埋立搬出灰の削減等の問題を抱え
ている。
[0013] From this viewpoint, the above-mentioned conventional waste heat recovery and utilization process has a low energy recovery and utilization efficiency due to the steam recovery and utilization system of the sensible heat of exhaust gas. There are problems such as reduction.

【0014】一方、可燃ガス回収利用プロセスは、前記
諸課題への対応性に優れたプロセスであるが、従来のシ
ャフト炉型直接溶融炉には多量の空気を供給しているた
め、不活性な窒素分が炉頂排ガスを希釈し、製品として
回収する精製可燃ガスのカロリー(品質)に限界が生じ
るという問題がある。ガスカロリーはガス発電利用にお
いては発電効率、また化学工業原料利用では付加価値等
エネルギーの利用効率に影響を及ぼすため、精製可燃ガ
スのカロリーアップが望まれている。
On the other hand, the combustible gas recovery and utilization process is a process excellent in responding to the above-mentioned problems, but is inactive because a large amount of air is supplied to the conventional shaft furnace type direct melting furnace. There is a problem in that the nitrogen content dilutes the furnace top exhaust gas and limits the calories (quality) of the purified combustible gas recovered as a product. Since gas calories have an effect on the power generation efficiency when using gas power generation, and the use efficiency of energy such as added value when using chemical industrial raw materials, it is desired to increase the calories of purified combustible gas.

【0015】本発明は、前述のようにシャフト炉型直接
溶融炉に供給されていた空気中の窒素が保有していた装
入物の乾燥・予熱、熱分解用熱源としての機能を、新た
な外部エネルギーではなく廃棄物自体のもつエネルギー
を回収・製造した不活性分の少ないガスに保有、代替さ
せ、課題であるガスカロリーアップを図るものである。
According to the present invention, the function as a heat source for drying / preheating and pyrolysis of the charge held by nitrogen in the air supplied to the shaft furnace type direct melting furnace as described above is newly added. Instead of external energy, the energy of the waste itself is retained and replaced by a gas with a low inert content that has been recovered and manufactured, thereby increasing gas calories, which is an issue.

【0016】すなわち、本発明は、シャフト炉型直接溶
融炉の炉頂排ガスをガス化改質して回収・精製した可燃
ガスの一部をシャフト炉型直接溶融炉に有効に利用し
て、精製可燃ガスのカロリーアップを図る廃棄物溶融処
理方法および処理設備を提供するもである。
That is, according to the present invention, a part of the combustible gas recovered and refined by gasifying and reforming the top exhaust gas of a shaft furnace type direct melting furnace is effectively used for the shaft furnace type direct melting furnace, and the refining is performed. Another object of the present invention is to provide a waste melting treatment method and a treatment facility for increasing the calories of combustible gas.

【0017】[0017]

【課題を解決するための手段】本発明の廃棄物処理方法
は、シャフト炉型直接溶融炉内に廃棄物、コークス、石
灰石を装入し、酸素を吹き込み、乾燥、熱分解、燃焼、
溶融する廃棄物溶融処理方法において、前記シャフト炉
型直接溶融炉の炉頂排ガスを飛灰含有チャーと排ガスに
分離し、分離した飛灰含有チャーをチャーガス化溶融炉
にてガス化溶融し、生成したチャーガス化ガスを前記排
ガスとともにガス化改質炉にて改質して粗製可燃ガスへ
変換し、該粗製可燃ガスを精製した精製可燃ガスの一部
を前記シャフト炉型直接溶融炉へ吹き込むことを特徴と
する。
The waste treatment method of the present invention comprises the steps of charging waste, coke, and limestone into a shaft furnace type direct melting furnace, blowing oxygen, drying, pyrolyzing, burning, and so on.
In the waste melting method for melting, the top exhaust gas of the shaft furnace type direct melting furnace is separated into fly ash-containing char and exhaust gas, and the separated fly ash-containing char is gasified and melted in a char gasification melting furnace to produce Reforming the char gasified gas together with the exhaust gas in a gasification reforming furnace to convert it to a crude combustible gas, and blowing a part of the purified combustible gas obtained by purifying the crude combustible gas into the shaft furnace type direct melting furnace. It is characterized by.

【0018】前記構成において、廃プラスチックをシャ
フト炉型直接溶融炉、チャーガス化溶融炉あるいはガス
化改質炉の少なくとも一つに吹き込むようにしてもよ
い。
In the above construction, the waste plastic may be blown into at least one of a shaft furnace type direct melting furnace, a char gasification melting furnace or a gasification reforming furnace.

【0019】また、本発明の廃棄物溶融処理設備は、精
製可燃ガスと酸素の吹き込み口を具備したシャフト炉型
直接溶融炉、該シャフト炉型直接溶融炉の炉頂排ガスを
飛灰含有チャーと排ガスに分離する固気分離器、該固気
分離器で分離された飛灰含有チャーをガス化溶融するチ
ャーガス化溶融炉、チャーガス化溶融炉の生成チャーガ
ス化ガスを前記排ガスとともに改質するガス化改質炉、
改質した粗製可燃ガスを冷却・精製する冷却・精製装
置、該冷却・精製装置からの排出灰をチャーガス化溶融
炉へ供給する排出灰供給装置、冷却・精製装置からの精
製可燃ガスをシャフト炉型直接溶融炉に供給する精製可
燃ガス供給装置を備えたことを特徴とする。
Further, the waste melting treatment equipment of the present invention comprises a shaft furnace type direct melting furnace equipped with a purified combustible gas and an oxygen injection port, and a furnace ash containing exhaust gas from the shaft furnace type direct melting furnace. Solid-gas separator for separating into flue gas, char gasification and melting furnace for gasifying and melting fly ash-containing char separated by the solid-gas separator, gasification for reforming char gasification gas produced in char gasification and melting furnace together with the exhaust gas Reforming furnace,
A cooling / refining device for cooling / refining the reformed crude combustible gas, an exhaust ash supply device for supplying the ash from the cooling / refining device to the char gasification and melting furnace, and a shaft furnace for supplying the purified combustible gas from the cooling / refining device. A refined combustible gas supply device for supplying to the mold direct melting furnace is provided.

