JP2000107570A - METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS - Google Patents

METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS

Info

Publication number
JP2000107570A
JP2000107570A JP10285295A JP28529598A JP2000107570A JP 2000107570 A JP2000107570 A JP 2000107570A JP 10285295 A JP10285295 A JP 10285295A JP 28529598 A JP28529598 A JP 28529598A JP 2000107570 A JP2000107570 A JP 2000107570A
Authority
JP
Japan
Prior art keywords
boiler
gas
exhaust gas
reducing
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10285295A
Other languages
Japanese (ja)
Inventor
Kaoru Kimura
薫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10285295A priority Critical patent/JP2000107570A/en
Publication of JP2000107570A publication Critical patent/JP2000107570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PROBLEM TO BE SOLVED: To reduce the SOx concn. together with the amt. of NH3 injected in a method for reducing SOx and NOx concns. in an exhaust gas produced by burning a fuel having high S and V contents in a boiler by injecting a gas for an ignition burner into the vicinity of an exhaust gas introduction port of a denitration apparatus at the downstream side of the boiler. SOLUTION: A fuel having high S and V contents, such as an olimulsion, is fed from burners 5 installed in a boiler 1 and is burned. Then, enough air is supplied from an over air port 6 installed at the downstream side of the burners 5 to conduct two-step burning to completely burn CO. An exhaust boiler gas is discharged through the top of the boiler 1, is caused to pass through a gas mixer to make the concn. distribution of each gas in the exhaust gas uniform, and is introduced into a denitration apparatus 2. An LPG gas, as a reducing component for the exhaust gas, is injected into the vicinity of the exhaust gas introduction port of the denitration apparatus 2 through an LPG gas supply device 8 and an LPG gas injection line 9. Thus, the amt. of NH3 injected into the exhaust gas is decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラ排ガス中の
SOX およびNOX 濃度低減方法及び装置に係り、特
に、高S,V分を含有した燃料をボイラで燃焼させた際
のボイラ排ガス中のSOX およびNOX 濃度低減方法及
び装置に関するものである。
The present invention relates to the boiler relates to SO X and NO X concentration reduction method and apparatus in an exhaust gas, particularly, a high S, boiler exhaust gas at the time of a fuel containing V content is burned in a boiler And a method and apparatus for reducing SO X and NO X concentrations.

【0002】[0002]

【従来の技術】一般的な排煙処理システムにおいて、ボ
イラ燃焼によって生成したボイラ排ガスは、順に、De−
NOX (脱硝装置)、AH(エアヒータ)、EP(電気集
塵器)、GGH(ガスガスヒータ)、脱硫装置などに導
かれる。ここで、De−NOX において、ボイラ排ガス中の
NOX を除去すると共に、脱硫装置においてSOX を除
去し、クリーンなガスにした後に煙突を介して大気に排
出している。
2. Description of the Related Art In a general flue gas treatment system, boiler exhaust gas generated by boiler combustion is sequentially de-evaporated.
NO X (denitrator), AH (air heater), EP (electrostatic precipitator), GGH (gas-gas heaters), is guided to the desulfurization apparatus. Here, in the De-NO X, to remove the NO X in the boiler in the exhaust gas, the SO X removed in the desulfurization apparatus, and discharged to the atmosphere through the chimney after the clean gas.

【0003】ボイラ燃料として、高S,V分を含むオリ
マルジョン等を用いた場合、ボイラ燃焼時に、高濃度の
SOX およびNOX を含む排ガスがボイラから排出され
る。ここで、排煙処理システムの排ガスに含まれるSO
X (SO2 ,SO3 等)の内、SO3 は硫酸化すると強
い腐食性を有するため、AHにおいてSO3 が硫酸化し
てAHを腐食しないようにすると共に固形分の付着を防
ぐべく、AH出口付近の排ガス温度をSO3 の酸露点
(約160℃)以上に保たなければならない。このた
め、AH出口付近の排ガス温度を約160℃以下に下げ
ることができず、結果的に、AHでの熱回収効率を下
げ、ボイラ効率を下げてしまう。
[0003] When orimulsion containing high S and V components is used as boiler fuel, exhaust gas containing high concentrations of SO X and NO X is discharged from the boiler during boiler combustion. Here, the SO contained in the exhaust gas of the flue gas treatment system
Of the X (SO 2 , SO 3, etc.), SO 3 has a strong corrosive property when it is sulfated. Therefore, in order to prevent the SO 3 from being sulfated in the AH to corrode the AH and prevent the solid content from adhering, the AH The exhaust gas temperature near the outlet must be kept above the acid dew point of SO 3 (about 160 ° C.). For this reason, the exhaust gas temperature in the vicinity of the AH outlet cannot be reduced to about 160 ° C. or less, and as a result, the heat recovery efficiency of the AH is reduced, and the boiler efficiency is reduced.

【0004】また、脱硫装置においては、排ガスの温度
がどうしてもSO3 の酸露点以下に下がってしまうた
め、排ガス中のSO3 を、脱硫装置上流側のEPで除去
する必要がある。よって、AHとEPの間において、多
量のNH3 等を排ガスに注入しなければならない。この
場合、未反応のアンモニアガスが脱硫装置で捕集され、
この未反応のアンモニアガスが脱硫排水中に多量に含ま
れることになるため、廃水処理設備が高価なものになっ
てしまうという問題があった。
[0004] Also, in the desulfurization apparatus, since the temperature of the exhaust gas inevitably drops below the acid dew point of SO 3, the SO 3 in the exhaust gas, it is necessary to remove in EP desulfurizer upstream. Therefore, a large amount of NH 3 or the like must be injected into the exhaust gas between AH and EP. In this case, unreacted ammonia gas is collected by the desulfurization device,
Since a large amount of the unreacted ammonia gas is contained in the desulfurization effluent, there is a problem that the wastewater treatment equipment becomes expensive.

【0005】さらに、従来の排煙処理システムにおいて
は、AH上流側のDe−NOX において酸化によるSO2
SO3 への転化が促進され、この結果、AHおよびEP
に送られる排ガス中のSO3 濃度が一層上昇してしまう
という問題があった。
Further, in the conventional flue gas treatment system, the conversion of SO 2 to SO 3 by oxidation is promoted in the De-NO X on the upstream side of AH, and as a result, AH and EP
There is a problem that the SO 3 concentration in the exhaust gas sent to the furnace further increases.

【0006】そこで、本発明者は、ボイラ内のバーナと
オーバーエアポート(以下、OAPと呼ぶ)との間で発
生した還元性ガス(CO、H2 S、HCNなど)の一部
を、バーナとOAPとの間に設けた抜出ラインを介して
抜出し、そのガスをDe−NOXで利用することにより、ボ
イラ排ガス中に注入するNH3 の量を低減させると共
に、排ガス中のSO3 濃度を低減させる方法を以前に提
案した(特願平9−68052号)。
The inventor of the present invention has proposed that a part of reducing gas (CO, H 2 S, HCN, etc.) generated between a burner in a boiler and an over-air port (hereinafter referred to as OAP) is transferred to the burner. withdrawn through the evacuation line provided between the OAP, by utilizing the gas in De-NO X, together with reducing the amount of NH 3 to be injected into the boiler in the exhaust gas, the SO 3 concentration in the exhaust gas A method for reducing the noise has been proposed before (Japanese Patent Application No. 9-68052).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この方
法においては、ボイラから抜出す還元性ガスのガス温度
が約1,500 〜1,600 ℃と高いため、抜出ライン(特に、
導入口)の構成材の材質が限定され、非常に高価なもの
となってしまうという問題があった。また、還元性ガス
の抜出し位置が、バーナとOAPとの間であるため、配
置的(技術的)に抜出しが難しい。
However, in this method, since the gas temperature of the reducing gas extracted from the boiler is as high as about 1,500 to 1,600 ° C., the extraction line (particularly,
There is a problem that the material of the constituent material of the (introduction port) is limited, and it becomes very expensive. In addition, since the extracting position of the reducing gas is between the burner and the OAP, it is difficult to extract the reducing gas in a layout (technically) manner.

【0008】そこで本発明は、上記課題を解決し、安
価、かつ、容易に、ボイラ排ガス中に注入するNH3
量を低減させると共に、排ガス中のSO3 濃度を低減さ
せるボイラ排ガス中のSOxおよびNOx濃度低減方法
及び装置を提供することにある。
Accordingly, the present invention solves the above-mentioned problems, and reduces the amount of NH 3 injected into boiler exhaust gas and reduces the SO 3 concentration in the exhaust gas at low cost and easily. And a method and apparatus for reducing NOx concentration.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、高S,V分を含有した燃料をボイ
ラで燃焼させた際のボイラ排ガス中のSOX およびNO
X 濃度低減方法において、上記ボイラ下流側の脱硝装置
の排ガス導入口近傍に、点火バーナ用ガスを注入するも
のである。
The invention of claim 1 in order to achieve the above object, there is provided a means for solving] a high S, SO X and NO of the boiler in the exhaust gas when the fuel containing V content is burned in a boiler
In the X concentration reduction method, a gas for an ignition burner is injected into the vicinity of an exhaust gas inlet of a denitration device on the downstream side of the boiler.

【0010】以上の方法によれば、脱硝装置の排ガス導
入口近傍に、バーナ点火用に用いられていたLPGガス
を注入するだけであり、高温の還元性ガスの抜出しを行
う必要がないため、従来の方法と比較して、設備的・技
術的に、容易に、ボイラ排ガス中に注入するNH3 の量
を低減させ、排ガス中のSO3 濃度を低減させることが
できる。
According to the above method, the LPG gas used for the burner ignition is simply injected into the vicinity of the exhaust gas inlet of the denitration device, and it is not necessary to extract the high-temperature reducing gas. Compared with the conventional method, the amount of NH 3 injected into the boiler exhaust gas can be easily reduced in terms of equipment and technology, and the SO 3 concentration in the exhaust gas can be reduced.

【0011】請求項2の発明は、高S,V分を含有した
燃料をボイラで燃焼させた際のボイラ排ガス中のSOX
およびNOX 濃度低減方法において、上記ボイラ内で発
生した還元性ガスの一部をボイラ炉底から抜出した後、
そのガスを抜出ラインを介してボイラ下流側の脱硝装置
の排ガス導入口近傍に注入するものである。
[0011] According to a second aspect of the invention, a high S, SO X in the boiler exhaust gas at the time of a fuel containing V content is burned in a boiler
And in the NO x concentration reduction method, after extracting a part of the reducing gas generated in the boiler from the bottom of the boiler furnace,
The gas is injected into the vicinity of the exhaust gas inlet of the denitration device on the downstream side of the boiler via the extraction line.

【0012】請求項3の発明は、上記還元性ガスの一部
を吸引によりボイラ炉底から抜出した後、そのガスを冷
却し、その冷却ガスを抜出ラインを介してボイラ下流側
の脱硝装置の排ガス導入口近傍に注入する請求項2記載
のボイラ排ガス中のSOX およびNOX 濃度低減方法で
ある。
According to a third aspect of the present invention, after a part of the reducing gas is withdrawn from the bottom of the boiler by suction, the gas is cooled, and the cooling gas is discharged through a withdrawal line to a denitration device on the downstream side of the boiler. a SO X and NO X concentration reduction method of the boiler flue gas according to claim 2 wherein the injection in the vicinity of the exhaust gas inlet.

【0013】以上の方法によれば、還元性ガスの抜出し
を、高温なボイラ上方ではなく、比較的低温なボイラ炉
底から行うため、配置的に抜出しが容易であり、ボイラ
上方の還元性ガスよりは比較的温度が低いボイラ炉底の
還元性ガスを抜出しているため、抜出しラインの構成材
の材質選定の自由度が増し、装置コストを低く抑えるこ
とができる。
According to the above method, since the reducing gas is extracted not from above the high-temperature boiler but from the bottom of the relatively low-temperature boiler furnace, it is easy to extract the reducing gas, and the reducing gas above the boiler can be easily removed. Since the reducing gas at the bottom of the boiler furnace, which has a relatively low temperature, is extracted, the degree of freedom in selecting the components of the extraction line is increased, and the cost of the apparatus can be reduced.