【0020】また、前記設備には、シャフト炉型直接溶
融炉、チャーガス化溶融炉あるいはガス化改質炉の少な
くとも一つに廃プラスチック供給装置を設けてもよい。
[0020] In the above equipment, a waste plastic supply device may be provided in at least one of a shaft furnace type direct melting furnace, a char gasification melting furnace and a gasification reforming furnace.

【0021】[0021]

【発明の実施の形態】図1は本発明の廃棄物溶融処理方
法の設備例を示すプロセスフロー説明図である。シャフ
ト炉型直接溶融炉10には、廃棄物2、コークス3、石
灰石4が炉頂装入物1として炉上部より装入される。一
方、炉下部からは必要により廃プラスチック27がホッ
パーを経て窒素等の気流搬送により吹き込まれる。さら
に、炉下部には酸素発生装置8からの酸素9と後述する
精製可燃ガス36が単独か、もしくはその上方に並行し
て吹き込まれる。単独か、並行かの選択は主として処理
廃棄物の性状(水分、灰分、発熱量等)と処理規模の
他、後述する炉内における廃棄物処理プロセスのバラン
スを考慮して決定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of a process flow showing an example of equipment of a waste melting treatment method of the present invention. In the shaft furnace type direct melting furnace 10, waste 2, coke 3 and limestone 4 are charged as furnace top charge 1 from the furnace upper part. On the other hand, waste plastics 27 are blown in from the lower part of the furnace by air flow transport of nitrogen or the like via a hopper, if necessary. Further, the oxygen 9 from the oxygen generator 8 and the purified combustible gas 36 described later are blown into the furnace lower part alone or in parallel above it. The choice between single and parallel is determined mainly in consideration of the properties of the treated waste (moisture, ash, calorific value, etc.) and the treatment scale, as well as the balance of the waste treatment process in the furnace described later.

【0022】炉下部では吹き込み酸素と精製可燃ガス、
コークス、後述する一部の熱分解残渣、廃プラスチック
等が反応して炉下部に高温場を形成し、生成した高温ガ
スが炉内を上昇して廃棄物他の装入物を炉内降下ととも
に乾燥・予熱し、熱分解する。吹き込まれた精製可燃ガ
スは燃焼性が良好で熱分解残渣、コークスに優先して酸
素と反応し、前記した高温ガスを構成する。また、廃プ
ラスチックも同様にガス化し、高温ガスを構成する。廃
棄物中の可燃物は熱分解によってガス(タール、乾留ガ
ス、乾留水分等の混合物)と固形残渣(飛灰含有チャ
ー)を生成し、熱分解ガスと熱分解残渣の一部が炉下部
からの前記上昇ガスおよび炉上部での蒸発水分とともに
排ガス12として炉頂より排出される。熱分解残渣の残
部は前記高温場で燃焼、ソリューション反応(C+CO
2=2CO)等によりガス化し上昇するが、反応残渣の
含有灰分、コークス、石灰石等の灰分および廃棄物中の
不燃物は炉下部の発熱によって溶融・流動化し溶融物
(スラグ、メタル)11として排出され、資源として活
用される。
In the lower part of the furnace, injected oxygen and purified combustible gas,
Coke, some pyrolysis residues described later, waste plastics, etc. react to form a high-temperature field at the bottom of the furnace, and the generated high-temperature gas rises in the furnace, causing waste and other charges to fall with the furnace. Dry, preheat and pyrolyze. The blown purified combustible gas has good flammability and reacts with oxygen prior to pyrolysis residue and coke to form the high-temperature gas described above. In addition, waste plastics are similarly gasified to form high-temperature gas. Combustible materials in waste produce gas (mixture of tar, carbonized gas, carbonized moisture, etc.) and solid residue (char containing fly ash) by pyrolysis, and a part of pyrolysis gas and pyrolysis residue from bottom of furnace Is discharged from the furnace top together with the ascending gas and the moisture evaporated at the furnace upper part as an exhaust gas 12. The remainder of the pyrolysis residue is burned in the high-temperature field and a solution reaction (C + CO
2 = 2CO) etc., but the ash contained in the reaction residue, the ash such as coke and limestone, and the incombustibles in the waste are melted and fluidized by the heat generated in the lower part of the furnace to form molten materials (slag, metal) 11. Emitted and used as resources.