【0014】請求項4の発明は、高S,V分を含有した
燃料をボイラで燃焼させた際のボイラ排ガス中のSOX
およびNOX 濃度低減装置において、上記ボイラの下流
側に接続された脱硝装置の排ガス導入口近傍に、点火バ
ーナ用ガス注入手段を設けたものである。
[0014] A fourth aspect of the present invention, a high S, SO X in the boiler in the exhaust gas when the fuel containing V content is burned in a boiler
And the NO X concentration reduction apparatus, the vicinity of the exhaust gas inlet connected denitration apparatus on the downstream side of the boiler, is provided with a gas injection means for igniting the burner.

【0015】以上の構成によれば、脱硝装置の排ガス導
入口近傍に、既存の設備の一部を利用した点火バーナ用
ガス注入手段を設けているため、既存の排煙処理システ
ムにそのまま適用することができる。
According to the above configuration, since the gas injection means for the ignition burner utilizing a part of the existing equipment is provided near the exhaust gas inlet of the denitration apparatus, it can be applied to the existing flue gas treatment system as it is. be able to.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0017】本発明のボイラ排ガス中のSOX およびN
X 濃度低減装置の概略図を図1に示す。
SO X and N in boiler exhaust gas of the present invention
A schematic diagram of O X concentration reduction apparatus shown in FIG.

【0018】一般的な排煙処理システムにおいては、図
1に示すように、ボイラ1の下流側に、順に、De−NOX
2、AH3、EP4が接続されている。
In a general flue gas treatment system, as shown in FIG. 1, a De-NO X
2, AH3 and EP4 are connected.

【0019】本発明のボイラ排ガス中のSOX およびN
X 濃度低減装置は、De−NOX 2の排ガス導入口近傍に
LPGガスG1 を注入すべく、De−NOX 2の排ガス導入
口近傍にLPGガス注入手段(点火バーナ用ガス注入手
段)7を設けたものである。
SO X and N in boiler exhaust gas of the present invention
O X concentration reduction apparatus, in order to inject LPG gas G 1 in the vicinity of the exhaust gas inlet of the De-NO X 2, LPG gas injection means in the vicinity of the exhaust gas inlet of the De-NO X 2 (gas injection means for ignition burner) 7 is provided.

【0020】LPGガス注入手段7は、LPGガス供給
器8と、LPGガス供給器8とDe−NOX 2の排ガス導入
口近傍とを接続するLPGガス注入ライン9とで構成さ
れるものである。
The LPG gas injection means 7 is composed of an LPG gas supply 8 and an LPG gas injection line 9 connecting the LPG gas supply 8 and the vicinity of the exhaust gas inlet of De-NO X 2. .

【0021】ここで、ボイラ燃焼を行うためのバーナ5
は、主バーナ(図示せず)と点火バーナ(図示せず)と
で構成されているが、点火バーナ用の燃料ガスとしてL
PGガスG1 が使用されている。すなわち、ボイラ1を
構成するバーナ5の付随設備としてLPGガス供給器8
が元々配置されているため、新たにLPGガス供給器8
を新設する必要はなく、LPGガス注入ライン9を新設
するだけでよい。
Here, a burner 5 for performing boiler combustion is provided.
Is composed of a main burner (not shown) and an ignition burner (not shown), and L is used as a fuel gas for the ignition burner.
PG gas G 1 is being used. That is, the LPG gas supply unit 8 is provided as an auxiliary equipment of the burner 5 constituting the boiler 1.
Is originally placed, so a new LPG gas supply 8
It is not necessary to newly install the LPG gas injection line 9 only.

【0022】本発明のボイラ排ガス中のSOX およびN
X 濃度低減装置によれば、既存のLPGガス供給器8
に対してLPGガス注入ライン9を新設するだけである
ため、ボイラ1およびDe−NOX 2などの装置を更新する
ことなく、既存の排煙処理システムにそのまま適用する
ことができる。
SO X and N in boiler exhaust gas of the present invention
According to O X concentration reduction apparatus, the existing LPG gas supplier 8
However, since only the LPG gas injection line 9 is newly provided, the present invention can be applied to an existing flue gas treatment system without updating the boiler 1 and the devices such as De-NO X 2.

【0023】また、De−NOX 2の排ガス導入口近傍に注
入されるLPGガスG1 の温度は、ボイラ1内で発生す
る還元性ガスのように高温ではないため、LPGガス注
入ライン9の構成材として特別な材料を用いる必要はな
く、装置コストを低く抑えることができる。
The temperature of the LPG gas G 1 injected near the exhaust gas inlet of De-NO X 2 is not as high as the reducing gas generated in the boiler 1. It is not necessary to use a special material as a constituent material, and the apparatus cost can be reduced.

【0024】次に、本発明のボイラ排ガス中のSOX
よびNOX 濃度低減方法を図1を用いて説明する。
Next, the method for reducing the concentration of SO X and NO X in the boiler exhaust gas of the present invention will be described with reference to FIG.

【0025】ボイラ1内に臨んで設けられたバーナ5の
先端から、オリマルジョン等のS,V分を多く含有する
燃料を供給すると共に燃焼させ、ボイラ燃焼を行う。こ
の時、バーナ5においては、NOX 軽減対策として、理
論空気量よりも少ない空気で燃焼(不完全燃焼)を行
い、その後、該バーナ5の下流側(図1中では上側)に
設けたOAP6から充分な空気を供給して二段燃焼を行
い、COを完全燃焼させる。
A fuel containing a large amount of S and V, such as orimulsion, is supplied and burned from the tip of a burner 5 provided in the boiler 1 to burn the boiler. At this time, in the burner 5, a NO X mitigation performs combustion with less than the stoichiometric amount of air the air (incomplete combustion), then, downstream of the burner 5 (in FIG. 1 the upper) provided OAP6 And sufficient air is supplied to perform two-stage combustion to completely burn CO.

【0026】ボイラ燃焼により発生したボイラ排ガス
は、ボイラ1の頂部から排出された後、ガス混合器(図
示せず)を通ることによって排ガス中の各ガス成分の濃
度分布が略均一になり、その後、De−NOX 2に導入され
る。
The boiler exhaust gas generated by the boiler combustion is discharged from the top of the boiler 1 and then passes through a gas mixer (not shown) so that the concentration distribution of each gas component in the exhaust gas becomes substantially uniform. , it is introduced into the De-NO X 2.

【0027】De−NOX 2においては、脱硝触媒の作用に
より、以下に示す式および式のNOX 分解反応が行
われる。
In De-NO X 2, an NO X decomposition reaction represented by the following formula and a formula is carried out by the action of a denitration catalyst.

【0028】 4NO +4NH3 +O2 →4N2 +6H2 O… 2NO2 +4NH3 +O2 →3N2 +6H2 O… また、通常のボイラ運用時における排ガス中には、数百
ppm〜数千ppmのSO2 に対して、1〜3wt%程
度の豊富なO2 (過剰O2 )が存在する。よって、酸化
反応器であるDe−NOX 2においては、化1に示す式に
おける左辺から右辺への反応、すなわち、SO3 への転
化反応が促進される。
[0028] 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O ... 2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O ... In addition, in the exhaust gas during normal boiler operation hundreds ppm~ several thousand ppm of SO There is abundant O 2 (excess O 2 ) of about 1 to 3 wt% relative to 2 . Therefore, in the oxidation reactor De-NO X 2, the reaction from the left side to the right side in the equation shown in Chemical formula 1, that is, the conversion reaction to SO 3 is promoted.

【0029】[0029]

【化1】 Embedded image

【0030】このため、SO3 への転化反応の抑制、す
なわち、式における右辺から左辺への反応を促進する
ためには、O2 に対して過剰な他の還元成分であって、
SO 2 よりも酸化性の高い成分の注入が必要となる。
For this reason, SOThreeThe conversion reaction to
In other words, promote the reaction from the right side to the left side in the expression
In order for OTwoOther reducing components in excess of
SO TwoInjection of a component having a higher oxidizing property is required.

【0031】本発明においては、この還元成分として、
De−NOX 2の排ガス導入口近傍に、LPGガス供給器8
およびLPGガス注入ライン9を介してLPGガス(C
3 8 )G1 を注入する。
In the present invention, as the reducing component,
LPG gas supply 8 near the exhaust gas inlet of De-NO X 2
And LPG gas (C
3 H 8) implanting G 1.

【0032】LPGガスG1 の注入量の決定に際して
は、ボイラ排ガス中における過剰O2の他に、SO3
NOX などとの反応についても考慮する必要があるが、
これらのガス成分の内、ボイラ排ガス成分として一般的
な、O2 、SO3 、NOX 、NH3 について考慮する。
また、NOX については、脱硝率がXの場合、1−Xの
未反応分のみがLPGガスG1 との反応に寄与するもの
とし、計算上、NH3 の効果は脱硝率Xに含めるものと
する。さらに、LPGガスG1 の注入量の算出に際し
て、以下に示す式〜の反応(De−NOX 2における酸
化・還元反応)を考慮する。
In determining the injection amount of the LPG gas G 1 , in addition to excess O 2 in the boiler exhaust gas, SO 3 ,
It is also necessary to consider the reaction such as NO X,
Among these gas components, O 2 , SO 3 , NO X , and NH 3 , which are general as boiler exhaust gas components, are considered.
Moreover, those for NO X, if the denitration rate is X, it is assumed that only the unreacted portion of 1-X contributes to reaction with LPG gas G 1, calculated on the effect of the NH 3 is to be included in the denitration ratio X And Further, consider when calculating the injection amount of LPG gas G 1, the reaction of the formula - shown below (oxidation-reduction reaction in De-NO X 2).

【0033】 C3 8 +SO2 +5O2 →3CO2 +4H2 O+SO2 … C3 8 +10SO3 →3CO2 +4H2 O+10SO2 … C3 8 +10NO→3CO2 +4H2 O+5N2 … 尚、CO、CmHn、HCNについては、ボイラ排ガス
中に微量しか含まれていないため、計算上考慮しないも
のとする。
C 3 H 8 + SO 2 + 5O 2 → 3CO 2 + 4H 2 O + SO 2 ... C 3 H 8 + 10SO 3 → 3CO 2 + 4H 2 O + 10SO 2 ... C 3 H 8 + 10NO → 3CO 2 + 4H 2 O + 5N 2 . CmHn and HCN are not considered in the calculation because only a very small amount is contained in the boiler exhaust gas.

【0034】各ガス成分の濃度を、[C3 8 ]wt%
(排ガス中の重量%)、[O2 ]wt%、[SO3 ]p
pmw(排ガス中の重量ppm)、[NO]ppmwと
し、排ガス量をW(kg/h)、C3 8 注入量を[C
3 8 ](kg/h)、脱硝率をX、余裕率を10%と
すると、C3 8 注入量([C3 8 ](kg/h))
は、化2の式で表される。
The concentration of each gas component is set to [C 3 H 8 ] wt%
(Weight% in exhaust gas), [O 2 ] wt%, [SO 3 ] p
pmw (weight ppm in exhaust gas) and [NO] ppmw, the exhaust gas amount is W (kg / h), and the C 3 H 8 injection amount is [C
Assuming that [ 3 H 8 ] (kg / h), the denitration rate is X, and the margin is 10%, the C 3 H 8 injection amount ([C 3 H 8 ] (kg / h))
Is represented by the formula of Chemical Formula 2.