【0023】炉頂排ガス12は、サイクロン等固気分離
器24に入り飛灰含有チャー25と排ガス26に分離さ
れる。分離した飛灰含有チャー25及び後述するガス急
冷装置33、ガス精製装置34等から回収した排出灰5
はチャーガス化溶融炉28に導入し、酸素発生装置8か
らの供給酸素9で部分燃焼させる。また、必要により廃
プラスチック27が吹き込まれる。飛灰含有チャー25
と循環飛灰5及び添加廃プラスチック27は、各々ホッ
パーを経て窒素等で気流搬送される。チャーガス化溶融
炉28はガス化機能と灰分溶融機能を兼備するもので、
飛灰含有チャー25、添加廃プラスチック27は理論量
以下の酸素分圧下で反応して発熱し、通常1300℃以
上の高温反応場を形成する。この結果、チャー及びプラ
スチックは主としてCO、H2分を含むガスを生成し、
高温のチャーガス化ガス30として一部の飛灰を同伴
し、連接したガス化改質炉31に導入される。また、チ
ャー中の含有灰分と循環飛灰5の一部は炉頂部より飛散
するが、大半の灰分は溶融・流動化し溶融スラグ29と
して下部より流出する。この高温溶融スラグ化により、
供給される飛灰含有チャー25、循環飛灰5中の重金属
成分の補足によるダイオキシンの再合成抑制、飛灰の減
容等が可能となる。
The furnace top exhaust gas 12 enters a solid-gas separator 24 such as a cyclone and is separated into fly ash-containing char 25 and exhaust gas 26. Separated fly ash-containing char 25 and discharged ash 5 collected from gas quenching device 33, gas purifying device 34, etc.
Is introduced into a char gasification and melting furnace 28 and partially burned with oxygen 9 supplied from the oxygen generator 8. Further, if necessary, waste plastic 27 is blown. Fly ash containing char 25
The circulating fly ash 5 and the added waste plastic 27 are each transported in a stream by nitrogen or the like via a hopper. The char gasification and melting furnace 28 has both a gasification function and an ash melting function.
The fly ash-containing char 25 and the added waste plastic 27 react under an oxygen partial pressure of a theoretical amount or less to generate heat and form a high-temperature reaction field of usually 1300 ° C. or more. As a result, the char and the plastic mainly generate gas containing CO and H 2 ,
A portion of fly ash is entrained as high-temperature char gasification gas 30 and introduced into a connected gasification and reforming furnace 31. The ash contained in the char and a part of the circulating fly ash 5 are scattered from the furnace top, but most of the ash is melted and fluidized and flows out as molten slag 29 from below. Due to this high-temperature molten slag,
It is possible to suppress the resynthesis of dioxin and to reduce the volume of fly ash by supplementing the supplied fly ash-containing char 25 and the circulating fly ash 5 with heavy metal components.

【0024】なお、必要によりチャーガス化溶融炉28
内に廃プラスチック27を供給すれば、チャーガス化ガ
ス30の増熱の他、チャーガス化溶融炉28の熱補給及
びチャーの発熱量低下時の熱補償となり、灰分溶融温度
の安定化が図られる。
If necessary, the char gasification and melting furnace 28
If the waste plastic 27 is supplied into the inside, in addition to increasing the heat of the char gasification gas 30, heat replenishment of the char gasification and melting furnace 28 and heat compensation when the calorific value of the char is reduced are achieved, and the ash melting temperature is stabilized.

【0025】ガス化改質炉31には、前記固気分離器2
4を通過した排ガス26も導入され、前記チャーガス化
ガス30とともに、酸素発生装置8からの供給酸素9で
部分燃焼させ、一部飛灰を含む粗製可燃ガスを生成す
る。また、必要により廃プラスチック27をホッパを経
て窒素等の気流搬送により吹き込む。ガス化改質炉31
は、シャフト炉型直接溶融炉10に装入された廃棄物中
の全可燃分を可燃ガスの形態に変換し、廃棄物の持つエ
ネルギーを用途の広い、また利用効率の高い有価ガスと
して回収する機能を備えている。すなわち、ガス化改質
炉31では、シャフト炉型直接溶融炉10からの排ガス
26とチャーガス化溶融炉28からのCO、H2分を含
むチャーガス化ガス30、添加廃プラスチック27等の
混合物が理論量以下の酸素分圧下で反応して発熱し、通
常800℃以上の高温反応場を形成する。この結果、タ
ール、チャー、プラスチック等が主としてCO、H2
を含むガスに改質され、一部飛灰を含む粗製可燃ガス3
2に変換されて排出する。この際、流入する高温のチャ
ーガス化ガス30の保有熱はガス化改質炉31の熱補給
源として温度場形成に有効に機能する。
The gasification and reforming furnace 31 includes the solid-gas separator 2
Exhaust gas 26 that has passed through 4 is also introduced, and is partially burned with the supply gas 9 from the oxygen generator 8 together with the char gasification gas 30 to generate a crude combustible gas partially containing fly ash. In addition, if necessary, the waste plastic 27 is blown through a hopper by air current transport such as nitrogen. Gasification reforming furnace 31
Converts all combustibles in the waste charged in the shaft furnace type direct melting furnace 10 into a form of combustible gas, and recovers the energy of the waste as a valuable gas having a wide use and a high use efficiency. Has functions. That is, in the gasification reforming furnace 31, a mixture of the exhaust gas 26 from the shaft furnace type direct melting furnace 10, the char gasification gas 30 containing CO and H 2 from the char gasification melting furnace 28, the added waste plastic 27, etc. is theoretically used. It reacts under an oxygen partial pressure of less than the amount to generate heat, and usually forms a high-temperature reaction field of 800 ° C. or more. As a result, tar, char, plastic, etc. are reformed into a gas mainly containing CO and H 2 , and the crude combustible gas 3 partially containing fly ash
It is converted to 2 and discharged. At this time, the retained heat of the inflowing high-temperature char gasification gas 30 effectively functions as a heat supply source of the gasification reforming furnace 31 to form a temperature field.