【0035】[0035]

【化2】 Embedded image

【0036】化2により算出されるC3 8 (LPGガ
スG1 )注入量は最大ベースであり、実際には各反応に
おいて過不足が生じるため、この算出量分のC3 8
注入した場合、De−NOX 2の出口にて相当量の未反応C
3 8 が検出されると考えられる。また、ボイラ排ガス
中に、LPGガスG1 と同様に還元性を有するCO、N
3 、CmHn、HCNなどが存在する場合は、LPG
ガスG1 の注入量は低減する方向となる。
The reduction 2 C 3 H 8 calculated by (LPG gas G 1) injection volume is the largest base, because actually deficiency occurs in each reaction, injecting the C 3 H 8 in the calculation amount , A considerable amount of unreacted C at the outlet of De-NO X 2
It is believed that 3 H 8 is detected. Also, the boiler flue gas, CO also having reducing the LPG gas G 1, N
When H 3 , CmHn, HCN, etc. are present, LPG
Injection amount of the gas G 1 is the direction to decrease.

【0037】このように、De−NOX 2の排ガス導入口近
傍にLPGガスG1 を注入することで、De−NOX 2にお
けるSO3 への転化反応が、式に示すように抑制され
ると共に、ボイラ1内で発生し、ボイラ排ガス中に含ま
れるSO3 が、式に示すようにSO2 に分解される。
その結果、SO3 濃度が著しく低減した排ガスが、De−
NOX 2からAH3に送られる。
[0037] Thus, to inject LPG gas G 1 in the vicinity of the exhaust gas inlet of the De-NO X 2, the conversion reaction of the SO 3 in the De-NO X 2, it is suppressed as shown in equation At the same time, SO 3 generated in the boiler 1 and contained in the boiler exhaust gas is decomposed into SO 2 as shown by the equation.
As a result, the exhaust gas whose SO 3 concentration has been significantly reduced becomes De-
It sent from NO X 2 to AH3.

【0038】また、De−NOX 2の排ガス導入口近傍に注
入されたLPGガスG1 は、式に示すように、その強
い還元性ゆえに、上述したNOX 分解反応(式及び式
参照)におけるNH3 の代替物として働くため、De−
NOX 2に注入するNH3 量を従来よりも低減させること
ができる。
Further, as shown in the equation, the LPG gas G 1 injected near the exhaust gas inlet of De-NO X 2 has a strong reducing property, so that the LPG gas G 1 in the above-mentioned NO X decomposition reaction (see the equation and the equation) to serve as a replacement for NH 3, De-
The amount of NH 3 injected into NO X 2 can be reduced as compared with the conventional case.

【0039】すなわち、本発明のボイラ排ガス中のSO
X およびNOX 濃度低減方法によれば、De−NOX 2の排
ガス導入口近傍にバーナ点火用に用いられていたLPG
ガスG1 を注入するだけで、ボイラ排ガス中に注入する
NH3 の量を低減させ、SO3 への転化反応を抑制し、
かつ、SO3 をSO2 に分解することができ、従来の方
法と比較して、設備的・技術的に、容易である。
That is, SO in the boiler exhaust gas of the present invention
According to the X and NO X concentration reduction method, the LPG used for burner ignition near the exhaust gas inlet of De-NO X 2
Simply injecting gas G 1, reduce the amount of NH 3 to be injected into the boiler flue gas, to suppress the conversion reaction to SO 3,
In addition, SO 3 can be decomposed into SO 2 , which is easier in terms of equipment and technology than conventional methods.

【0040】また、AH3の出口付近における排ガス温
度を、従来よりも大幅に低くすることができるため、運
転効率が向上すると共に、EP4においてSO3 捕集の
ために注入するNH3 量を大幅に低減することができ、
かつ、EP4自体のサイズの縮小も可能となる。
Further, since the exhaust gas temperature near the outlet of AH3 can be made much lower than in the past, the operating efficiency is improved and the amount of NH 3 injected for collecting SO 3 in EP4 is greatly increased. Can be reduced,
In addition, the size of the EP 4 itself can be reduced.

【0041】次に、本発明の他の実施の形態を説明す
る。
Next, another embodiment of the present invention will be described.

【0042】他の実施の形態のボイラ排ガス中のSOX
およびNOX 濃度低減装置の概略図を図2に示す。
SO X in Boiler Exhaust Gas of Another Embodiment
And shows a schematic diagram of the NO X concentration reduction apparatus in FIG.

【0043】本実施の形態におけるボイラ排ガス中のS
X およびNOX 濃度低減装置を用いた排煙処理システ
ムにおいても、図1と同様に、ボイラ1の下流側に、順
に、De−NOX 2、AH3、EP4が接続されている。
In the present embodiment, S in the boiler exhaust gas
Also in flue gas treating system using the O X and NO X concentration reduction apparatus, similar to FIG. 1, on the downstream side of the boiler 1, in order, De-NO X 2, AH3 , EP4 are connected.

【0044】本実施の形態のボイラ排ガス中のSOX
よびNOX 濃度低減装置は、De−NOX 2の排ガス導入口
近傍にボイラ1内で発生した還元性ガスG2 の一部を注
入すべく、ボイラ1の炉底とDe−NOX 2の排ガス導入口
近傍とを接続する抜出ライン11を設けたものである。
The apparatus for reducing the concentration of SO X and NO X in boiler exhaust gas of the present embodiment injects a part of the reducing gas G 2 generated in the boiler 1 near the exhaust gas inlet of De-NO X 2. To this end, an extraction line 11 connecting the furnace bottom of the boiler 1 and the vicinity of the exhaust gas inlet of De-NO X 2 is provided.

【0045】抜出しライン11の中途には、還元性ガス
2 を抜出すための吸引ファン12と、抜出した還元性
ガスG2 の冷却を行うためのガス冷却器13が設けられ
ている。
[0045] The middle of the extraction line 11, a suction fan 12 for extracting the reducing gas G 2, the gas cooler 13 for cooling the withdrawal reducing gas G 2 is provided.

【0046】本実施の形態のボイラ排ガス中のSOX
よびNOX 濃度低減装置によれば、還元性ガスG2 の抜
出ライン11の一端をボイラ1の炉底に接続し、ボイラ
1上方の還元性ガスよりは比較的温度が低いボイラ1炉
底の還元性ガスG2 を抜出しているため、抜出しライン
11の構成材の材質選定の自由度が増し、装置コストを
低く抑えることができる。
According to the apparatus for reducing the concentration of SO X and NO X in the boiler exhaust gas of the present embodiment, one end of the extraction line 11 for the reducing gas G 2 is connected to the furnace bottom of the boiler 1, since the extracted relatively temperature is low boiler 1 hearth reducing gas G 2 is more reducing gas extraction freedom of material selection of construction material line 11 is increased, it is possible to reduce the apparatus cost.

【0047】次に、本実施の形態のボイラ排ガス中のS
X およびNOX 濃度低減方法を図2を用いて説明す
る。
Next, S in the boiler exhaust gas of the present embodiment is
The method for reducing the concentration of O X and NO X will be described with reference to FIG.

【0048】本発明と同様にしてボイラ燃焼させてなる
ボイラ排ガスは、ボイラ1の頂部から排出された後、ガ
ス混合器(図示せず)を通ることによって排ガス中の各
ガス成分の濃度分布が略均一になり、その後、De−NOX
2に導入される。
The boiler exhaust gas produced by boiler combustion in the same manner as in the present invention is discharged from the top of the boiler 1 and then passes through a gas mixer (not shown) so that the concentration distribution of each gas component in the exhaust gas is reduced. It becomes almost uniform, and then De-NO X
2 is introduced.

【0049】この時、ボイラ1内のバーナ5とOAP6
との間の部分では、上述した不完全燃焼の結果、CO,
2 S,HCN等の還元性ガスG2 が比較的多量に(数
千ppm程度)生成される。ボイラ1内で発生したこれ
らの還元性ガスG2 の一部を、吸引ファン12により抜
出ライン11を介してボイラ1の炉底から抜き出し、そ
の抜出した還元性ガスG2 をガス冷却器13を用いて冷
却する。その後、冷却された還元性ガスG2 を、ボイラ
1の下流側に接続されたDe−NOX 2の排ガス導入口近傍
に注入する。
At this time, the burner 5 in the boiler 1 and the OAP 6
In the part between and CO, CO,
H 2 S, a relatively large amount (several thousands ppm) is reducing gas G 2 such as HCN is generated. A part of the reducing gas G 2 generated in the boiler 1 is extracted from the furnace bottom of the boiler 1 through an extraction line 11 by a suction fan 12, and the extracted reducing gas G 2 is removed from a gas cooler 13. Cool using. Thereafter, the cooled reducing gas G 2 is injected into the vicinity of the exhaust gas inlet of De-NO X 2 connected downstream of the boiler 1.

【0050】ここで、ボイラ燃料として重油(例えば、
オリマルジョン)を用いたボイラの内圧は、一般的に、
大気圧よりも大きくなっているため、吸引ファン12で
吸引するだけで、還元性ガスG2 はボイラ1から抜出ラ
イン11を介してDe−NOX 2の排ガス導入口近傍に注入
されることになる。
Here, heavy oil (for example,
Internal pressure of a boiler using
Since the pressure is higher than the atmospheric pressure, the reducing gas G 2 is injected from the boiler 1 through the extraction line 11 into the vicinity of the exhaust gas inlet of De-NO X 2 simply by suctioning with the suction fan 12. become.

【0051】De−NOX 2における還元性ガスG2 の各反
応を、以下の式〜に示す。
Each reaction of the reducing gas G 2 in De-NO X 2 is shown by the following formulas.

【0052】 CO(等)+SO2 +1/2O2 →CO2 +SO2 … CO+SO3 →CO2 +SO2 … (又は2HCN+5SO3 →2CO2 +N2 +H2 O+5SO2 ) CO(等)+10NO→CO2 +N2 … 還元性ガスG2 は、式に示すように、ボイラ排ガス中
に含まれるSO2 よりも酸化されやすい(SO2 よりも
先に酸化されてしまう)ため、結果的に、前述の式に
示したSO3 への転化反応(右辺から左辺への反応)が
抑制される。従って、従来の排煙処理システムと比較し
て、式の反応によるSO3 の生成量が減少する。
CO (etc.) + SO 2 + 1 / 2O 2 → CO 2 + SO 2 ... CO + SO 3 → CO 2 + SO 2 ... (Or 2HCN + 5SO 3 → 2CO 2 + N 2 + H 2 O + 5SO 2 ) CO (etc.) + 10NO → CO 2 + N 2 ... As shown in the equation, the reducing gas G 2 is more easily oxidized than SO 2 contained in the boiler exhaust gas (it is oxidized before SO 2 ). The indicated conversion reaction to SO 3 (reaction from the right side to the left side) is suppressed. Therefore, the amount of SO 3 produced by the reaction of the formula is reduced as compared with the conventional flue gas treatment system.

【0053】また、還元性ガスG2 とO2 とが速やかに
反応してO2 が減少すると、式における反応が右から
左に進行する。その結果、ボイラ1内での燃焼で発生
し、ボイラ排ガス中に存在しているSO3 が、式に示
すようにSO2 に分解されるため、排ガス中のSO3
濃度が更に低下する。
When the reducing gas G 2 and O 2 react quickly to reduce O 2 , the reaction in the equation proceeds from right to left. As a result, SO 3 generated in combustion in the boiler 1 and present in the boiler exhaust gas is decomposed into SO 2 as shown in the equation, and the concentration of SO 3 in the exhaust gas further decreases.