【0026】なお、必要によりガス化改質炉31に廃プ
ラスチック27を供給すれば、粗製可燃ガス32の増熱
の他、ガス化改質炉31の熱補給となる。
If the waste plastic 27 is supplied to the gasification and reforming furnace 31 as required, the heat of the gasification and reforming furnace 31 is replenished in addition to the increase of the heat of the crude combustible gas 32.

【0027】生成した粗製可燃ガス32は水噴霧等ガス
急冷装置33に送られ、ガス精製温度まで短時間で通常
100℃以下に冷却され、ダイオキシンの再合成を抑制
する。またこの時、粗製可燃ガス32中の水分はその操
作温度の飽和水蒸気分圧相当まで低下してカロリーがア
ップし、飛灰も除去される。次いで、ガス精製装置34
では、粗製可燃ガス32に含まれる重金属成分、HC
l、H2S、SOX、飛灰等のガス状有害物質、固形粒
子、過剰水分等を酸洗浄(脱重金属)、アルカリ洗浄
(脱塩)、触媒(脱硫)、活性炭(脱硝)、水洗浄また
はフィルター(除塵)、過冷却(除湿)等によりガス利
用先の要求清浄度まで除去し、クリーンな可燃性ガス3
6に精製する。なお、前記の冷却と精製機能は不可分で
はないが、設備的には一体化したガス清浄化装置として
取り扱われることもある。最終的に得られた精製可燃ガ
ス36はガスホルダー35に貯留される。
The generated crude combustible gas 32 is sent to a gas quenching device 33 such as a water spray, and is cooled to a gas purification temperature in a short period of time usually at a temperature of 100 ° C. or less to suppress the resynthesis of dioxin. Further, at this time, the moisture in the crude combustible gas 32 is reduced to a level corresponding to the saturated steam partial pressure at the operating temperature, the calories are increased, and fly ash is also removed. Next, the gas purification device 34
Then, the heavy metal component contained in the crude combustible gas 32, HC
1, gaseous harmful substances such as H 2 S, SO X , fly ash, solid particles, excess moisture, etc., acid washing (de-heavy metal), alkali washing (desalting), catalyst (desulfurization), activated carbon (denitration), water Clean or combustible gas 3 by removing to the required cleanliness of the gas destination by washing or filtering (dust removal), supercooling (dehumidification), etc.
Purify to 6. The cooling and refining functions are not inseparable, but may be treated as an integrated gas purifier in terms of equipment. The purified combustible gas 36 finally obtained is stored in the gas holder 35.

【0028】ガスホルダー35とシャフト炉型直接溶融
炉10間はダクトで接続され、ブロアを経て精製可燃ガ
ス36の一部36bが、シャフト炉型直接溶融炉に導入
される。残りの精製可燃ガス36aは、ガスエンジン等
発電設備37に送られ、電気エネルギーに効率的に変換
して利用される。また、精製可燃ガス36aはメタノー
ル合成等化学工業原料としての利用も可能である。
The gas holder 35 and the shaft furnace type direct melting furnace 10 are connected by a duct, and a part 36b of the purified combustible gas 36 is introduced into the shaft furnace type direct melting furnace via a blower. The remaining purified combustible gas 36a is sent to a power generation facility 37 such as a gas engine, and is efficiently converted into electric energy for use. Further, the purified combustible gas 36a can be used as a raw material for chemical industry such as methanol synthesis.

【0029】なお、シャフト炉型直接溶融炉10への粗
製可燃ガス32の利用は、粗製可燃ガス32の水分含有
率が高く、シャフト炉型直接溶融炉10内が冷却され必
要な熱レベルが保持できないこと、粗製可燃ガス32に
含まれる飛灰、HCl等有害物質が循環経路内で付着、
腐食、蓄積・濃縮等の問題を誘発するため好ましくな
い。
The use of the crude combustible gas 32 in the shaft furnace type direct melting furnace 10 is based on the fact that the crude combustible gas 32 has a high moisture content and the inside of the shaft furnace type direct melting furnace 10 is cooled to maintain a necessary heat level. Harmful substances such as fly ash and HCl contained in the crude combustible gas 32 adhere in the circulation route,
It is not preferable because it causes problems such as corrosion, accumulation and concentration.

【0030】シャフト炉型直接溶融炉10における精製
可燃ガス36bの吹き込み位置は、廃棄物の性状、処理
規模の他、炉内での廃棄物の処理プロセスを考慮して決
定される。前述のように、廃棄物は乾燥・予熱、熱分
解、燃焼・溶融過程を経て処理されるが、その安定処理
の主要なポイントは、(1)乾燥・予熱に充分な熱ガス
が供給できるか、(2)熱分解により生成する固体残渣
を如何にソリューション反応(C+CO2=2CO)で
消費させる温度領域を形成できるか、(3)さらに、炉
下部に降下する灰分を溶融・流動化し排出する熱源が充
分であるか等である。また、実際の処理廃棄物の性状
(水分、灰分、発熱量等)は安定的なものではなく、大
幅な変動がトリガーとなって、上記処理プロセスのバラ
ンスを乱し、乾燥、溶融機能の低下、処理の停滞等を招
くこともある。従って、処理安定化には、上記プロセス
のバランスを確保することが基本的に重要である。
The position at which the purified combustible gas 36b is blown into the shaft furnace type direct melting furnace 10 is determined in consideration of the properties and the scale of the waste and the waste treatment process in the furnace. As mentioned above, waste is processed through drying / preheating, pyrolysis, combustion / melting processes. The main points of stable processing are (1) whether sufficient hot gas can be supplied for drying / preheating. (2) How to form a temperature range in which the solid residue generated by thermal decomposition can be consumed by a solution reaction (C + CO 2 = 2CO); (3) Further, the ash falling to the lower part of the furnace is melted, fluidized, and discharged. Whether the heat source is sufficient. In addition, the actual properties (moisture, ash content, calorific value, etc.) of the treated waste are not stable, and large fluctuations are used as triggers to disturb the balance of the above-mentioned treatment process and to reduce the drying and melting functions. In some cases, stagnation of processing may be caused. Therefore, to stabilize the process, it is basically important to secure the balance of the above process.