【0054】この時、De−NOX 2内のO2 の濃度が高す
ぎると、式における反応が右から左に進行しないと共
にSO3 がSO2 に分解されず、逆に、左から右に進行
してSO2 がSO3 に酸化されてしまうため、注意が必
要である。一方、De−NOX 2内のO2 の濃度が低すぎる
と、還元性ガスG2 が十分に酸化されないため、De−NO
X 2におけるSO3 への転化反応が充分に抑制されなく
なる。そこで、De−NOX 2内でのO2 濃度が、還元性ガ
スG2 を十分に酸化でき、かつ、SO3 への転化反応を
促進しない範囲内に維持すべく、抜出ライン11への空
気の注入量を適宜調整する。
[0054] At this time, the concentration of O 2 in the De-NO X 2 is too high, SO 3 together with the reaction in the formula does not proceed from right to left is not decomposed into SO 2, conversely, from left to right Attention must be paid to the progress of the oxidation of SO 2 to SO 3 . On the other hand, when the concentration of O 2 in the De-NO X 2 is too low, the reducing gas G 2 can not be sufficiently oxidized, De-NO
The conversion reaction of X 2 to SO 3 is not sufficiently suppressed. Therefore, in order to maintain the O 2 concentration in the De-NO X 2 within a range where the reducing gas G 2 can be sufficiently oxidized and the conversion reaction to SO 3 is not promoted, the O 2 concentration to the extraction line 11 is reduced. Adjust the injection amount of air appropriately.

【0055】このように、ボイラ1の炉底から抜出ライ
ン11を介して抜出された還元性ガスG2 を、De−NOX
2の排ガス導入口近傍に注入することで、De−NOX 2に
おけるSO3 への転化反応が、式に示すように抑制さ
れると共に、ボイラ1内で発生し、ボイラ排ガス中に含
まれるSO3 が、式に示すようにSO2 に分解され
る。その結果、SO3 濃度が著しく低減した排ガスが、
De−NOX 2からAH3に送られる。
As described above, the reducing gas G 2 extracted from the furnace bottom of the boiler 1 via the extraction line 11 is converted into De-NO X
2, the conversion reaction of De-NO X 2 into SO 3 is suppressed as shown in the equation, and the SO 2 is generated in the boiler 1 and contained in the boiler exhaust gas. 3 is decomposed into SO 2 as shown in the equation. As a result, exhaust gas with significantly reduced SO 3 concentration
It sent from the de-NO X 2 to AH3.

【0056】また、De−NOX 2の排ガス導入口近傍に注
入された還元性ガスG2 は、式に示すように、その強
い還元性ゆえに、上述したNOX 分解反応(式及び式
参照)におけるNH3 の代替物として働くため、De−
NOX 2に注入するNH3 量を従来よりも低減させること
ができる。
Further, as shown in the equation, the reducing gas G 2 injected near the exhaust gas inlet of De-NO X 2 has the above-mentioned NO X decomposition reaction (see equation and equation) because of its strong reducing property. To serve as a substitute for NH 3 in De-
The amount of NH 3 injected into NO X 2 can be reduced as compared with the conventional case.

【0057】尚、本実施の形態のボイラ排ガス中のSO
xおよびNOx濃度低減方法においても、本発明の方法
と同様の作用効果を発揮することは言うまでもない。
It should be noted that SO in the boiler exhaust gas of this embodiment is
It goes without saying that the same effect as that of the method of the present invention is also exerted in the x and NOx concentration reduction method.

【0058】[0058]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0059】(1) De−NOX の排ガス導入口近傍にバ
ーナ点火用に用いられていた点火バーナ用ガスを注入す
ることで、ボイラ排ガス中に注入するNH3 の量を低減
させると共に、排ガス中のSO3 濃度を低減させること
ができ、従来の方法と比較して、設備的・技術的に、容
易である。
(1) By injecting an ignition burner gas used for burner ignition near the exhaust gas inlet of De-NO X , the amount of NH 3 injected into the boiler exhaust gas can be reduced and the exhaust gas can be reduced. The concentration of SO 3 in the material can be reduced, which is easier in terms of equipment and technology as compared with the conventional method.

【0060】(2) 既存のLPGガス供給器に対して
LPGガス注入ラインを新設することで、ボイラおよび
De−NOX などの装置を更新することなく、既存の排煙処
理システムにそのまま適用することができる。
(2) By installing a new LPG gas injection line for the existing LPG gas supply, the boiler and
Without updating the device, such as a de-NO X, it can be directly applied to the existing flue gas treatment system.

【0061】(3) 還元性ガスの抜出ラインの一端を
ボイラの炉底に接続し、ボイラ上方の還元性ガスよりは
比較的温度が低いボイラ炉底の還元性ガスを抜出すこと
で、抜出しラインの構成材の材質選定の自由度が増し、
装置コストを低く抑えることができる。
(3) One end of the reducing gas extraction line is connected to the bottom of the boiler, and the reducing gas at the bottom of the boiler whose temperature is relatively lower than the reducing gas above the boiler is extracted. The degree of freedom in selecting the material of the components of the extraction line is increased,
Equipment costs can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のボイラ排ガス中のSOxおよびNOx
濃度低減装置の概略図である。
FIG. 1 shows SOx and NOx in boiler exhaust gas of the present invention.
It is a schematic diagram of a concentration reduction device.

【図2】他の実施の形態のボイラ排ガス中のSOxおよ
びNOx濃度低減装置の概略図である。
FIG. 2 is a schematic view of a device for reducing the concentration of SOx and NOx in boiler exhaust gas according to another embodiment.

【符号の説明】 1 ボイラ 2 De−NOX (脱硝装置) 5 バーナ 6 OAP(オーバエアポート) 7 LPGガス注入手段(点火バーナ用ガス注入手段) 8 LPGガス供給器(点火バーナ用ガス注入手段) 9 LPGガス注入ライン(点火バーナ用ガス注入手
段) 11 抜出ライン 12 吸引ファン 13 ガス冷却器 G1 LPGガス(点火バーナ用ガス) G2 還元性ガス
[Description of Signs] 1 Boiler 2 De-NO X (DeNOx device) 5 Burner 6 OAP (Over air port) 7 LPG gas injection means (Ignition burner gas injection means) 8 LPG gas supply device (Ignition burner gas injection means) 9 LPG gas injection line (gas injection means for ignition burner) 11 Extraction line 12 Suction fan 13 Gas cooler G 1 LPG gas (ignition burner gas) G 2 reducing gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23J 15/00 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23J 15/00 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高S,V分を含有した燃料をボイラで燃
焼させた際のボイラ排ガス中のSOX およびNOX 濃度
低減方法において、上記ボイラ下流側の脱硝装置の排ガ
ス導入口近傍に、点火バーナ用ガスを注入することを特
徴とするボイラ排ガス中のSOX およびNOX 濃度低減
方法。
In a method for reducing the concentration of SO X and NO X in boiler exhaust gas when a fuel containing high S and V content is burned in a boiler, the method includes the steps of: A method for reducing the concentration of SO X and NO X in boiler exhaust gas, wherein a gas for an ignition burner is injected.
【請求項2】 高S,V分を含有した燃料をボイラで燃
焼させた際のボイラ排ガス中のSOX およびNOX 濃度
低減方法において、上記ボイラ内で発生した還元性ガス
の一部をボイラ炉底から抜出した後、そのガスを抜出ラ
インを介してボイラ下流側の脱硝装置の排ガス導入口近
傍に注入することを特徴とするボイラ排ガス中のSOX
およびNOX 濃度低減方法。
2. A method for reducing the concentration of SO X and NO X in boiler exhaust gas when a fuel containing a high S and V content is burned in a boiler, wherein a part of the reducing gas generated in the boiler is removed by the boiler. after extracted from the furnace bottom, SO X in the boiler flue gas, characterized by injecting the gas in the vicinity of the exhaust gas inlet of the denitration apparatus of the boiler downstream through the discharge line
And NO X concentration reduction method.
【請求項3】 上記還元性ガスの一部を吸引によりボイ
ラ炉底から抜出した後、そのガスを冷却し、その冷却ガ
スを抜出ラインを介してボイラ下流側の脱硝装置の排ガ
ス導入口近傍に注入する請求項2記載のボイラ排ガス中
のSOX およびNOX 濃度低減方法。
3. After a part of the reducing gas is extracted from the bottom of the boiler furnace by suction, the gas is cooled, and the cooled gas is discharged through an extraction line in the vicinity of an exhaust gas inlet of a denitration device downstream of the boiler. 3. The method for reducing the concentration of SO X and NO X in boiler exhaust gas according to claim 2, wherein the SO X and NO X are injected into a boiler.
【請求項4】 高S,V分を含有した燃料をボイラで燃
焼させた際のボイラ排ガス中のSOX およびNOX 濃度
低減装置において、上記ボイラの下流側に接続された脱
硝装置の排ガス導入口近傍に、点火バーナ用ガス注入手
段を設けたことを特徴とするボイラ排ガス中のSOX
よびNOX 濃度低減装置。
4. An apparatus for reducing the concentration of SO X and NO X in exhaust gas from a boiler when a fuel containing a high S and V content is burned in the boiler, the exhaust gas being introduced into a denitration device connected downstream of the boiler. An apparatus for reducing the concentration of SO X and NO X in boiler exhaust gas, wherein a gas injection means for an ignition burner is provided near the mouth.
JP10285295A 1998-10-07 1998-10-07 METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS Pending JP2000107570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10285295A JP2000107570A (en) 1998-10-07 1998-10-07 METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10285295A JP2000107570A (en) 1998-10-07 1998-10-07 METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS

Publications (1)

Publication Number Publication Date
JP2000107570A true JP2000107570A (en) 2000-04-18

Family

ID=17689682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10285295A Pending JP2000107570A (en) 1998-10-07 1998-10-07 METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS

Country Status (1)

Country Link
JP (1) JP2000107570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088525A1 (en) * 2019-11-05 2021-05-14 中冶长天国际工程有限责任公司 Flue gas multi-pollutant collaborative purification process method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088525A1 (en) * 2019-11-05 2021-05-14 中冶长天国际工程有限责任公司 Flue gas multi-pollutant collaborative purification process method and apparatus

Similar Documents

Publication Publication Date Title
JP5674281B2 (en) Dry three-way catalytic reduction method for gas turbine NOx
JP5068935B2 (en) Method and system for removing NOx and mercury emissions from coal combustion
JP5302597B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP3924150B2 (en) Gas combustion treatment method and apparatus
US8211391B2 (en) Biomass boiler SCR NOx and CO reduction system
CN101384335B (en) Reduction of co and nox in regenerator flue gas
ATE340630T1 (en) DEVICE AND METHOD FOR CONTROLLING NOX EMISSIONS FROM CARBON FUEL POWERED BOILERS WITHOUT USING AN EXTERNAL REAGENT
EP2380654A1 (en) System and Method for Controlling and Reducing NOx Emissions
JPS63178829A (en) Method and apparatus for recovering ammonia during separation of nitrogen oxides from waste gas
CN106765246B (en) A kind of online method and device for removing refinery's FCC apparatus waste heat boiler fouling
WO1991010504A1 (en) PROCESS FOR REMOVING NOx EMISSIONS FROM COMBUSTION EFFLUENTS
TWI744523B (en) Method and system for the removal of noxious compounds from flue-gas
EP2853718A1 (en) Method of exhaust gas treatment for a gas turbine system and exhaust gas treatment assembly
KR20180132194A (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
EP3647659A1 (en) Gas combustion treatment device, combustion treatment method, and gas purification system provided with gas combustion treatment device
JP2000107570A (en) METHOD AND APPARATUS FOR REDUCING SOx AND NOx CONCENTRATION IN EXHAUST BOILER GAS
JP2003166013A (en) Method for recovering converter gas
JP2013072571A (en) Exhaust gas treating system
CN106582226B (en) It is a kind of using ammonia-contaminated gas as the Denitration in Boiler technique of denitrfying agent
JPH1114034A (en) Exhaust gas treating apparatus and operation method thereof
EP1284389A4 (en) Wastes treating method and device
JP5016240B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US10898855B2 (en) Method and system for the removal of noxious compounds from flue-gas using fabric filter bags with an SCR catalyst
JP3526490B2 (en) Exhaust gas denitration device and denitration method
JP2001000833A (en) Boiler flue gas treating device