【0031】以上の観点から、吹き込み位置は、炉下部
に形成されるコークスベッドの直上部を基本とし、必要
によりその上方部に吹込むようにする。すなわち、コー
クスベッド直上部へ精製可燃ガス36bを吹き込むと、
コークスの燃焼と相まって、灰分溶融・流動化熱源が安
定的に確保され、高温場を実現することができる。ま
た、コークスベッド上方近傍部に吹き込むと、熱分解、
生成固形残渣ソリューションの活性化温度ゾーンを形成
し易く、ソリューション反応、水性ガス反応等による吸
熱補償、炉上部の乾燥・予熱用熱源を安定的に確保する
ことが可能となる。
From the above viewpoint, the blowing position is basically at the upper part of the coke bed formed at the lower part of the furnace, and is blown to the upper part as necessary. That is, when the purified combustible gas 36b is blown directly above the coke bed,
Along with the coke combustion, the ash melting / fluidizing heat source can be stably secured, and a high temperature field can be realized. When blown into the upper part of the coke bed, thermal decomposition,
An activation temperature zone for the generated solid residue solution can be easily formed, and heat absorption for solution reaction, water gas reaction, etc., and heat source for drying and preheating of the furnace upper part can be stably secured.

【0032】また、精製可燃ガス36bの吹き込み量
は、シャフト炉型直接溶融炉10の物質・熱収支を考慮
して決定される。すなわち、廃棄物の性状(水分、灰
分、発熱量等)、処理量、コークス供給量等に応じて設
定される供給酸素量、精製可燃ガス組成が与えられる
と、供給すべき精製可燃ガス量はシャフト炉型直接溶融
炉の収支を満足するように算定される。また、それは供
給酸素量が少なく、本来目的とする発電等へのガス利用
率が高くなるように決定される。
The amount of the purified combustible gas 36b to be blown is determined in consideration of the material and heat balance of the shaft furnace type direct melting furnace 10. That is, given the properties of waste (water, ash, calorific value, etc.), treatment amount, supply oxygen amount set according to coke supply amount, etc., the purified combustible gas amount to be supplied, It is calculated to satisfy the balance of the shaft furnace type direct melting furnace. Further, it is determined so that the supplied oxygen amount is small and the gas utilization rate for the originally intended power generation or the like becomes high.

【0033】シャフト炉型直接溶融炉10の下部に供給
される精製可燃ガス36bは燃焼性が高く、固形残渣に
優先して燃焼するため、設定供給酸素下での固形残渣の
燃焼量は相対的に減少してソリューション量が増加し、
炉頂排ガスのカロリーアップにつながる。しかし、精製
可燃ガス供給量の増加と共に燃焼量、ソリューション量
の変化は鈍化して炉頂排ガスカロリーは飽和傾向を示
し、更なる増量は酸素不足による発生熱量の減少、炉内
の冷え込み、乾燥・予熱不足等を招き、前記処理プロセ
スのバランスを維持することが困難になる。一方、供給
精製可燃ガス量の減少は、上記の供給過多時と同様の状
況を呈して炉頂排ガスカロリー、下部生成ガス量の低下
を伴い、乾燥・予熱不良となって炉況の不安定化、処理
停滞等を助長する。
Since the purified combustible gas 36b supplied to the lower part of the shaft furnace type direct melting furnace 10 has high flammability and burns in preference to the solid residue, the combustion amount of the solid residue under the set supply oxygen is relatively small. And the solution volume increases,
This leads to increased calorie of furnace exhaust gas. However, with the increase in the supply of purified combustible gas, the changes in the amount of combustion and the amount of solution slowed down, and the calorific value of the furnace top exhaust gas showed a tendency to saturate. Insufficient preheating is caused, and it becomes difficult to maintain the balance of the treatment process. On the other hand, the decrease in the amount of combustible gas supplied and purified has the same situation as the above-mentioned excessive supply, accompanied by a decrease in calorie exhaust gas from the furnace top and the amount of generated gas in the lower part. , Stagnant processing, etc.

【0034】すなわち、精製可燃ガス36bの供給量
は、安定処理に係わる炉内プロセスの堅持を前提とし、
それに対応するシャフト炉型直接溶融炉の物質・熱収支
から算定される適切な領域に設定され、またそれは当然
のことながら、酸素原単位、発電等へのガス利用率等経
済性を考慮して選定する。実際の運転においては、処理
廃棄物の性状、炉内各部温度、圧力分布、炉頂排ガス分
析値等の検出データを監視しながら、精製可燃ガス量の
調整を行う。
That is, the supply amount of the purified combustible gas 36b is based on the premise that the in-furnace process related to the stabilization process is maintained.
It is set to an appropriate area calculated from the material and heat balance of the corresponding shaft furnace type direct melting furnace, and of course, it is set in consideration of economic efficiency such as oxygen consumption rate and gas utilization rate for power generation etc. Select. In actual operation, the amount of purified combustible gas is adjusted while monitoring detected data such as the properties of the treated waste, the temperature inside the furnace, the pressure distribution, and the furnace top exhaust gas analysis value.

【0035】また、必要により廃プラスチック27をシ
ャフト炉型直接溶融炉10、チャーガス化溶融炉28あ
るいはガス化改質炉31等に吹き込むことによって、廃
プラスチックはガス化し、精製可燃ガスカロリーの向
上、各炉の熱補給、チャーガス化溶融炉の灰分溶融温度
の安定化等が可能となる。
Further, if necessary, the waste plastic 27 is blown into the shaft furnace type direct melting furnace 10, the char gasification melting furnace 28, the gasification reforming furnace 31 or the like, so that the waste plastic is gasified, thereby improving the calorie of the purified combustible gas. Heat supply of each furnace, stabilization of the ash melting temperature of the char gasification melting furnace, and the like can be performed.

【0036】[0036]

【実施例】図1に示す設備を用いた本発明の実施例にお
ける実施条件と結果を下表に示す。また、参考例として
図2に示す設備による比較実施例を併示する。
The following table shows the conditions and results of the embodiment of the present invention using the equipment shown in FIG. A comparative example using the equipment shown in FIG. 2 is also shown as a reference example.

【0037】表1は、本発明実施例と参考例の比較を示
す。
Table 1 shows a comparison between the embodiment of the present invention and the reference example.

【0038】[0038]

【表1】 表2は、チャーガス化溶融炉へポリエチレン、ポリスチ
レン、ポリ塩化ビニルから成る廃プラスチックを廃棄物
処理量の10%相当量(100Kg/ごみトン)吹き込
んだ本発明実施例の結果を示す。
[Table 1] Table 2 shows the results of Examples of the present invention in which waste plastics composed of polyethylene, polystyrene, and polyvinyl chloride were blown into a char gasification melting furnace in an amount equivalent to 10% of the waste treatment amount (100 Kg / garbage ton).

【0039】[0039]

【表2】 表1の結果から明らかな通り、廃棄物の可燃物をガス変
換して得られる精製可燃ガスの一部を従来の空気に代替
えしてシャフト炉型直接溶融炉へ循環使用することによ
って、最終的に得られる精製可燃ガスカロリーが1Nm
3当り約610Kcalアップし、ガス発電の燃料ガス
の他、メタノール合成のようなケミカルリサイクル原料
としての利用価値が向上するとともに、冷ガス効率(=
精製可燃ガス全発熱量/装入物全発熱量)で示されるエ
ネルギーの回収率も約10%以上改善され、資源の有効
利用の観点からも効果的なプロセスであることが判明し
た。
[Table 2] As is clear from the results in Table 1, a part of the purified combustible gas obtained by gas-converting the combustible waste material is replaced with conventional air and recycled to the shaft furnace type direct melting furnace, thereby achieving the final 1Nm of purified combustible gas calories obtained
Approximately 610 Kcal increase per 3 to improve the utility value as a raw material for chemical recycling such as methanol synthesis in addition to fuel gas for gas power generation, and to improve cold gas efficiency (=
The energy recovery ratio (total calorific value of purified combustible gas / total calorific value of the charge) was also improved by about 10% or more, which proved to be an effective process from the viewpoint of effective use of resources.

【0040】また、表2の結果に見るように、廃プラス
チックの添加によりさらに精製可燃ガスのカロリーは約
230Kcal、冷ガス効率は約3%アップし、精製可
燃ガスの付加価値の一層の向上に寄与することはもちろ
ん、廃プラスチックの処理手段として有効に機能するプ
ロセスであることも判明した。
As can be seen from the results in Table 2, the calorie of the purified combustible gas is further increased by about 230 Kcal and the cold gas efficiency is increased by about 3% by adding waste plastic, and the added value of the purified combustible gas is further improved. It has been found that the process is effective as a means for treating waste plastic, as well as contributing.

【0041】[0041]

【発明の効果】本発明は、シャフト炉型直接溶融炉で発
生した炉頂排ガスをガス化改質して回収・精製して得る
可燃性ガスの一部をシャフト炉型直接溶融炉に循環供給
することにより、廃棄物から得られる精製可燃ガスのカ
ロリーアップ、付加価値の向上が可能となり、また、廃
棄物のもつ熱エネルギーを電力エネルギーや化学工業原
料ガスとして効率良く回収できる。
The present invention circulates and supplies a part of the combustible gas obtained by gasifying, reforming, recovering and purifying the top exhaust gas generated in the shaft furnace type direct melting furnace to the shaft furnace type direct melting furnace. By doing so, it is possible to increase the calories of the purified combustible gas obtained from the waste and improve the added value, and it is possible to efficiently recover the heat energy of the waste as electric energy or raw material gas for the chemical industry.

【0042】また、本発明では、シャフト炉型直接溶融
炉下部において必要な、廃棄物の含水率等ごみ質に左右
される熱源を精製可燃ガスの発熱で補償・制御すること
が可能となるため、シャフト炉型直接溶融炉のごみ質変
動に対する操業の柔軟性、処理の安定性等が向上する。
Further, according to the present invention, a heat source, which is required in the lower part of the shaft furnace type direct melting furnace and depends on the quality of the waste, such as the water content of the waste, can be compensated and controlled by the heat generated from the purified combustible gas. In addition, the shaft furnace type direct melting furnace has improved operational flexibility against fluctuations in waste quality, stability of treatment, and the like.

【0043】さらに、廃プラスチックをチャーガス化溶
融炉他へ適宜吹き込むことによって、廃プラスチックの
有効活用が図れ、補助燃料として他の燃料の低減にも寄
与する。
Further, by appropriately blowing the waste plastic into a char gasification melting furnace and the like, the waste plastic can be effectively used, and this contributes to the reduction of other fuels as an auxiliary fuel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃棄物溶融処理方法のプロセスフロー
説明図である。
FIG. 1 is an explanatory view of a process flow of a waste melting treatment method of the present invention.

【図2】従来の廃棄物溶融処理方法のプロセスフロー説
明図である。
FIG. 2 is an explanatory diagram of a process flow of a conventional waste melting treatment method.

【図3】従来の廃棄物溶融処理方法の別のプロセスフロ
ー説明図である。
FIG. 3 is an explanatory diagram of another process flow of a conventional waste melting treatment method.

【符号の説明】[Explanation of symbols]

1:炉頂装入物 2:廃棄物 3:
コークス 4:石灰石 5:循環飛灰 6:
空気 7:空気 8:酸素発生装置 9:
酸素 10:シャフト炉型直接溶融炉 1
1:溶融物(スラグ、メタル) 12:炉頂排ガス 13:燃焼用空気 1
4:燃焼室 15:燃焼排ガス 16:廃熱回収ボイラー 1
7:蒸気 18:タービン・発電設備 1
9:排ガス温度調整器 20:集じん器 2
1:飛灰無害化処理設備 22:搬出灰 23:煙突 2
4:固気分離器 25:飛灰含有チャー 26:排ガス 2
7:廃プラスチック 28:チャーガス化溶融炉 2
9:溶融物(スラグ) 30:チャーガス化ガス 3
1:ガス化改質炉 32:粗製可燃ガス 33:ガス急冷装置 3
4:ガス精製装置 35:ガスホルダー 36,36a,36
b:精製可燃ガス 37:ガス発電設備
1: Furnace top charge 2: Waste 3:
Coke 4: Limestone 5: Circulated fly ash 6:
Air 7: Air 8: Oxygen generator 9:
Oxygen 10: Shaft furnace direct melting furnace 1
1: melt (slag, metal) 12: furnace top exhaust gas 13: combustion air 1
4: Combustion chamber 15: Combustion exhaust gas 16: Waste heat recovery boiler 1
7: Steam 18: Turbine and power generation equipment 1
9: Exhaust gas temperature controller 20: Dust collector 2
1: Fly ash detoxification treatment equipment 22: Export ash 23: Chimney 2
4: Solid-gas separator 25: Fly ash containing char 26: Exhaust gas 2
7: Waste plastic 28: Char gasification and melting furnace 2
9: Melt (slag) 30: Char gasification gas 3
1: gasification reforming furnace 32: crude combustible gas 33: gas quenching device 3
4: Gas purification device 35: Gas holder 36, 36a, 36
b: Refined combustible gas 37: Gas power generation equipment

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/16 ZAB F23G 7/00 ZABZ 7/00 ZAB 7/12 ZABZ 7/12 ZAB B09B 3/00 303K (72)発明者 小野 創 北九州市戸畑区大字中原46−59 新日本製 鐵株式会社エンジニアリング事業本部内 (72)発明者 西村 秀生 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 河村 隆文 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 3K061 AA16 AA24 AB02 AB03 AC03 AC13 AC19 AC20 BA05 BA10 CA08 DA18 FA21 3K078 AA05 AA10 BA03 BA22 CA02 CA06 CA24 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F23G 5/16 ZAB F23G 7/00 ZABZ 7/00 ZAB 7/12 ZABZ 7/12 ZAB B09B 3/00 303K (72) Inventor Sou Ono 46-59 Nakahara, Tobata-ku, Kitakyushu Nippon Steel Corporation Engineering Business Headquarters (72) Inventor Hideo Nishimura 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Headquarters (72) Inventor Takafumi Kawamura 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F term (reference) 3K061 AA16 AA24 AB02 AB03 AC03 AC13 AC19 AC20 BA05 BA10 CA08 DA18 FA21 3K078 AA05 AA10 BA03 BA22 CA02 CA06 CA24

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シャフト炉型直接溶融炉内に廃棄物、コ
ークス、石灰石を装入し、酸素を吹き込み、乾燥、熱分
解、燃焼、溶融する廃棄物溶融処理方法において、前記
シャフト炉型直接溶融炉の炉頂排ガスを飛灰含有チャー
と排ガスに分離し、分離した飛灰含有チャーをチャーガ
ス化溶融炉にてガス化溶融し、生成したチャーガス化ガ
スを前記排ガスとともにガス化改質炉にて改質して粗製
可燃ガスへ変換し、該粗製可燃ガスを精製した精製可燃
ガスの一部を前記シャフト炉型直接溶融炉へ吹き込むこ
とを特徴とする廃棄物溶融処理方法。
1. A waste melting method in which waste, coke, and limestone are charged into a shaft furnace type direct melting furnace, oxygen is blown, and drying, pyrolysis, combustion, and melting are performed. Furnace top exhaust gas is separated into fly ash-containing char and exhaust gas, and the separated fly ash-containing char is gasified and melted in a char gasification and melting furnace, and the generated char gasified gas together with the exhaust gas in a gasification reforming furnace. A waste melting treatment method, comprising reforming and converting a crude combustible gas into a crude combustible gas, and blowing a part of the purified combustible gas obtained by purifying the crude combustible gas into the shaft furnace type direct melting furnace.
【請求項2】 廃プラスチックをシャフト炉型直接溶融
炉、チャーガス化溶融炉あるいはガス化改質炉の少なく
とも一つに吹き込むことを特徴とする請求項1記載の廃
棄物溶融処理方法。
2. The waste melting treatment method according to claim 1, wherein the waste plastic is blown into at least one of a shaft furnace type direct melting furnace, a char gasification melting furnace or a gasification reforming furnace.
【請求項3】 精製可燃ガスと酸素の吹き込み口を具備
したシャフト炉型直接溶融炉、該シャフト炉型直接溶融
炉の炉頂排ガスを飛灰含有チャーと排ガスに分離する固
気分離器、該固気分離器で分離された飛灰含有チャーを
ガス化溶融するチャーガス化溶融炉、チャーガス化溶融
炉の生成チャーガス化ガスを前記排ガスとともに改質す
るガス化改質炉、改質した粗製可燃ガスを冷却・精製す
る冷却・精製装置、該冷却・精製装置からの排出灰をチ
ャーガス化溶融炉へ供給する排出灰供給装置、冷却・精
製装置からの精製可燃ガスをシャフト炉型直接溶融炉に
供給する精製可燃ガス供給装置を備えたことを特徴とす
る廃棄物溶融処理設備。
3. A shaft furnace type direct melting furnace provided with an inlet for purified combustible gas and oxygen, a solid-gas separator for separating the furnace top exhaust gas of the shaft furnace type direct melting furnace into fly ash-containing char and exhaust gas, Char gasification and melting furnace for gasifying and melting the fly ash-containing char separated by the solid-gas separator, a gasification and reforming furnace for reforming the char gasification gas produced by the char gasification and melting furnace together with the exhaust gas, and a reformed crude combustible gas Cooling and refining equipment for cooling and refining, exhaust ash supply for supplying ash from the cooling and refining equipment to the char gasification and melting furnace, and supplying purified combustible gas from the cooling and refining equipment to the shaft furnace type direct melting furnace A waste melting treatment facility comprising a purified combustible gas supply device.
【請求項4】 シャフト炉型直接溶融炉、チャーガス化
溶融炉あるいはガス化改質炉の少なくとも一つに廃プラ
スチック供給装置を設けたことを特徴とする請求項3記
載の廃棄物溶融処理設備。
4. The waste melting treatment equipment according to claim 3, wherein a waste plastic supply device is provided in at least one of a shaft furnace type direct melting furnace, a char gasification melting furnace, and a gasification reforming furnace.
JP27906698A 1998-09-30 1998-09-30 Waste melting treatment method and treatment equipment Expired - Fee Related JP3977939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27906698A JP3977939B2 (en) 1998-09-30 1998-09-30 Waste melting treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27906698A JP3977939B2 (en) 1998-09-30 1998-09-30 Waste melting treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2000111015A true JP2000111015A (en) 2000-04-18
JP3977939B2 JP3977939B2 (en) 2007-09-19

Family

ID=17605946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27906698A Expired - Fee Related JP3977939B2 (en) 1998-09-30 1998-09-30 Waste melting treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP3977939B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063213A1 (en) * 2001-02-07 2002-08-15 Hitachi Metals, Ltd. Gasification melting furnace and gasification melting method for combustible refuse and/or burned ash
JP2007132254A (en) * 2005-11-10 2007-05-31 Mitsubishi Materials Techno Corp Waste gasification power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063213A1 (en) * 2001-02-07 2002-08-15 Hitachi Metals, Ltd. Gasification melting furnace and gasification melting method for combustible refuse and/or burned ash
JP2007132254A (en) * 2005-11-10 2007-05-31 Mitsubishi Materials Techno Corp Waste gasification power generation system

Also Published As

Publication number Publication date
JP3977939B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
RU2270849C2 (en) System producing electric power with the help of gasification of combustibles
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
US9410095B2 (en) Method of gasification of biomass using gasification island
JP5521187B2 (en) Combustible gas generator for gasifying waste and method for producing combustible gas
JPS62187000A (en) Method of gassifying sewage sludge
KR19980023905A (en) Methods and apparatus for treating waste through vaporization
US20060137579A1 (en) Gasification system
JP2008132409A (en) Gasification melting method and apparatus of sludge
JP2009262047A (en) Method for utilizing waste material containing sludge in coal boiler for power generation
RU2478169C1 (en) Plasma-chemical method of processing solid domestic and industrial wastes
JP2004051745A (en) System of gasifying biomass
JP2007031492A (en) Method for producing hydrogen from sludge
JP3938981B2 (en) Gas recycling method for waste gasification
JP3977939B2 (en) Waste melting treatment method and treatment equipment
JP2007277479A (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste
JPH11131078A (en) Production of fuel gas and synthetic gas from pyrolyzed product
JP4051329B2 (en) Waste gasification and melting treatment method
JP2002059143A (en) Gasifying equipment for waste and gasification power equipment using the same
WO2005080874A1 (en) Waste fusion treatment method utilizing powdery biomass
JP2009240888A (en) System for gasifying waste
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
WO2008100012A1 (en) Method for recovering resource from waste and resource recovery system therefor
JP4028934B2 (en) Waste treatment method and treatment apparatus
JP4168709B2 (en) Disposal of used plastic
JP2006028211A (en) Waste gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees